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@) OMC

Why do we correct the optics in the LHC?

TO PROTECT THE MACHINE TO PROVIDE THE DESIGN MITIGATE BEAM INSTABILITIES
LUMINOSITY TO THE EXPERIMENTS



@ Correction strategi the first years of M

comissioing (2010-2015)

Linear Comissoning (No X-ing)

Time
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Turn-by-turn measurement

* The typical optics measurements are carried out with the AC-dipole

* Adiabatic increase and decrease of the amplitude
e 6600 turns (from 2015) at constant amplitude is recorded by around 500

available BPMs
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By adjusting the errors in the model it is possible to find an error that reproduce the
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measurement for different B* and the two beams

R. Tomas et al. "Record low beta beating in the LHC”
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https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.15.091001
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https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.15.091001
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B-beat in 2012
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Already a very good control and well within the
requirements for a safe machine!

However.. What was limiting us to reach even better
corrections? And what are we trying to do now?
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What was limiting (1)?

* Measurement noise
* |n 2012 we excited for 2200 turns and in 2015 6600 turns
-> Reduced the statistical noise

e |n 2022 we will be able to use 3 bunches which will further increase the
statistics!
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T. Persson et al. ,"LHC optics commissioning: A journey towards 1% optics control"



https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.061002
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What was limiting (2) ?

* The B-functions were reconstructed from the phase advance using

the 3-bpm Method m
* The N-BPM method was developed A A A

P1.,51 2,59 P3.53
* Based on more BPMs and different combinations

* Reduce significantly the uncertainty on the B-functions

* Extended later with analytical error estimates
* Significantly faster and better for pushed optics
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A. Langner and R. Tomas, "Optics measurement algorithms and error analysis for the proton energy frontier"
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https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031002
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.20.111002

Operational * in Run 2

2015 2016 2017 2018
Year

The B* is used to label the optics and has been reduced every year from 2015-2018
Small B* at the IP requires high B-functions in the triplet and hence more sensitive to imperfections
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B-beat in 2015
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@ How to improve the B* measurements?

Solutions:

e K-modulation of the magnets closest to the IP
and use this information to constrain the local

corrections.
e Get precise B-functions from the amplitude of
the oscillations

Problem:

Different local corrections can correct the phase
error but still cause significant difference in the

waist of the B-function
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Linear Comissoning (No X-ing)

Time
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Local corrections

* The local phase corrections are degenerate. Possible to find
several combinations that correct the phase

— No guarantee that the waist or B, is well corrected
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Octupole IR correction (b,)

BBQ measurement — by, correction —
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IR-octupole current [A]

Linear

— e

Nonlinear

* Octupole correction based on amplitude detuning measurement in

2016

* Improved the tune measurement from the BBQ
=>» Improved K-modulation quality
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3 different methods to correct the

OMC

local errors in 2022 and beyond

e Segment-by-Segment

* Machine learning

e Action-phase-jump
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https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.13.121004
https://link.springer.com/article/10.1140/epjp/s13360-021-01348-5
https://accelconf.web.cern.ch/ipac2021/papers/mopab186.pdf

OMC

2 Effect of crossing angles

* Crossing angles are needed at the IRs so beams only collide at the IPs.

e Optics measured in June (commissioning without crossing angles in April)
* Difference between the two measurements shown in plot below

* Consistent with simulation of the IR sextupoles errors + crossing angles
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2 Sextupolar corrections in IR1
and IR5
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https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.22.061004

Amplitude detuning with X'ing
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* The amplitude detuning and the RDTs from a, change with the x’ing

angle
=» Feed down from decapole and/or dodecapoles!
* Crucial to correct in HL-LHC:
* We aim to get more experience in Run 3

E. H. Maclean et al, “New approach to LHC optics commissioning for the nonlinear era”
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F. Carlier


https://indico.cern.ch/event/732705/contributions/3021525/attachments/1657022/2653042/LMC_FS_Carlier_V1.pdf
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.22.061004
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Additional measurement and

reconstruction method to be
used in 2022
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New local observable

* Phase advance between two elements does in general depend on all
element in the machine

* Possible to construct a local observable for linear lattice imperfections
* The effect of quadrupolar field errors up to first order
* Only depends on the phase advance between 4 BPMs
* Could help to better localise imperfections in the machine
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A. Wegscheider et al, Local observable for linear lattice imperfections in circular accelerators



https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.054002
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@ Local coupling
» - — - S

N— _
MQSX3.L gl MQSX3.R
180 deg

* Local coupling corrections has been part of the correction strategy since
the start of the LHC.

