

Optics measurements at SuperKEKB

Jacqueline Keintzel

Acknowledgements:

M. Benedikt, Y. Funakoshi, T. Ishibashi, H. Koiso, G. Mitsuka, A. Morita, Y. Ohnishi, K. Ohmi, K. Oide, S. Terui, M. Tobiyama, H. Sugimoto, R. Tomás, R. Yang, F. Zimmermann, D. Zhou

FCC WP 2 Workshop

Optics Correction and Beam Measurement 6th December 2021

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

FCC-ee

- Electron-positron double ring collider
- Virtual crab-waist collision scheme
- -I transformation between sextupoles
- Top-up injection at collision energy
- Record low βy* of 0.8 mm

K. Oide, https://indico.cern.ch/event/1077162/, 2021.

SuperKEKB - A small FCC-ee?

- Electron-positron double ring collider
- Virtual crab-waist collision scheme
- -I transformation between sextupoles
- Top-up injection at collision energy
- Record low βy* of 0.8 mm

SuperKEKB is a small version of FCC-ee!
Understanding SuperKEKB essential for FCC-ee!

K. Akai et al., SuperKEKB Collider, arXiv:1809.01958v2, 2018.

KEKB

Record Luminosity

- Positron ring with 4 GeV (LER) and $\beta x^*/\beta y^* = 80/1$ mm with 80% CW
- Record luminosity in June 2021
- About 3.1 x 10³⁴ cm⁻²s⁻¹
- Specific luminosity defined as

$$L_{\rm SP} = \frac{L}{n_b I_+ I_-}$$

SuperKEKB Goals

- 3 times lower βy* functions
- •20 times higher luminosity

An international task force has been formed to help achieving design goals in various subgroups Kick-off meeting in July 2021:

https://kds.kek.jp/event/38899/

Parameter	June 2021		Design	
	LER	HER	LER	HER
Beam energy [GeV]	4	7	4	7
Number of bunches [-]	1174		1761	
Beam current [mA]	790.3	686.6	2800	2000
eta_x^* [mm]	80	60	32	25
eta_y^* [mm]	1	1	0.27	0.3
σ_x^* [µm]	24	22	10.1	10.7
$\sigma_{y}^{*} \left[\mu \mathbf{m} \right]$	0.26	0.23	0.048	0.062
$\sigma_y^* [\mu \mathbf{m}]$ $\mathcal{L}_{\text{max}} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	3.12		60	

I.... 2021

www-superkekb.kek.jp

N. Taniguchi, kds.kek.jp/event/34739, 2020.

Y. Funakoshi, Private communication, 2021.

FUTURE CIRCULAR

COLLIDER

Dagian

Optics Measurements

- Beam Position Monitors (BPMs) crucial
- Axis rotated by 45° due to synchrotron radiation V_2
- Record horizontal and vertical orbit by

$$x = \frac{V_1 + V_4 - (V_2 + V_3)}{V_1 + V_2 + V_3 + V_4} \qquad y = \frac{V_1 + V_2 - (V_3 + V_4)}{V_1 + V_2 + V_3 + V_4}$$

- Two recording possibilities
 - Average for Closed Orbit Distortion (COD)
 - Turn-by-Turn mode (TbT)

H. Sugimoto et al., IPAC'19, TUZPLM2, 2019.

Closed Orbit Distortion

- 3 pairs of orbit correctors generate redundant set of 6 closed orbit distortions (CODs)
- Average orbit over several turns are recorded at about 450 BPMs
- Large matrix generated
- Optics retrieved by analytical equations
- Optics measurements with COD used for optics corrections
- Regularly performed

Y. Ohnishi et al., IPAC'16, THPOR007, 2016.

Turn-by-Turn

- About 70 BPMs record TbT data
- Demands beam excitation
 - Single kick with injection kicker (IK)
 - Only horizontal kicks

Turn-by-Turn

- About 70 BPMs record TbT data
- Demands beam excitation
 - Single kick with injection kicker (IK)
 - Only horizontal kicks
 - Driven motion with phase lock loop (PLL)
 - AC-dipole like
 - Can excite both planes
 - Essential for vertical plane
 - Improvements ongoing

Turn-by-Turn

- About 70 BPMs record TbT data
- Demands beam excitation
 - Single kick with injection kicker (IK)
 - Only horizontal kicks
 - Driven motion with phase lock loop (PLL)
 - AC-dipole like
 - Can excite both planes
 - Essential for vertical plane
 - Improvements ongoing
- Stored in SDDS format

Harmonic Analysis

- Performed with codes developed by the Optics Measurement and Correction (OMC) team
- Requires model for analysis
- Cleaning based on Singular Value Decomposition (SVD) → 20 modes kept for SKEKB

Using fewer modes

OMC3: github.com/pylhc/omc3 Beta-Beat.src: github.com/pylhc/Beta-Beat.src.

Better noise reduction Information might get lost

Using more modes

Less noise reduction Fewer information lost

Trade-off individual for every machine and measurement

Harmonic Analysis

- Output is the harmonic spectrum in both planes
- Shows tunes and higher order resonances
- In example
 - (1,0) Hor. Tune Q_x
 - (0,1) Vert. tune Q_v
 - (3,0) 3 Q_x

Possible skew optupoles errors or octupoles in combination with coupling?

