TS

T T
271 (S i 22
—.1'—1 S :-12

s'o‘i —g-ll

Smngs 2022 ‘Vlenna July 18 2022




Cosmological constant problem

~ 10—123 a4
Pvac ~ 10 Mp1
Too hard, so consider supersymmetric version.

Pyac ~ —107123 Mgl

Can we explain how exponentially large SUSY universes

arise in a theory with a small fundamental length-scale?



Principle

“It is better to light a lamp(post)
than to curse the dark energy.”

We work where computations are possible,
and make no claim of genericity.



Principle

Choose setting where vacuum structure is dominated
by well-understood superpotential terms set by integer data
— topology and quantized fluxes.

Systematically compute W, and find vacua.

Setting: type IIB flux compactifications on orientifolds of
Calabi-Yau threefold hypersurfaces in toric varieties.

We compute the superpotential by exploiting toric structures
and purpose-built software.



Small vacuum energy?

Quantized fluxes in a high-dimensional lattice
can potentially be chosen to make c.c. small.

N-dimensional Bousso-Polchinski flux landscape:
Pvac — _Mf)l] + QzGZJQJ ) Q < ZN

Fine-tune vast number of terms to precision ~ 10~

Problem:

Finding exponentially small c.c. is exponentially costly.

Ovac < 107123 MI‘;L] is out of reach.



Mechanism for small vacuum energy

We work in low-dimensional lattices (4 < dim < 10).

We solve a Diophantine problem to find vacua in which
all perturbative terms are exactly zero along one dimension.

What remain are naturally exponentially small instantons.

By discrete, explicit choices of topology and quantized fluxes,
we tune their exponents to polynomial precision,

e.g. W ox =2 2T 35 4 952 2T 4 TZCO+;_S
leadine t 2\ 2%29 Lg-122
eading to p (@) ~ .

Distribution is d log p rather than dp !



Summary

We find solutions of type IIB string theory of the form
AdSs x Xg

with Xg a Calabi-Yau orientifold with three-form flux.

The solutions are N' = 1 supersymmetric.

The vacuum energy is exponentially small.

Hierarchical scale separation, £aqs/fkx > 10100

Mechanism: racetrack of worldsheet instantons.

Vacuum energy is exponential in integers determined by
topological data — Gopakumar-Vafa invariants and flux quanta.

9 \ 8
example: (E) ~ 107 1%



Collaboration
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Plan

I. Computation of the superpotential

II. Control of corrections to the Kahler potential



Type IIB string theory compactified on orientifold, X, of a CYj.

Moduli: axiodilaton 7
complex structure z,, a=1,...h*"(X)

Kahler: T;, i=1,...h""(X)
Choose quantized fluxes Fy, H3 € H>(X,7Z). Gs5:= F3 — TH;

W(Ta Zas Tz) — WﬂuX(Ta Za) + Wnp (7-, Zas Tz)
Waux = G3 NS Whp = Z D-brane instantons

= poly(7,2a) + Y _ exp(7, zq) =) Ai(7,24) eXp(—ZwTi) +

In our solutions, we ensure:

poly(7,z4) =0 Perturbatively flat vacuum

Z exp(T, zq) = N1€*™P17 + Noe?™ P27 4 negl. Racetrack
N17N2 S Za P1,P2 S @

Ai(T,24) = A, constant Pfaffians



W(Ta Zas Tz) — Wﬂux(Ta Za) + Wnp (7-, Zas Tz)
Waux = G3 NS Whp = Z D-brane instantons

— POIY(Ta Za) + ZGXP(T, Za) = ZAZ'(T’ za) exp(—ZWTi) +....

In our solutions, we ensure:

poly(7,z,) =0 Perturbatively flat vacuum

Z exp(T, zq) = N1€*™P17 + Noe?™ P27 4 negl. Racetrack
N17N2 S Z;pl;pQ S @

Ai(1,24) = A; constant Pfaffians
W(T, 2q,T;) = N1€*™P17 4 Noe?™ P27 Z A eXp(—27TTi)
7

e Purely exponential = vacuum energy naturally exponentially small.

e Determined by the numbers AVj o, p12, A;



W(Tv Zay TZ) — Wﬂux(Ta Za,) + Wnp (T, Zas Tz)
Waux = G3 NS Whp = Z D-brane instantons

= poly(7, zq) + Z exp(T, 2q) = Z Ai(T, 24) exp(—QwTi) 4+ ...,

In our solutions, we ensure:

poly(7,z,) =0 Perturbatively flat vacuum

Z exp(T, zq) = N1€*™P17 + Noe®™ P27 | negl. Racetrack
NlaNQ S Zap17p2 S @

Ai(T,24) = A, constant Pfaffians
W T.) = N-e2TP1T | N[, e2T™P2T ‘ - ‘
(7,24, T3) = Nie + /Nage + A; exp| —27T;
2

e Purely exponential = vacuum energy naturally exponentially small.

