

# **FCC HEB status and plans**

B. Dalena, A. Chance, H. de Grandsaignes (CEA)

B. Haerer (KIT)

### Thanks to:

L. Van Riesen-Haupt, T. Charles, R. Tomas, T. Persson, F. Antoniou, O. Etisken, M. Zampetakis, M. Hofer, F. Carlier, B. Holzer, A. Franchi, A. Latina







**Injection energy** into the booster **20 GeV** (or 16, 14 GeV )

Ramping similar to SPS: 80 GeV / s

**Alternative**: replace Linac + Pre Booster Ring with a **Linac** 



2 FCCIS WP2 workshop



# **Injection Parameters (as in CDR)**



Total filling time of collider < 20 min Continuous top-up injection into the collider (Beamstrahlung and radiative Bhabha losses) Charge variation bunch to bunch < few %

|                                       | FCC    | -ee Z  | FCC  | C-ee W | FCC   | -ee H  | FCC   | C-ee tt |
|---------------------------------------|--------|--------|------|--------|-------|--------|-------|---------|
| Energy (GeV)                          | 45.6   |        | 80   |        | 120   |        | 182.5 |         |
| Type of filling                       | Full   | Top-up | Full | Top-up | Full  | Top-up | Full  | Top-up  |
| LINAC # bunches, 2.8 GHz RF           |        | 2      | 2    |        | 1     |        | 1     |         |
| LINAC repetition rate (Hz)            | 2      | 00     | 1    | 100    | 100   |        | 100   |         |
| LINAC/PBR bunch popul. $(10^{10})$    | 2.13   | 1.06   | 1.88 | 0.56   | 1.88  | 0.56   | 1.38  | 0.83    |
| # of LINAC injections                 | 1040   |        | 1    | 000    | 0 393 |        | 50    |         |
| PBR bunch spacing (ns)                | 2      | .5     | 2    | 22.5   | 57    | 7.5    | 4     | 150     |
| # PBR cycles                          |        | 8      |      | 1      |       | 1      |       | 1       |
| PBR # of bunches                      | 20     | 080    | 2    | 000    | 3     | 93     |       | 50      |
| PBR cycle time (s)                    | 6      | .3     | 1    | 1.1    | 4.    | 33     | (     | 0.9     |
| PBR duty factor                       | 0.     | 84     | C    | 0.56   | 0.    | 35     | O     | .08     |
| BR # of bunches                       | 16     | 640    | 2    | 000    | 3     | 93     |       | 50      |
| BR cycle time (s)                     | 51     | .74    | 13.3 |        | 7.    | 53     |       | 5.6     |
| # BR cycles                           | 10     | 1      | 10   | 1      | 10    | 1      | 20    | 1       |
| # injections/collider bucket          | 10     | 1      | 10   | 1      | 10    | 1      | 20    | 1       |
| Total number of bunches               | 16640  |        | 2    | 000    | 3     | 93     |       | 50      |
| Filling time (both species) (s)       | 1034.8 | 103.5  | 288  | 28.8   | 150.6 | 15.6   | 224   | 11.2    |
| Injected bunch population $(10^{10})$ | 2.13   | 1.06   | 1.44 | 1.44   | 1.13  | 1.13   | 2.00  | 2.00    |

Several parameters have changed ( ⇒ to be updated... )



## **Layout constraints**







#### **CDR layout**

High Energy Booster followed the FCC-hh footprint in CDR Main Collider had a transverse offset of 1 m

#### 4IPs layout

Presently studying the possibility to have collider following FCC-hh footprint and booster on top of it

In current optics straight insertions are considered: total length 91172.691 m

⇒ need to define how to by pass experiments (see A. Chance talk at ABP meeting)





# **Booster arc cell update**



- FODO cells of 52 m
- Made of 4 dipole, 2 quadrupoles and 2 sextupoles
- Including space for correctors, flanges and interconnections

| Magnet     | Parameter                            | Unit             | Value                 |
|------------|--------------------------------------|------------------|-----------------------|
| Dipole     | Field at injection (20 GeV)          | G (              | 64                    |
|            | Field at ttbar energy (182.5 GeV)    | G                | 584                   |
|            | Length                               | m                | 11.1                  |
| Quadrupole | Gradient at injection (20 GeV)       | T/m              | 2.6(60°)/3.7(90°)     |
|            | Gradient at ttbar energy (182.5 GeV) | T/m              | 33.7                  |
|            | Length                               | m                | 1.5                   |
| Sextupole  | Gradient at injection (20 GeV)       | T/m <sup>2</sup> | 148.6(60°)/172.5(90°) |
|            | Gradient at ttbar energy (182.5 GeV) | T/m <sup>2</sup> | 1575                  |
|            | Length                               | m                | 0.5                   |

