

INJECTION TRACKING STUDIES IN THE FCC-EE COLLIDER RING

M. Aiba, W. Bartmann, M. Boland, Y. Dutheil, M. Hofer, P. Hunchak, R. Ramjiawan, F. Zimmermann and others.

Top-up Injection for FCC-ee

Top-up injection is necessary to maximize the integrated luminosity of the collider.

Regular injection from the full-energy booster to maintain the beam current in the collider ring.

Proven at many other accelerators.

Four viable modes have been identified for FCC-ee in the past, we now look into follow-up studies of these approaches.

Wienands, U. "Lepton Collider Operation with Constant Currents". Proceedings of the 2005 Particle Accelerator Conference. doi:10.1109/pac.2005.1590385

M. Aiba et al. "Top-up injection schemes for future circular lepton collider". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 880 (Feb. 2018), pp. 98–106. DOI: 10.1016/j.nima.2017.10.075. URL: https://doi.org/10.1016%5C%2Fj.nima.2017.10.075.

straight.

The FCC-ee Ring

Four operation modes (Z, WW, ZH, & $t\bar{t}$) ranging in beam energy from 45.6 to 182.5 GeV.

Z-mode examined first for machine protection aspect (high stored beam energy).

Z-mode operation Parameters

Beam energy (GeV)	45.6
Beam current (mA)	1390
Horizontal emittance ϵ_x (nm · rad)	0.27
Vertical emittance ϵ_y (pm · rad)	1.0

A. Abada et al. "FCC-ee: The Lepton Collider". In: *The European Physical Journal Special Topics* 228.2 (June 2019), pp. 261–623. ISSN: 1951-6401. DOI: 10.1140/epjst/e2019-900045-4. URL: https://doi.org/10.1140/epjst/e2019-900045-4.

Injection Options

Multipole Kicker Injection (MKI)

- Off-axis injected beam
- Kicker has minimal on-axis field (stored beam)
- Kicker has significant off-axis field (injected beam)

Bump turns.

Conventional Orbit Bump Injection

- Dipole kickers create a one turn orbit bump
- Reducing the effective amplitude of off-axis injected beam
- Bump is closed quickly to avoid septum on subsequent turns.

Both modes also work off-momentum, with dispersion allowing on-axis injection. For all cases we've chosen to look into the horizontal plane.

Machine Parameters

Optics matched (M. Aiba) to allow for both orbit bump and MKI on momentum. Large β_x at injection point to minimize effective size of the septum.

MULTIPOLE KICKER INJECTION

On-momentum

Placement of Injection Magnets

- MKI is a 90° phase advance after the septum.
- Compensation kicker (MKIC) is 90° ahead of the septum.
- Locations of the two identical kickers share similar β_x . (191m vs 193m)
 - DA checks on ideal machine show no issues. (>15 σ_x)
 - Assume injected emittance = stored emittance.
 - $\varepsilon_r = 0.27 \, nm \cdot rad$
 - $\varepsilon_{v} = 1.0 \ pm \cdot rad$

Simulating Injection

Injection at 20° horiz. phase, beam is off-axis at MKI. (90° phase advance)

MKI kicks injected beam and reduces its angle.

No losses during injection, with preliminary aperture model (no collimators included).

M. Aiba et al. "Top-up injection schemes for future circular lepton collider"

Injection Effect on Stored Beam at Interaction Point

Without MKIC, increase in σ_x would result in factor of ~5 decrease in luminosity.

Stored beam at MKI location

Injection Effect on Stored Beam at Interaction Point

Without MKIC, increase in σ_x would result in factor of ~5 decrease in luminosity. 180° phase advance from MKIC to MKI allows for '-I transformation' which counters effect on stored beam.

Stored beam at MKI location

Stored beam at IP

CONVENTIONAL ORBIT BUMP

On-momentum

Conventional Orbit Bump

- Two kickers used to create a temporary bump in the orbit.
- This brings the stored and injected beams close together.
- · Bump is then closed.

Bump height needs to be $5\sigma_s + 5\sigma_i + S$ to allow the injected beam to clear the septum on subsequent turns

Injection Straight Optics - Bump Kickers Active

In both cases (MKI/Bump), the next step is error studies to see what closed orbit distortions we get and what injection efficiencies are achieved.

OPTICS COMPATIBLE WITH OFF-MOMENTUM INJECTION

Matching Constraints

Optics need to be re-matched to have sufficient dispersion at the septum.

Then the off-momentum injected beam is placed on the dispersive orbit when the bump is closed.

Condition for Orbit Bump Off-momentum Injection

M. Aiba et al. "Top-up injection schemes for future circular lepton collider"

Key Matching Constraints

- Dispersion at septum = 1m
- Phase advance over straight is maintained

Off-momentum DA under investigation.

Then follow up with studies using misalignments.

Outlook

- Studied top-up injection approaches for Z operation mode
- To be studied to determine injection efficiency:
 - Injection with misalignments and corrections
 - Other operation modes
 - Beam-beam effects
- Studies performed on old 2 IP lattice
 - New layout with longer straight sections
 - Complication arises in 4 IP
 - Beam crossing
 - Possibly combined with extraction

J. Gutleber - 144th FCC-ee Optics Design Meeting & 15th FCCIS WP2.2 Meeting

Thank you for your attention

Gitlab Repository of Project Work: https://gitlab.cern.ch/phunchak/fccee-injection-studies

Placement of kickers

FCCee_z_216_nosol_1.seq

Element	Distance Downstream	Horizontal	Horizontal
	of IP at PA, $s[m]$	Beta Function, $\beta_x[m]$	Phase Function, $\mu_x[2\pi]$
Compensation	5530.0	191.22	17.18
Kicker	5550.0	131.22	17.10
Injection	5922.74	1979.20	17.43
Septum			
Multipole	6325.0	193.02	17.68
Injection Kicker		130.02	17.00

Dynamic Aperture

Assume that injected emittance = stored emittance.

$$\varepsilon_{x} = 0.27 \ nm \cdot rad$$

 $\varepsilon_{y} = 1.0 \ pm \cdot rad$

- a) 3 mm eddy current septum
- b) 0.1 mm electro-static wire septum

The thinner septum reduces dynamic aperture req. but not previously used.*
Our simulations show plenty of DA for either septum.

^{*} M. Aiba "Top-up Injection Status and Next Steps" FCC Week 2021 https://indico.cern.ch/event/995850/contributions/4419415/attachments/2271652/3858072/FCC-ee Injection aiba.pdf

Modelling the Multipole Kicker

MKI has zero on-axis field to minimize disturbance of stored beam, large off-axis field to kick the injected beam.

MAD-X does not currently support arbitrary field elements.

- Maximum of 20th order polynomial not a good fit.
- Split into two fits, for interaction with stored/injected beam.