e Determined by the numbers AVj o, p12, A;



We find quantized fluxes for which

poly(7,z,) =0
along a flat valley z, = p,7, p € thl

ctire defo
modul

Complex st
‘The along-

-

ations transverse to the valley are heavy
Temains massless sg‘a,r 8

Demirtas, Ki "‘.L M., Moritz 19

see a.lso Glryavets, Kachru, Trlpathy, .
~ Denef, Douglas,”Florea 04



W (T, za,Ti) = Waux(T, 20) + Whap(T, 24, 1)
Waux = Gs NS Whp = Z D-brane instantons

— pOIIY(T, Za) + ZeXp(T, Za) — Z.Aq;(’T, za) exp(—QwTi) + .. ..

Our solutions:

poly(7,z,) =0 Perturbatively flat vacuum

Z exp(T, 2q) = N1€*™P17 4+ Noe*™P27 | pegl. Racetrack
N17N2 S Zap17p2 S @

Ai(T,24) = A, constant Pfaffians
- 2TIP1T 2TIPoT
W(r, z4,T;) = Nie + Nae + ZA,; eXp(—Qﬂ'Ti)
2

e Purely exponential = vacuum energy naturally exponentially small.

e Determined by the numbers AVj o, p12, A;



Racetrack Superpotential
4d N =1 field theory

W(z) = Nie P1% + Noe P22 |,

Niz €R, p12>0

< 1if [p1 — p2| € p2, Ni <Ny



Incarnation as Flux Superpotential

prepotential: F(z) = Fpoly(2) + Finst (2)

o~

1 1 1 ¢(3)x(X)
fpoly(z) - 3|‘H"‘I'@)Cz(‘%’bzC -+ Q%bz 2P+ — 21 aZb + 2(2ri)?
intersection numbers, Chern classes of mirror X
1 . : : >
Finst(2) = — (2ri)? Z GVg Lis (627” -z G.Vq : genui;() GV lrivarlants of X
qeM(X) Lik(q) := X1 4"/

periods: H (kﬁg;\\?‘) = (8;{) {aA,BA},A:O,...,hz’l(X):basis of H3(X,7)

W (7, 2%) w_/_&—ngAQ tht f—h) = (Y )

Task: compute Way,x by computing F(z).



Computing the Prepotential

Principles clear since early days of mirror symmetry.

Our contribution: really doing this in CY3 with many moduli.

Setting: hypersurfaces in toric varieties, as classified by Kreuzer and Skarke.
With INSTANTON, can access h®! < 10.

With our open source software package CYTools, can access h%'! = 491,
and compute GV invariants to very high degree at h*! = O(100).




Flux Superpotential in a Calabi-Yau

(R*', hbY) = (5,113)
We find quantized fluxes,

f=(10 12 8 0 0 4 0 0 2 4 11 -8),
h=(0 8 —-15 11 -2 13 0 0 0 0 0 0),

_ _ (7 15 101 151 —13
s.t. along z=p7, p= (% 58 116 58 116) ’
the polynomial part of Wy, vanishes ezxactly. higher power

fexp(—1/g
What remain are IIA worldsheet instantons. of exp(=1/g:)

The leading ones have GV invariants —2 and 252. j

Wau(T) = 5257 (—2 2T G5 | 952 (27T g8 4 104 27T TS 4 )

Moduli are stabilized at g, ~ 27 - % log(ll/WO) ~ 0.011 and

9\ 29
(W) 2 0.526 % (ﬁ) ~ 6.46 x 10762



Story so far

General form: W (T, za, T;) = Waux (T, 20) + Wap (T, 24, T3)

Chose fluxes s.t.: Waux (T, 24) = pol/y/ )+ Zexp (T, 24)

Chose CY3 s.t.: Waux (T, 2q) = p/ ) 4+ N2 P o Noe*™ P27 4 pegl.
W (T, 24, T;) = N e2™P17 4 Noe?™ P27 | Whp (T, 24, T5)

Next: need to compute Wy, (T, 24, T;) and stabilize the Kahler moduli.



Superpotential for Kahler moduli

General form: Whp(T, 20, T, ZAD (T, 24) exp( Lussa )
We find CY3 in which:
Whp (T, 24, T, ZAD; exp( ) + negl.
where the sum runs over prime toric d1v1sors Dy, I €{1,...h"" 4},

with Pfaffians Ap, that are constants, with no dependence on 7, z, .