* They rely on the measurement of the f,,,, and the f,,,, and are corrected with
two common skew quadrupoles, one on each side of every IP.

e Creates an almost closed bump.

* |Increasing MQSX3.L and at the same time decrease MQSX3.R changes the coupling at the
IP but almost undetectable outside

* A knob doing exactly this re-balancing between right and left is called the collinearity knob

* A mistake in the implementation of the corrections in 2018 highlighted
the importance of them

* Reduced the luminosity with around 50%!
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The impact of local coupling on beam-size

* Relative small errors in the local coupling can cause a large increase of
beam size!

* So far we have been limited by how well we can measure the coupling
RDTs

* Challenging because of the phase advance in this region
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New method to measure the
local coupling

« The colinearity knob gives

« Principle of the rigid waist shift: no contribution to the global
- Unbalance the strength of the left and the right triplet observable |C-|
« Breaks the left-right symmetry - After applying the
rigidity knob there is a
dependency
3000 \ —+— Rigidity Knob = 1 ! —— Waist Shift Applied
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F. Soubelet et al, Prospect for Interaction Region Local Coupling Correction in Run 3



https://accelconf.web.cern.ch/ipac2021/papers/mopab007.pdf

Optics to calibrate BPMs



_ OMIC
@ Ballistic Optics

* Can reconstruct the [ at a BPM and propagate it to the IP
* Needs very precise calibration of the BPMs

* We can use the B reconstruction from phase to compare with what
we get from B from amplitude, and then use this to calibrate BPMs

relative to the arc BPMs o
BEAM 2 IP 1 ¢ pfrom phase (y)
» Also ballistic for IR4 w e
* Turning off Q5 there which could help calibration |
of in instruments in that area S
I s

3000 3050 3100 3150 3200 3250 3300 3350
position [m]

A. Garcia-Tabarés Valdivieso



https://indico.cern.ch/event/901555/contributions/3795956/attachments/2008876/3355942/IR4_Ballistic_Optics.pdf
Optics-measurement-based beam position monitor calibrations in the LHC insertion regions

60 deg phase advance optics

* Would be a different optics with different settings
* Helps in identifying underlying alignment and magnetic errors
* |n particular, the momentum compaction factor is different

Parameter [Unit] 60°LHC 90°LHC
Brnin/ Bmax [M] 63/182 32/177
Nenind Nimax [M] 2.5/4.1 1.1/2.2
Momentum Compaction [10%] 6.9 3.5
Transition Energy [GeV] 40.0 53.6
Natural Chromaticity at 450 GeV - 60 - 83
Corrected Chromaticity at 450 GeV 2 2
Sextupole Strength at 450 GeV [Tm™?] 56 142
Tune at Injection Optics (H,V) 45.28/44.31 62.28/60.31

J. Keintzel


https://indico.cern.ch/event/1034848/contributions/4346316/attachments/2240086/3797791/20210506_Keintzel_MomComp_ABP.pdf

OMC

Mom. Comp. Factor Measurements

* Fit of relative energy (momentum) offset over frequency
* Problem: no device in LHC to measure energy - Use TbT measurements

_ (UTdIC0x> Measured closed orbit and model dispersion at arc BPMs

TR
80.0
« Fit using - 48'8?
S -40.0
5( g )Af s0 . T
ya+aec| f -6 -4 =2 0 2 4 6

6, [1074]

E = 6.5 TeV and therefore the

relativistic gamma is negligible Relative error between measurement and model about -3 %
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@ Beam Position Monitor Errors

» Measured closed orbit used for momentum offset calculation

| BPM calibration C can
modify real orbit to

- <’7,T dICOX ) Measured closed orbit not meas real measured one
Op = " (mi2y  eceanciony CONE —.C % €O
X