# dipoles =  $2 \times 2944$  # quadrupoles/sextpoles = 2944

Distance between dipoles: 0.65 m

Distance between quadrupole and sextupole: 0.15 m

Distance between dipole and quadrupoles: 0.356/0.674 m

SSS length: 2.5 m to include also BPM and dipole correctors

(...but we do not have an estimates for their length yet...)

Trims quads and skew quads still to be included

⇒ Very low field dipoles (reproducibility of main field and multipoles)

Under discussion with J. Bauche









# **Equilibrium emittances**



Booster Equilibrium rms emittance ≤ collider

|                      |                                      |                                      |                                       | TIEW                                      |
|----------------------|--------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------|
| Beam Energy<br>[GeV] | Eq. Emittance<br>[nm rad]<br>60°/60° | Eq. Emittance<br>[nm rad]<br>90°/90° | Eq. Emittance<br>Collider<br>[nm rad] | Eq. emittance<br>Collider new<br>[nm rad] |
| 45.6 (Z)             | 0.235                                | 0078                                 | 0.24                                  | 0.71                                      |
| 80 (W)               | 0.729                                | 0.242                                | 0.84                                  | 2.16                                      |
| 120 (H)              | 4.229                                | 0.545                                | 0.63                                  | 0.64                                      |
| 175 (tt)             | 3.540                                | 1.172                                | 1.48                                  | 1.49                                      |

- ⇒ 60°/60° retained for Z and W operation (mitigation of MI and IBS)
- $\Rightarrow 90^{\circ}/90^{\circ}$  100 m cell could gain a bit in momentum compaction at Z & W
- ⇒ 90°/90° required for H and ttbar final emittances







FCCIS WP2 workshop Barbara Dalena 7 December 2021 6

new



# Sextupole schemes, working point and DA B. Haerer, T. Tydecks https://arxiv.org/abs/2111.14462





Different schemes have been studied (by B. Haerer)

- ⇒ best cancellation of geometric aberrations given by **non-interleaved sextupoles scheme**
- ⇒ need for less sextupoles

Fractional working point chosen .225/.29, based on Diffusion Rate given by frequency map analysis ( by *T. Tydecks* )

⇒ If needed, it can be **further optimized** (for collective effects?)

**Dynamic** and **momentum aperture**, with quadrupole displacements, look OK

 $\Rightarrow$  impact of wigglers not included

**Linear Chromaticity** corrected to **0**, do we need different value for collective effects?





## First preliminary DA at injection with multipole errors



Static dipole field errors of the CT dipole design at 56Gs considered + 10% random part

Dynamic field effect not taken into account in this simulations: dipole and multipole reproducibility expected to be  $\leq 5 \times 10^{-4}$ 

⇒ Linear errors and statistics on multipole errors to be added

97km 60°/60° optics

Stable initial action @ 4500 turns (~15% tx 20 GeV)



Courtesy of F. Zimmermann and Jie

|         | CT d       | CT dipole  |            | e dipole   |
|---------|------------|------------|------------|------------|
| GFR=R26 | 28Gs       | 56Gs       | 28Gs       | 56Gs       |
| B1/B0   | -5. 20E-04 | -1.04E-04  | -1. 56E-03 | -2. 60E-04 |
| B2/B0   | 4. 73E-04  | 5. 41E-04  | -2. 03E-03 | -2. 03E-04 |
| B3/B0   | -7. 03E-06 | 1. 05E-04  | 3. 52E-04  | 1. 76E-04  |
| B4/B0   | -9. 14E-04 | -3.66E-04  | 4. 57E-04  | -1.83E-04  |
| B5/B0   | 3. 56E-05  | -2. 38E-05 | -2. 38E-05 | −3. 56E−05 |
| B6/B0   | 6. 18E-04  | 2. 16E-04  | -3. 09E-04 | 9. 27E-05  |

relative values @ R = 26 mm

| Hor [mm] | 15/12 | 12* |
|----------|-------|-----|
| Ver [mm] | 13/10 | 9*  |

\* B. Haerer, T. Tydecks https://arxiv.org/abs/2111.14462



Barbara Dalena 7 December 2021 8 FCCIS WP2 workshop



# Insertions regions (as in CDR)

B. Haerer, T. Tydecks https://arxiv.org/abs/2111.14462



- Short straight sections of 1.4 km are made of FODO cells of 50 m. Long straight section have 100 m cells.
   Injection to and extraction from the Booster probably located in sections PL and PB?
- ⇒ **to be designed** (discussion with M. Hofer, R. Ramjiawan and Y. Dutheil)
- RF cavities are located in same sections of the collider, but they are staggered because of CM size