We select cases where:
o at least h'! of the D; are rigid

e their F-theory uplifts D; have trivial intermediate Jacobian J

e in an orientifold where all seven-branes lie in s0(8) stacks

Dy rigid < h*(D;) = (1,0,0,0)
h2’1(51) = (0 = J trivial = Ap, constant

Find toric uplift to F-theory, compute h2’1(ﬁ 1) by stratification



Finding a vacuum

1. Compute the superpotential in many compactifications.
2. Find a case with desired structure.

3. Search the Kahler moduli space for a SUSY vacuum.

4. Determine whether vacuum survives g; and o’ corrections.



2d cross-section of Kahler cone in A'' = 491 threefold

SUSY vacuum

Demirtas, L.M., Rios-Tascon, 20



2d cross-section of Kahler cone in A'' = 491 threefold

SUSY vacuum

Demirtas, L.M., Rios-Tascon, 20



Control of superpotential

e We have shown by explicit computation that superpotential is
W = N1e*TP1T 4 Noe?™P2T Z Ap, exp(—%—?TI) + negl.
I

o p1,p2 € QQ set by fluxes N
o N1, N5 € Z set by fluxes and by GV invariants of X
o ¢y set by choice of orientifold action

e Ensured that Ap, are nonzero numbers by standard zero-mode counting.
o not identically zero by imposing rigidity of D;
o constant by imposing h?!(D;) =0

Their numerical values have small effects: ATy /T ~ log (AAp)/log(Wp)
We checked that our vacua persist for Ap, € [107*,10%]

o Wgp(—1) = ZBk(z)e%ikT negligible due to g, < 1
k=1

Totally explicit computation, up to the numerical values of the Ap,.

cf.



Control of Kahler potential

Recall: Vi = —3ef |[WW|?

_ _3€K0+6K‘W’2

= need only show 0 K small enough not to destroy vacuum,

not that 6K < 107199,



Control of Kahler potential

C; _
Einstein-frame volumes are large Re(T;) ~ o log(Wy 1)
T
String-frame volumes are order-unity gs X 27T_ — <1
log(Wy ")

Weak string coupling = leading corrections are at string tree level,
to all orders in o’

Specifically: worldsheet instanton corrections to F of parent N’ =2 CYs3.

We are able to compute these corrections directly, because we
can compute periods in CY3 with A% > 1.



Worldsheet instantons from small curves

5F 33 GV, g e 2mat

q neN

q: curve classes in X t: Kahler parameters in vacuum

n(q) := GVyqe 2™ at

To test convergence, we compute £,(q) for small-volume curves.
Two kinds of curves: nilpotent: GViq = 0 Yk > kpax € N
potent: infinite series

Nilpotent curves are safely collapsible.
They give finitely many polylogs, which we include explicitly.

We then examine thousands of rays of potent curves.



Convergence of worldsheet instanton sum

Along multiples of a potent curve C, (example with A1 = 113)

GV(C) — 3
) = —6

) 27
) =—192
) = 1695
)

)

)

——17064
188454

—2228160
27748899

(}V’10€)::-—360012150.

GV(100C) = —914611581237831371226973974768573574187506334613679143
22579026697369512751047337367692277761351484717813209296148860000 .

N—

Exponential increase with very stable rate.

—2m™ q-t

So for large enough t, &, := GV,qe€ will decay exponentially with n.

= Llog(2875) ~ 1.27, tirue ~ 1.208

min

e.g. quintic: ¢l

min



Convergence of worldsheet instanton sum

Along multiples of a potent curve C, (example with A1 = 113)

GV(C) — 3
) = —6

) 27
) =—192
) = 1695
)

)

)

——17064
188454

—2228160
27748899

(}V’10€)::-—360012150.

GV(100C) = —914611581237831371226973974768573574187506334613679143
22579026697369512751047337367692277761351484717813209296148860000 .

N—

Exponential increase with very stable rate.

—2m™ q-t

So for large enough t, &, := GV,qe€ will decay exponentially with n.

In our vacua, is t large enough?



Convergence of worldsheet instanton sum

—100

—~ —200

log (&,

—300

—400

=00, 5 3 4 5 6 7 8 9 10

n



Convergence of worldsheet instanton sum

~100 [\

—~ —200

log (&,

—300

—400

_50 01 L 5ae > -

largest correction: O(107°)



KKLT vacua

Kachru, Kallosh, Linde, and Trivedi made two claims in their 2003 paper:

Claim 1: in type IIB compactifications with W = Wayux (7, 24) + Wap (T, 24, T3)
if (Waux) < 1, there can exist well-controlled SUSY AdS, vacua.

Claim 2: given such an AdS, vacuum in a compactification with:

a warped deformed conifold region

containing one or more anti-D3-branes,

in a suitable parameter regime, there can exist metastable dS,vacua.