Optics Analysis

- Codes also used for e.g. LHC
- On-momentum measurements
- Off-momentum measurements
- Relative momentum offset by
 - Measured closed orbit (CO_x)
 - Model dispersion (η_x)

$$\delta_p = \frac{\langle \eta_x^{\text{mdl}} C O_x \rangle}{\langle (\eta_x^{\text{mdl}})^2 \rangle}$$

TbT results benchmarked with optics obtained using COD

β-functions either
measured from amplitude (calibration dependent)
measured from phase advance (calib. independent)
and compared

Possible BPM calibration errors → only phase used

COD or TbT?

Closed Orbit Distortion

- 450 BPMs per ring (~ 5 μm resolution)
- Used for optics corrections
- Double plane measurements
- Lower orbit distortion feasible for smaller β* (below 80 mm)

→ poorer measurement quality

for more queezed optics

Relative horizontal error between COD and TbT-IK is about **6% rms**

Turn-by-Turn

- 70 BPMs per ring (~ 200 μm resolution)
- Typically faster than COD
- Improvements ongoing
- PLL required for vertical optics
- Identification of resonance driving terms

Optics beating between TbT and COD

Each method shows different merits and limitations

Chromaticity

- Injection kicker used for off-momentum optics measurements
- LER linear chromaticity about 1.7 for all measurements, no second-order chromaticity
- Second-order chromaticity in HER measurements with β_{xy}^* = 80,2 mm
 - Measurements $Q_y' = 0.54 + /- 0.04$, $Q_y'' = 680 + /- 35$
 - Model Q_j' = 2.14, Q_j" = 470
- Different Q_v' could be from sextupole settings
- Larger second-order chromaticity than model
 - Possible octupole sources
 - Second-order contributions from sextupoles

HER optics with $\beta_{x,y}$ * = 80,2 mm

Modified Model: Qx' from measurement, Qx" from model

Helps finding non-linearities in lattice

Horizontal Betatron Damping

LER optics with $\beta_{x,y}^*$ = 80,1 mm Single bunch in ring 0.3 mA bunch current Faster damping of TbT data than expected from synchrotron radiation (SR)

- Faster damping from...
- ... orbit errors?
 - Usually orbit well corrected
- ... head-tail?
 - Expected to be small as low bunch current
- ... decoherence?

Decoherence

- Originates from finite tune spread
- Particles do not oscillate synchronously
- After applying a kick particles start to decohere
- Not observable for AC-dipole excitation

Decoherence illustrated for hadrons Individual amplitudes remain constant over time

Linear chromatictiy

Decoherence and recoherence

R.E. Meller, SSC-N-360, 1987.

Second-order chromaticity

Decoherence

G.Rumolo and R. Tomas, NIMA 03, p. 206, 2004.

Amplitude detuning

Strong synchrotron radiation damps amplitude of each particle

Hadrons and Leptons

$$A_{\text{Dec}} = \frac{1}{1+\theta^2} \exp\left\{-\frac{Z^2}{2} \frac{\theta^2}{1+\theta^2}\right\}$$

R.E. Meller, SSC-N-360, 1987.

Hadrons:

$$\theta = 4\pi\mu N$$

R.E. Meller, SSC-N-360, 1987.

Leptons:

$$\theta = 2\pi\mu\,\tau_{\rm SR}\,(1 - e^{-2N/\tau_{\rm SR}})$$

N ... Turns

Z ... Initial kick

 μ ... Amplitude detuning normalized by emittance

Decoherence factor over estimated when synchrotron radiation damping is not included

FUTURE CIRCULAR

Decoherence Measurements

- Evaluation of amplitude detuning and chromaticity needed
- $Q_x' = 1.7 \pm 0.04$ (Model: 0.04) $Q_x'' = -22 \pm 18$ (Model: -199)

LER optics with $\beta_{x,y}^* = 80,1 \text{ mm}$ Single bunch in ring 0.3 mA bunch current

- Amplitude detuing dQ_x/d2J_x
- Measured: $(1.925 \pm 0.050) \times 10^3 \text{ m}^{-1}$
- Model: 1.758 x 10³ m⁻¹

- Emittance during measurement unknown
- Estimated 2 nm

Decoherence Measurements

- TbT closed orbit measurements with IK single kick used
- Equations over-estimate damping
 - Emittance unknown
 - BPM reading could be spoiled by calibration and resolution
 - Additional growth mechanisms
 - Possible closed orbits could lead to different damping

Many things to be understood Work in progress

LER optics with $\beta_{x,y}^* = 80,1 \text{ mm}$ Single bunch in ring 0.3 mA bunch current

Summary

- SuperKEKB is demonstrating FCC-ee key concepts
 - Crab-waist optics, similar lattice and optics, top-up injection, tilted solenoid, etc.
- Studies and results at SuperKEKB will influence the FCC-ee design
 - Help defining beam optics measurement system (TbT with single kick, AC-dipole, etc.)
 - Understand commissioning challenges and might help avoiding them
- Numerous future studies could be performed
 - Optics corrections and measurements
 - Impedance studies
 - Hands-on experience in control and operation
 - Etc.

SuperKEKB is small FCC-ee

Understanding SuperKEKB challenges is inevitable for FCC-ee design

Thank you!

Optics measurements at SuperKEKB

Jacqueline Keintzel

Acknowledgements:

M. Benedikt, Y. Funakoshi, T. Ishibashi, H. Koiso, G. Mitsuka, A. Morita, Y. Ohnishi, K. Ohmi, K. Oide, S. Terui, M. Tobiyama, H. Sugimoto, R. Tomás, R. Yang, F. Zimmermann, D. Zhou

FCC WP 2 Workshop

Optics Correction and Beam Measurement 6th December 2021

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.