- Wigglers are located in sections with RF cavities:
- ⇒ good for fast beam energy recovery
- ⇒ protection of the cavities from the wigglers' radiation to be investigated

New placement of RF in L and H still to be integrated, RF frequency choice (F. Kuncheva Valchkova)



|                             | Z   | W   | Н    | ttbar <sub>1</sub> | ttbar <sub>2</sub> |
|-----------------------------|-----|-----|------|--------------------|--------------------|
| Total RF voltage (MV)       | 140 | 750 | 2000 | 9500               | 10930              |
| frequency (MHz)             |     |     | 400  | )                  |                    |
| RF voltage (MV)             | 140 | 750 | 2000 | 2000               | 2000               |
| $E_{\rm acc}  ({\rm MV/m})$ | 8.0 | 9.6 | 9.8  | 10.0               | 10.0               |
| # CM                        | 3   | 13  | 34   | 34                 | 34                 |
| # cavities                  | 12  | 52  | 136  | 136                | 136                |
| # cells/cav.                | 4   | 4   | 4    | 4                  | 4                  |
| frequency (MHz)             |     |     | 800  | )                  |                    |
| RF voltage (MV)             |     |     |      | 7500               | 8930               |
| $E_{\rm acc}  ({\rm MV/m})$ |     |     |      | 20                 | 19.8               |
| # CM                        |     |     |      | 100                | 120                |
| # cavities                  |     |     |      | 400                | 480                |
| # cells/cav.                |     |     |      | 5                  | 5                  |



# **Damping Wigglers as in CDR**

B. Haerer, T. Tydecks https://arxiv.org/abs/2111.14462



**Target damping time 0.1 s** (to fulfill cycle time) Wigglers reduce damping time and increase eq. emittance:

$$\tau_{\chi} \propto \frac{1}{E^3 I_2} \qquad \varepsilon_{eq} = \frac{C_q \gamma^2 I_5}{\left(I_2 \left(1 - \frac{I_4}{I_2}\right)\right)}$$

$$I_2 = \oint \frac{ds}{\rho^2} \qquad I_5 = \oint \frac{H_x}{|\rho^3|} ds$$

They mitigate IBS and MI too

A normal conducting wigglers foreseen

⇒ can be further optimized for poles length and for number of poles

It should be switched off during acceleration

⇒ **Eddy current** effect to be investigated

**Total length** of installed wigglers is of the > **100 m** in the **same straight line** 

⇒ Possible stimulated **additional radiation** and **instability** (like in FEL) to be studied

| Beam energy<br>(GeV) | Eq. emittance (nm rad) 60°/60° optics | Eq. emittance (nm rad) 90°/90° optics | Transv. damping time (s) |
|----------------------|---------------------------------------|---------------------------------------|--------------------------|
| 20.0                 | 0.045                                 | 0.015                                 | 0.854                    |
| 45.6                 | 0.235                                 | 0.078                                 | 0.854                    |
| 80.0                 | 0.729                                 | 0.242                                 | 0.157                    |
| 120.0                | 4.229                                 | 0.545                                 | 0.047                    |
| 175.0                | 3.540                                 | 1.172                                 | 0.015                    |





| Pole length                | 0.095 m             |
|----------------------------|---------------------|
| Pole separation            | $0.020\mathrm{m}$   |
| Gap                        | $0.050  \mathrm{m}$ |
| Number of poles            | 79                  |
| Wiggler length             | $9.065\mathrm{m}$   |
| Magnetic field             | 1.45 T              |
| Energy loss per turn       | 126 MeV             |
| Hor. damping time          | 104 ms              |
| Hor. emittance (60°optics) | 300 pm rad          |

Hor. Emittance (60° optics) 1.7 nm @ 45.6 GeV



# How fast do we need to ramp to reach collider emittances?



Do we need to reach  $\epsilon_{\text{eq}}$  at 20 GeV (one order of magnitude less than collider) before to accelerate?

