

Synchrotron radiation (SR) studies for the FCC-ee arc with FLUKA

Barbara Humann (SY-STI-BMI) Supervisor: Francesco Cerutti FCCIS WP2 Workshop 2021 (09/12/2021)

Acknowledgments to J. Bauche, M. Benedikt, R. Garcia-Alia, G. Lerner, R. Losito, R. Kersevan & F. Valchkova

Agenda

- 1. Simulation setup reminder
- 2. Synchrotron radiation: spectrum
- 3. Dose levels in the tunnel
- 4. Si-1MeV neutron equivalent fluence
- 5. Conclusion & Outlook

Simulation Setup

■ 182.5GeV (ttbar): most challenging case for energy deposition studies

■ Representative arc cell (140m) → periodic re-insertion of the particles

5 dipoles, 5 quadrupoles, 4 sextupoles

SR source (NEW!): e-, e+ in all magnets
 → direct approach

- Different layouts performed:
 - Absorbers: Tungsten (Inermet180) vs. copper (CuCrZr)

	Tungsten	Copper
+	Better absorption properties (higher Z and density)	Easier to manufacture, better behavior in vacuum
-	Brittle, harder to manufacture, cost	Less good energy absorption properties

Continuous shielding (comparable to LEP design): tungsten, 1cm around winglet

Model comparison: absorber vs continuous shielding

Absorbers (ABS):

- CuCrZr or Inermet180
- Length: 30cm
- 5-6m distance
- Angled surfaces for even power distribution
- Water cooled
- 25 ABS in each beam (MBs, MQs)

Continuous shielding:

- Equivalent to LEP layout
- Continuous shielding around VC in MBs
 - Space restrictions due to yoke and coils
 → no shielding in MQs and MSs.
- Intermet180
- Shielding thickness:
 - Top/bottom: 1cm
 - Sides: 1.3cm

Source term - Synchrotron Radiation

SR Spectrum of primary electrons:

SR Spectrum (Integrated over solid angle)

- Electromagnetic radiation emitted tangentially with an angular spread by charged particles moving along a curved trajectory
- The lighter the particle and the higher the energy, the stronger the effect:

$$\Delta E \propto \frac{E^4}{m^4}$$

• SR related numbers in FCC-ee ($\rho = 10.76 \text{km}$):

Energy loss (ΔE)	9.2GeV/turn
Critical energy (E_C)	1.25MeV
Power whole ring	50MW
Power 140m	168kW

Power deposition comparison: Tungsten vs Copper vs Continuous

βL	Power	Tungsten	Tungsten Copper			Continuous	
shielding	Dipoles*	7.8kW	4.7%	23.4kW	14%	3.5kW	2%
* Without VC and sh	Quads	0.9kW	0.5%	2.6kW	1.6%	17.4kW	10.4%
	Sexts	0.05kW	0.03%	0.09kW	0.06%	7.1kW	4.3%
	ABS, Shield/VC	155kW	92.3%	131kW	78%	135kW	81%
	Tunnel	4.1kW	2.4%	9.5kW	7%	3.5kW	2.1%
	Total	168kW		168kW		167kW	

Normalisation:

Current: 5.4mA

Energy: 182.5GeV

Runtime: 10⁷s

Peak heat load on ABS (hottest spot on the absorber) In the (unrealistic) adiabatic assumption:

Tungsten: 280K/s

Copper: 100K/s

Continuous: 10K/s

Power distribution on the absorbers and MBs

Power comparison different ABS:

Power on ABS	Tungsten	Copper
Absorber	97%	94%
Cooling	0.4%	1%
BP	2.6%	4%

Percentage calculated from one representative absorber

Power on MB	Tungsten (1.7kW)	Copper (5.3kW)
Yoke	64%	72%
Coil	24%	21%
BP	12%	7%

Percentage calculated from one representative MB

* VC...Vacuum Chamber (right/left)

Dose in the tunnel environment – y centre

 Higher dose internally due to backscattering of particles on ABS

- One order of magnitude higher dose than for tungsten (especially externally)
- Higher dose internally

- Peaks due to missing shielding in MQs
- Externally higher dose values
- On average lowest dose

3670

Dose Tungsten (y=+/-10cm)	Dose CuCrZr (y=+/-10cm)	Dose with continous shielding (y=-10/+10cm)	
100	100	100	
0 E 0 0.1 = 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-100	E	
-200	-200	-200 -300	
0 2000 4000 6000 8000 10000 12000 14000 z in cm	0 2000 4000 6000 8000 10000 12000 14000 z in cm	0 2000 4000 6000 8000 10000 12000 14000 z in cm	
TUNGSTEN	COPPER	CONTINUOUS	

	Tungsten	Copper	Cont.
Middle, ext.	100kGy	600kGy	200kGy/ 1.2MGy
Middle, int.	500kGy	1MGy	200kGy

HL-LHC arcs reference value: 1.4Gy (!)

(https://edms.cern.ch/ui/file/2302154/1.0/HL LHC_Specification_Document_v1.0.pdf)

Dose in the tunnel environment – y above

- Lowest obtained dose levels
- Homogeneously distributed

- Less effective ABS lead to higher dose
- Lower dose level at z~5500cm due to absorber placed in MQ
- Areas of higher dose due to MQs without shielding

3670

	Tungsten	Copper	Cont.
Top, Cent.	100kGy	300kGy	120kGy

HL-LHC arcs reference value: 1.4Gy

(https://edms.cern.ch/ui/file/2302154/1.0/H LLHC_Specification_Document_v1.0.pdf)

Booster on top of collider
Shielding options for R2E are under study

Fluence in the tunnel – ABS (Copper) layout

Neutron fluence:

- Similar results for B1 and B2
- Magnets are "transparent" for neutrons

Electromagnetic particles fluence:

- B1: higher fluence obtained due to scoring at the outside of the tunnel
- B2: particles absorbed in magnets

R2E: Si-1MeV neutron equivalent fluence

- Similar levels for all case, different contribution levels on the level of neutrons and em particles
 - Tungsten: high Z leads to lower production threshold for neutrons
 - Copper: higher production threshold for neutrons, but stronger impact from em particles
 - → Total levels are similar
- HL-LHC arcs reference: 1.6x10¹⁰cm⁻²

Summary

Heat load:

- Tungsten absorbers have best absorption properties, but cost and manufacturing properties are disadvantageous;
- VC highly impacted in case of continuous shielding

Peak heat load on the absorbers:

■ 2.5x higher for tungsten absorber → cooling feasible, outgassing?

09/12/2021

Radiation to electronics:

- Highest dose levels for the copper absorbers in the tunnel environment
- Lower dose levels on top of accelerator are favorable for booster placement
- Si-1MeV eq. fluence similar for all three cases but different levels of contributions from neutrons and em. particles
- Si-1MeV neutron equiv. fluence ~2 orders of magnitude higher than in HL-LHC, but bigger differences are obtained in dose levels (kGy instead of Gy → 5 orders of magnitude!)

Outlook

- Radiation studies for possible shielding in the tunnel for R2E
 - Test different materials (lead, concrete) & thicknesses (1cm, 3cm, 10cm)
- Investigate lower beam energies to assess if they comply with radiation safe environment in the tunnel (<1Gy/year)
- Gas bremsstrahlung simulation
 - Lowest energy (Z pole → higher current)
 - Constant beam-gas profile → find critical residual gas density
- Other Fluka/FCCee related ongoing activities: Heat load studies for the positron target

Magnets

General: 30cm beam separation

Dipoles (MB):

- Long: 24.64m (I_{mag})
 (Simulations were performed before 24m long model was abandoned)
- Short: 21.44m (I_{mag})
- 56.6mT at 182.5GeV

Quadrupole (MQ):

- 2.9m (I_{mag})
- 3.2m (I_{mech})
- Maximum gradient: 10.0T/m

Vacuum chamber (VC):

- Copper
- 2mm
- Winglets

Sextupole (MS):

- 1.4m (I_{mag})
- No prototypes and technical drawings so far (ending of coils,...)

Magnets designed from scratch in Fluka. Technical drawings received from J. Bauche

Absorber working & reflection