BAlRRaRRN Takeaway: Around 3% error tentatively
* If average C; 0 i the are RDAMc

5 6 ould attributed to the arc BPMs -> IR BPM

X calibration from ballistic optics are also

AENENSIME  off because the method uses the arc
BPMs

2,i)

30975 320 325 330 335 340 3.45 3.50

ade—AK [10-4] .
* J. Keintzel 20



https://indico.cern.ch/event/1034848/contributions/4346316/attachments/2240086/3797791/20210506_Keintzel_MomComp_ABP.pdf

@ Summary UViC

* We have overcome some limitation every year:
e 2015: Reduced statstical errors and better reconstruction of the B-
functions (N-BPM method)
— Better corrections and reduced error bars
e 2016: Include the results from K-modulation
— Better control of the B*
e 2017: Correct with X-ing + sextupolar and octupolar corrections
- Improved control of the optics also with X-ing angles in the IPs
e 2018: Use RDTs to correct skew octupolar error (a,)
—> Demonstrated nonlinear corrections based on RDTs which will
be important in the HL-LHC era
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Future challenges

Challenges

e K-modulation
Measure B* <0.2 m e Luminosity waist shift scans
Machine learning techniques

* RDTs measurement
Correct Local Coupling * Triplet scaling

* Luminosity scans

 RDTs
Correct Nonlinearities * Amplitude detuning

e Feed-down measurements

* Ballistic optis

Precise BPM calibration « 60 deg phase advance optics

32







Backup



« A =.,/2JB, where Ais the amplitude
of the oscillation, J the action

* |f we measure the amplitude and the
action then we can reconstruct the -
function at each BPM.

* The BPMs need to be calibrated very
precisely

* We can also reconstruct the
functions from the phase advance
* Large uncertainties close to IR -> A

dedicated calibration optics where the
triplets were turned off
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A. Garcia-Tabarés Valdivieso and R. Tomds, “Optics-measurement-based beam position monitor calibrations in the LHC insertion regions”



https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.042801
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Scans with luminosity

 Nominal bunches colliding in IP1 and IP5
* Scanning dedicated waist shifts knobs

* Tested in MD, but time-consuming 1005
e -> Only planes and beams where we have suspicion 1000 F— .
something could be wrong 0.995 1 T

* Scan the collinearity knob in IR1 and IR5 for =] ™

— 0.9854

validation of the local coupling corrections 0.980.-

0.9754 -8.1cm = 1.3cm

0.970 1

-9 -6 -3 0 3 6 9
Waist (cm)

FIG. 14. Luminosity scan of Beam 1 on the vertical plane.

J. Coello et al, "New local optics measurements and correction techniques for the LHC and its luminosity upgrade"



https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.041001

Final Corrections 2016
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Nonlinearities

e As the B* is squeezed further the importance of the nonlinearities
becomes more and more important
* Huge impact on the foot print which is crucial for beam-instabilities
Feed-down to transverse coupling and B-beat

Reduce dynamic aperture
Negative impact on the linear commissioning!

N
o

3

= - weak nonlinearities replicating HL-LHC
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Measuring nonlinearities

Resonance driving terms
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Each method merits a presentation of its own!

E. H. Maclean et al, “New approach to LHC optics commissioning for the nonlinear era”
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Limitations of K-modulation

* As the B* is squeezed further the K-modulation measurements cannot
constrain the * to the desired level
* Limited by:

* Tune jitter

10
° M isalign ment Il Contribution from mispowering
I Contribution from misalignment
. . 8 . . e
° M ISpowe ri ng Il Contribution from tune jitter
=
(@]
|-
o
* 4-
Q.
2,
0

Q1 Modulation Q1A Modulation
B*=15cm
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Simulation of the local coupling error

Horizontal 2d histogram X-y
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101

Tracking simulation: Ideal machine (beam 1) + trim of the

colinearity knob = 10 (MQSX.3L2 = 103 m? and MQSX.3R2 =-103 m™)

— Beam size is 15% larger in horizontal and 30% in vertical in IP2 compared to IP1

— 33% lower luminosity (neglecting effect from crossing angles) compared to the 50% that was
observed in the machine

— Almost identical beam size increase for beam 2 (less than 1% difference)
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