Simple model with synchrotron radiation only

- Injection energy 20 GeV
- Injection rms emittance 0.2-1.3 nm
- Energy injection + ramp + extraction ~1.2 s
- **4**×I2 (**4**×I5) synchrotron radiation integrals
- dE/dt = 40 GeV/s
- $k = 2 \times 10^{-3}$

$$\frac{d\varepsilon_{x}}{dt} = -2\frac{\varepsilon_{x} - \varepsilon_{eq}(E(t), I2, I5)}{\tau_{x}(E(t), I2)}$$
$$\frac{d\varepsilon_{y}}{dt} = -2\frac{\varepsilon_{y} - k\varepsilon_{eq}(E(t), I2, I5)}{\tau_{x}(E(t), I2)}$$

- Contact with M. Zampetakis, F. Antoniou, O. Etisken to include **IBS**, other effects should be included?
- > Start to end simulation to validate emittance reach and beam losses
- $\Rightarrow$  How much **time** can we use **for cycling at Z**?
- $\Rightarrow$  Limit for **radiative power** ?



11



# 2 dipoles families optics



**2 dipoles** with two different curvatures, proposed for the electron-ion collider (**EIC**)

Damping time can be reduced by playing on the ratio between the two different fields.

### **Advantages:**

- No impact on the layout
- Increase I2 without damping wigglers
- Higher dipole field at injection energy

#### **Drawbacks:**

- Different reference orbits ⇒ reduction of beam stay clear?
- More synchrotron radiation and in opposite direction of foreseen absorber (at injection)
  - ⇒ vacuum quality to be investigated



$$a = \frac{L2}{L0} \qquad b = \frac{\rho^*}{\rho_2}$$

$$I_i = I_i(\mu_x, L_{cell}, \theta_c/2, a, b)$$

A. Chancé



# Preliminary results of two dipoles families optics





Constraints: **Energy loss** per turn  $\leq$  126 MeV (~wiggler), eq. emit < 0.72 nm

- 4  $\times$  I2 can be obtained with a L2 ~5 m, B2~-200 G, B1 ~170 G at 20 GeV and B<sub>2</sub> ~-400 G, B1 ~200 G at 45.6 GeV
- Minimum dipole field at injection ~ 3×present lattice
- Momentum compaction ~1.8 10<sup>-5</sup> (~ 60°/60° lattice)
- ⇒ Which is the maximum allowed budget for radiated power?
- ⇒ Which is the possible maximum field derivative for the two dipoles?





## **Summary HEB status**



- **Two optics** for the 4 operational scenarios:
  - 60°/60° for the Z and W  $\Rightarrow$  allows for emittance margin with new collider parameters
  - 90°/90° for the H and ttbar
- Non interleaved sextupole scheme retained as baseline
  - Best cancellation of geometric aberrations
  - Less sextupoles required
- Working point chosen .225/.29
  - Allows for large DA and momentum aperture
- First design of Wigglers to reduce damping time at injection and mitigate IBS and MI
- **Possibility to lower damping** to reach collider emittances
  - First analytical study of the 2 dipole family possible alternative arc cell
- First DA with multipoles field errors at injection
  - Static field effect only, without linear imperfections
- A first optics for the symmetric 4IPs layout
  - gives not so different magnets specifications

7 December 2021 Barbara Dalena 14 FCCIS WP2 workshop



## **Next steps**



- Consolidate booster layout
- Update booster operation strategy (injection energy, cycling time, radiative power, ...)
  - Integration of IBS in the emittance evolution model (M. Zampetakis, F. Antoniou, O. Etisken)
- Add linear errors and correction schemes, continue on DA evaluation, emittance tuning...
  - Use and Participate in the common framework (kick-off meeting 17/11/2021 R. Tomas)
- Re-optimisation of working point and linear chromaticity
  - taking into account collective effects?
- Re-optimisation of the wigglers or alternatives optics?
  - Shorter wigglers
  - Protection of RF cavities from wigglers radiation
  - Compare with alternative optics
- Integration of Injection/extraction
  - M. Hofer, R. Ramjiawan, Y. Dutheil
- Tracking simulations
  - Evaluation of beam losses (collimation? R. Bruce, M. Hofer)
  - Start to end simulations (which physics effects? Using Xsuite, Elegant, Bmad?)

► Back-up slides



# **Equilibrium Emittance FODO cells**



[m]

7 December 2021 Barbara Dalena FCCIS WP2 workshop