We have now given strong evidence for the first claim.



KKLT status summary

AdS, v

Demirtas, Kim, L.M.,
Moritz, Rios-Tascon 21

dS, work in progress

talk by L.M. at Strings 2019, Brussels



Conclusions

We have constructed SUSY AdS, vacua in CY5 orientifolds.
Exponentially small Wgux from quantized fluxes.

Explicit computation of Wgps3 stabilizing the Kahler moduli.
Stabilization at g, < 1, large Einstein-frame volume.

Small cosmological constants, giant scale separation.
Methods can be applied to build a corner of the landscape.

Search for de Sitter vacua is work in progress.






Towards de Sitter vacua?

We have built tools to compute N' =1 EFTs

in a regime of type IIB flux compactifications where we can

explicitly enumerate all necessary integer data,

and can search for vacua in which our approximations are self-consistent.

Our main results so far concern N’ =1 SUSY AdS, vacua, where

e polynomial tuning of topological parameters provides a mechanism
that makes pya. exponentially small.

e unbroken SUSY protects pyac from quantum corrections.

But the EFTs appear rich enough to support de Sitter vacua in which
SUSY is broken spontaneously:
not by anti-D3-branes, but by competition among superpotential terms.

Establishing self-consistent approximations and parametric control
is unsurprisingly more involved than for SUSY AdS,.



Comments on related work

Would be valuable to find the dual CEFTj5.

A candidate dual suggested in
was shown there to have parametrically incorrect central charge.

It was suggested in Lust et al. that superpotential terms
stabilizing the Kahler moduli “will not materialize”.

But since we have directly exhibited all the necessary terms,
a simpler reconciliation is that their proposed dual is not
the correct one.

Worth weighing evidence on both sides.



An example with (h*1, h"1)

The vertices of A are the columns of

1 -3 -3 0 0 0 -5 -2
o -2 -1 0 0 1 -3 -1
0O 0 -1 0 1 0 0 1
0 0 0O 1 0 0 -1 -1

There are h'! +1 = 2550(3) + 89ED3 rigid prime divisors with hz’l(ﬁI) = 0.
The fluxes

f=(0 12 8 0 0 4 0 0 2 4 11 -8),
h=(0 8 —15 11 -2 13 0 0 0 0 0 0),

carry D3-brane charge 56. The D3-brane tadpole is 60, so there are 4 D3-branes.
The leading instantons have GV invariants .45 = (—2,252) and

43

1 : - —_—
Wﬂux(T) = \/%(27”)2 ( 26271'2’1" 29 4+ 252 6271'27' ) 4+ O( 2miT 116) 7

which stabilizes the moduli at g5 =~ 0.011 and

9 29 B
Wo = ([Whux|) ~ 0.526 x (25—2) M3 ~ 6.46 x 107°2M3 .

We find a supersymmetric AdS, vacuum with volume Viiring =~ 945 and vacuum
energy
Vo = =3M_*MW [ =~ —1.68 x 1070}, .

(5,113)

Vol(ED3) =~
Vol(s0(8)) =~ 132

Vol(X) ~ 8.1 x 10°

9 58
of. (=) =107
252



Comments on Computability

Although the effort involved in tuning integers is polynomial,
some computational advances were required in order to enumerate
the possible integers.

Had to be able to:
e Construct orientifolds
e Construct F-theory uplifts
e Compute intersection numbers, Kahler cones, GV invariants
e Enumerate floppable and non-floppable curves
o all at A% > 100 2
e and find quantized fluxes giving small W) G\ S
e and do so automatically, on a large scale.

But with those data in hand, we can work polynomially hard and
find exponentially small C.C.

The final answers are expressed in terms of integers, and
much can be verified by hand.



Comments on Computability

The flux landscape is low-dimensional,
so the statistical analysis of Denetf and Douglas predicts
that Wy values as small as we find should not exist.

They approximated the fluxes as continuous.

. . . . flux _
But we are imposing one exact (integer) equation, W X . i = 0.
So our solutions are measure zero in their ensemble.

However, in any finite landscape of vacua, ours are a finite fraction.



Racetrack spectra

(R*1, BB = (5,113); [7/29 : 7/28]
(%', At = (5,113); [34/280 : 35/280]
(', hbY) = (5,81); [9/24 : 10/24]
(R*Y, b = (7,51); [8/30:9/30]
(R*1, hbh) = (4,214); [32/110 : 33/110]

Worked out and tested in full detail in the paper, as complete examples.

We easily generate vast numbers of examples with milder racetracks,
e.g. [2/4,3/4], but have not gone through full processing of these.

see also:



