Fluxes, holography and the uses of exceptional generalised geometry

Daniel Waldram, Imperial College London
20 July 2022

Review talk, *Strings 2022, Vienna*
Overview and motivation

Geometrical backgrounds are ubiquitous in string theory
phenomenology, swampland, holography, . . .

and we have many tools for case without non-trivial fluxes

- Lie groups, cosets G/H, special holonomy (Calabi–Yau, G_2, Sasaki–Einstein etc), . . .
- \leadsto moduli, spectra, existence of solutions, . . .

What about when there are (large) non-trivial fluxes?

exceptional generalised geometry is a framework to extend standard geometrical constructions to include fluxes

building on history of using G-structures and generalised complex geometry
Thank my collaborators

Anthony Ashmore, Stephanie Baines, Mark Bugden, Davide Cassani, André Coimbra, Oscar de Felice, Maxime Gabella, Jerome Gauntlett, Mariana Graña, Ondrej Hulik, Gregoire Josse, Kanghoon Lee, Jan Louis, Emanuel Malek, Ruben Minasian, Paulo Pacheco, Eran Palti, Michela Petrini, Aaron Sim, James Sparks, Charles Strickland-Constable, Ed Tasker, David Tennyson, Hagen Friendl, Fridrich Valach
Thank my collaborators

Anthony Ashmore, Stephanie Baines, Mark Bugden, Davide Cassani, André Coimbra, Oscar de Felice, Maxime Gabella, Jerome Gauntlett, Mariana Graña, Ondrej Hulik, Gregoire Josse, Kanghoon Lee, Jan Louis, Emanuel Malek, Ruben Minasian, Paulo Pacheco, Eran Palti, Michela Petrini, Aaron Sim, James Sparks, Charles Strickland-Constable, Ed Tasker, David Tennyson, Hagen Friendl, Fridrich Valach
Thank my collaborators

Anthony Ashmore, Stephanie Baines, Mark Bugden, Davide Cassani, André Coimbra, Oscar de Felice, Maxime Gabella, Jerome Gauntlett, Mariana Graña, Ondrej Hulik, Gregoire Josse, Kanghoon Lee, Jan Louis, Emanuel Malek, Ruben Minasian, Paulo Pacheco, Eran Palti, Michela Petrini, Aaron Sim, James Sparks, Charles Strickland-Constable, Ed Tasker, David Tennyson, Hagen Friendl, Fridrich Valach
Exceptional generalised geometry

Supersymmetry and generalised G-structures

Consistent truncations

Holography
Exceptional generalised geometry
Set up: compactification geometry $X_D \times M_d$

- **on-shell:** X is Minkowski or AdS warped product

$$ds^2 = e^{2\Delta} ds^2(X) + ds^2(M) + \text{flux on } M$$

no-go theorems for Minkowski \Rightarrow need sources for flux \cite{Maldacena, Nunez 00; Ivanov, Papadopoulos 00; . . .}

- **off-shell:** repackage full $(D+d)$-dim (or truncated) theory as theory on X

 scalars: $g_{mn}(y, x)$, $A_{m_1 \ldots m_p}(y, x)$, etc.

 vectors: $g_{\mu m}(y, x)$, $A_{\mu m_1 \ldots m_{p-1}}(y, x)$, etc.

\cite{de Wit, H. Nicolai 86; . . .}
• symmetries of the NSNS fields are diffeos ξ^μ and gauge transf λ_μ

$$\delta g_{mn} = (\mathcal{L}_\xi g)_{mn}, \quad \delta B_{mn} = (\mathcal{L}_\xi B)_{mn} + (d\lambda)_{mn}, \quad \delta \phi = \mathcal{L}_\xi \phi$$

with the algebra $\xi'' = [\xi, \xi']$ and $d\lambda'' = \mathcal{L}_\xi d\lambda' - \mathcal{L}_{\xi'} d\lambda$

• package into generalised tangent space $E \simeq TM \oplus T^*M$

$$V^M = \begin{pmatrix} \xi^m \\ \lambda_m \end{pmatrix} \in \Gamma(E) \quad \text{generalised vector, } M = 1 \ldots, 2d$$

and choose integration to give generalised Lie derivative

$$V'' = \mathcal{L}_V V' = \begin{pmatrix} [\xi, \xi'] \\ \mathcal{L}_\xi \lambda' - \iota_{\xi'} d\lambda \end{pmatrix} \quad \text{why?}$$

[Liu, Weinstein, Xu 97; Hitchin 02; Gualtieri 04]
Generalised geometry II

• preserves the natural $O(d, d)$ metric on E

$$\eta_{MN} V^M V^N = V^T \begin{pmatrix} 0 & 1 \frac{1}{2} \mathbb{1} \\ \frac{1}{2} \mathbb{1} & 0 \end{pmatrix} V = \frac{1}{2} \xi^m \lambda_m, \quad L_V \eta = 0$$

• so can extend generalised Lie derivative L_V to

generalized tensor = rep of $O(d, d) \times \mathbb{R}^+ \supset GL(d, \mathbb{R})$

where \mathbb{R}^+ weight p counts powers of $(\det T^* M)^p$

Basic idea is to “geometrize the flux”

reformulate supergravity and supersymmetric background geometries in terms of generalised tensors
Generalised Riemannian geometry

- **generalised metric** $G \in \Gamma(S^2E^* \otimes \det T^*M)$

 $$G_{MN} = e^{-2\phi} \sqrt{g} \begin{pmatrix} g - Bg^{-1}B & -Bg^{-1} \\ g^{-1}B & g^{-1} \end{pmatrix}_{MN}$$

 invariant under $O(d) \times O(d)$ subgroup

- **family of generalised Levi–Civita connections** $DG = 0$ and $T(D) = 0$

 $$(D_V W)^M = \xi^\mu \left(\partial_\mu W^M + \Omega^M_{\mu N} W^N \right) + \lambda_\mu (\tilde{\Omega}^M_{\mu N} W^N)$$

 where $T(D) \in \Gamma(\Lambda^3E \oplus E)$

- **Ricci tensor is unique and gives NSNS equations of motion, $R_{MN} = 0$**

 $$\int_M \text{vol}_G R = \int_M \sqrt{g} e^{-2\phi} \left(\mathcal{R} + 4(\partial\phi)^2 - \frac{1}{12} H^2 \right),$$

 other field $RR = O(d, d) \times \mathbb{R}^+$ spinors; fermions $= \text{Spin}(d) \times \text{Spin}(d)$ spinors

[Siegel 93; Hohm, Kwak 10; Jeon, Lee, Park 11; Coimbra, Strick.-Const. DW 13]
Exceptional generalised geometry

[Hull 07; Pacheco, DW 08; Berman, Perry 10; Coimbra, Strick.-Const. DW 13]

How extend to RR sector? M-theory? \(F = dA, \tilde{F} = *F = d\tilde{A} - \frac{1}{2} A \wedge F \)

\[
\delta g = \mathcal{L}_{\xi} g, \quad \delta A = \mathcal{L}_{\xi} A + d\omega, \quad \delta \tilde{A} = \mathcal{L}_{\xi} \tilde{A} + d\sigma - \frac{1}{2} d\omega \wedge A
\]
Exceptional generalised geometry

[Hull 07; Pacheco, DW 08; Berman, Perry 10; Coimbra, Strick.-Const. DW 13]

How extend to RR sector? M-theory? $F = dA$, $\tilde{F} = *F = d\tilde{A} - \frac{1}{2} A \wedge F$

$\delta g = \mathcal{L}_\xi g$, $\delta A = \mathcal{L}_\xi A + d\omega$, $\delta \tilde{A} = \mathcal{L}_\xi \tilde{A} + d\sigma - \frac{1}{2} d\omega \wedge A$

- for example $d = 6$: $E \simeq TM \oplus \Lambda^2 T^* M \oplus \Lambda^5 T^* M$

$\mathcal{L}_\nu V' = [\xi, \xi'] + (\mathcal{L}_\xi \omega' - \iota_{\xi'} d\omega) + (\mathcal{L}_\xi \sigma' - \iota_{\xi'} d\sigma - \omega' \wedge d\omega)$

preserves $E_{6(6)} \times \mathbb{R}^+$ cubic invariant $c_{MNP} V^M V^N V^P$ and $E \sim 27_{1/2}$
Exceptional generalised geometry

[Hull 07; Pacheco, DW 08; Berman, Perry 10; Coimbra, Strick.-Const. DW 13]

How extend to RR sector? M-theory? $F = dA$, $\tilde{F} = * F = d\tilde{A} - \frac{1}{2} A \wedge F$

$$\delta g = \mathcal{L}_\xi g, \quad \delta A = \mathcal{L}_\xi A + d\omega, \quad \delta \tilde{A} = \mathcal{L}_\xi \tilde{A} + d\sigma - \frac{1}{2} d\omega \wedge A$$

- for example $d = 6$: $E \simeq TM \oplus \Lambda^2 T^* M \oplus \Lambda^5 T^* M$

$$L_{V^'} V' = [\xi, \xi'] + (\mathcal{L}_\xi \omega' - \iota_{\xi'} d\omega) + (\mathcal{L}_\xi \sigma' - \iota_{\xi'} d\sigma - \omega' \wedge d\omega)$$

preserves $E_{6(6)} \times \mathbb{R}^+$ cubic invariant $c_{MNP} V^M V^N V^P$ and $E \sim 27_{1/2}$

- gen metric G_{MN} invariant under $\text{USp}(8) \subset E_{6(6)} \times \mathbb{R}^+$

bosonic supergravity on $M = \text{generalised Einstein gravity}$

fermions are reps of local $\text{USp}(8)$ symmetry
How extend to RR sector? M-theory? $F = dA$, $\tilde{F} = *F = d\tilde{A} - \frac{1}{2} A \wedge F$

$$\delta g = \mathcal{L}_\xi g, \quad \delta A = \mathcal{L}_\xi A + d\omega, \quad \delta \tilde{A} = \mathcal{L}_\xi \tilde{A} + d\sigma - \frac{1}{2} d\omega \wedge A$$

- For example $d = 6$: $E \simeq TM \oplus \Lambda^2 T^* M \oplus \Lambda^5 T^* M$

$$L_\mathcal{V} V' = [\xi, \xi'] + (\mathcal{L}_\xi \omega' - \iota_{\xi'} d\omega) + (\mathcal{L}_\xi \sigma' - \iota_{\xi'} d\sigma - \omega' \wedge d\omega)$$

preserves $E_{6(6)} \times \mathbb{R}^+$ cubic invariant $c_{MNP} V^M V^N V^P$ and $E \sim 27_{1/2}$

- Gen metric G_{MN} invariant under $\text{USp}(8) \subset E_{6(6)} \times \mathbb{R}^+$

bosonic supergravity on $M = \text{generalised Einstein gravity}$

fermions are reps of local $\text{USp}(8)$ symmetry

- Extend to $E_{d(d)}$ ($d \leq 7$) and IIB by different $\text{GL}(d - 1, \mathbb{R}) \subset E_{d(d)} \times \mathbb{R}^+$

$$E \simeq TM \oplus 2 T^* M \oplus \Lambda^3 T^* M \oplus 2 \Lambda^5 T^* M$$
Formalism

- reformulation of full 11d M-theory on $X \times M$ [Hohm, Samtleben 13]

 scalars: $G_{MN}(x, y) \in \Gamma(S^2 E^* \otimes \det T^* M)$

 vectors: $A^{\mu M}(x, y) = (g^{\mu n}, A_{\mu mn}, \tilde{A}_{\mu m_1...m_5}) \in \Gamma(T^* X \otimes E)$ etc

- $O(d, d + n) \times \mathbb{R}^+$ description of heterotic

- DFT/ExFT: extend spacetime ($T_p M = T_p X \oplus E_p$), locally same formalism [Hull, Zwiebach 09] [Hohm, Samtleben 13; ...]

- $d > 7?$ [Hohm, Samtleben 14; Bossard, Ciceri, Inverso, Kleinschmidt, Samtleben 19, 21]
Formalism

- reformulation of full 11d M-theory on $X \times M$ \cite{Hohm, Samtleben 13}

 - scalars: $G_{MN}(x, y) \in \Gamma(S^2 E^* \otimes \text{det } T^* M)$

 - vectors: $A^M_{\mu}(x, y) = (g^\mu_n, A_{\mu mn}, \tilde{A}_{\mu m_1...m_5}) \in \Gamma(T^* X \otimes E)$ etc

- $O(d, d + n) \times \mathbb{R}^+$ description of heterotic

- DFT/ExFT: extend spacetime ($T_p M = T_p X \oplus E_p$), locally same formalism \cite{Hull, Zwiebach 09} \cite{Hohm, Samtleben 13; ...}

- $d > 7$? \cite{Hohm, Samtleben 14; Bossard, Ciceri, Inverso, Kleinschmidt, Samtleben 19,21}

Higher-derivative corrections? difficult: need to modify L_V for α' and M-theory

\cite{Hohm, Zweibach 14; Marques, Nuñez 15, ...} \cite{Coimbra, Minasian 17; Coimbra 19} \cite{Bossard, Kleinschmidt 15}
Formalism

- reformulation of full 11d M-theory on $X \times M$ [Hohm, Samtleben 13]

 scalars: $G_{MN}(x, y) \in \Gamma(S^2 E^* \otimes \det T^* M)$
 vectors: $A_{\mu}^M(x, y) = (g_{\mu}^n, A_{\mu mn}, \tilde{A}_{\mu m_1 \ldots m_5}) \in \Gamma(T^* X \otimes E)$ etc

- $O(d, d + n) \times \mathbb{R}^+$ description of heterotic

- DFT/ExFT: extend spacetime ($T_p M = T_p X \oplus E_p$), locally same formalism [Hull, Zwiebach 09] [Hohm, Samtleben 13; …]

- $d > 7?$ [Hohm, Samtleben 14; Bossard, Ciceri, Inverso, Kleinschmidt, Samtleben 19,21]

Higher-derivative corrections? difficult: need to modify L_V for α' and M-theory [Hohm, Zweibach 14; Marques, Nuñez 15, …]; [Coimbra, Minasian 17; Coimbra 19][Bossard, Kleinschmidt 15]

Why this structure? "G-algebroid", descends from L_∞ symmetry of closed SFT [Bugden, Hulik, Valach, DW 21] [Sen 16; Arvanitakis, Hohm, Hull, Lekeu 20,21;…]
Supersymmetry and generalised G-structures
Conventional G-structures

Supersymmetric bkgrd \Rightarrow new geometric structure on M eg cplx structure

- **topological**: “almost complex structure”

 \[T_C M = T^{1,0} \oplus T^{0,1} \iff \text{global tensor } I^{m^p} \]

 reduction of structure group of TM to $\text{GL}(n, \mathbb{C}) \subset \text{GL}(2n, \mathbb{R})$

- **differential**: “integrable complex structure”

 \[[T^{1,0}, T^{1,0}] \subset T^{1,0} \text{ involutive} \]

 \[\iff N_{mn^p} = I^p_q \partial_m I^q_n - I^p_q \partial_n I^q_m - I^q_m \partial_q I^p_n + I^q_n \partial_q I^p_m = 0 \]

 or, there exists a connection ∇ such that

 \[\nabla I = 0 \text{ \ "compatible" } \quad T(\nabla) = 0 \text{ \ "torsion-free"} \]
Supersymmetric backgrounds

\[\delta(\text{fermion}) = (\nabla^L + \text{flux}) \epsilon = 0 \quad \text{Killing spinor eqns} \]
Supersymmetric backgrounds

\[\delta(\text{fermion}) = (\nabla^{\text{LC}} + \text{flux})\epsilon = 0 \]

Killing spinor eqns

- no flux ⇒ special holonomy ⇒ integrable \(G \subset SO(d) \) structure e.g.

 - \(SU(n) \subset SO(2n) \) \hspace{1cm} Calabi–Yau \hspace{1cm} \(d\omega = d\Omega = 0 \)
 - \(G_2 \subset SO(7) \) \hspace{1cm} Joyce \hspace{1cm} \(d\phi = d*\phi = 0 \) etc.

- flux ⇒ non-integrable, local \(G \subset SO(d) \) structure

 \[d(\text{structure form}) = \text{flux} \text{ "intrinsic torsion" } \]

 \(\Rightarrow \) classification, new solutions, but e.g. moduli hard

 [Gauntlett, Martelli, Pakis, DW 02; Gutowski, Hull, Pakis, Reall 02, . . .]

- for type II: \(O(d, d) \times \mathbb{R}^+ \) geometrizes NSNS flux

 \[d\Phi^+ = 0, \hspace{0.5cm} d\Phi^- = \text{RR flux} \]

[Hitchin 02; Gualtieri 04; Graña, Minasian, Petrini, Tomasiello 04,05, . . .]
Supersymmetric backgrounds

$$\delta(\text{fermion}) = (\nabla^\text{LC} + \text{flux})\epsilon = 0$$ \quad \text{Killing spinor eqns}

- no flux \Rightarrow special holonomy \Rightarrow integrable $G \subset SO(d)$ structure e.g.
 - $\text{SU}(n) \subset SO(2n)$ \quad \text{Calabi–Yau} \quad d\omega = d\Omega = 0$
 - $G_2 \subset SO(7)$ \quad \text{Joyce} \quad d\phi = d\ast\phi = 0 \quad \text{etc.}$

- flux \Rightarrow non-integrable, local $G \subset SO(d)$ structure

 $$d(\text{structure form}) = \text{flux} \quad \text{“intrinsic torsion”}$$

\leadsto classification, new solutions, but e.g. moduli hard [Gauntlett, Martelli, Pakis, DW 02; Gutowski, Hull, Pakis, Reall 02, ...]
Supersymmetric backgrounds

\[\delta(\text{fermion}) = (\nabla^\text{LC} + \text{flux}) \epsilon = 0 \]

Killing spinor eqns

- no flux \implies special holonomy \implies integrable \(G \subset \text{SO}(d) \) structure e.g.

 - \(\text{SU}(n) \subset \text{SO}(2n) \) Calabi–Yau \(d\omega = d\Omega = 0 \)

 - \(G_2 \subset \text{SO}(7) \) Joyce \(d\phi = d\star \phi = 0 \) etc.

- flux \implies non-integrable, local \(G \subset \text{SO}(d) \) structure

 \[d(\text{structure form}) = \text{flux} \quad \text{“intrinsic torsion”} \]

\(\sim \) classification, new solutions, but e.g. moduli hard [Gauntlett, Martelli, Pakis, DW 02; Gutowski, Hull, Pakis, Reall 02, ...]

- for type II: \(O(d, d) \times \mathbb{R}^+ \) geometrizes NSNS flux

 \[d\Phi^\pm = 0, \quad d\Phi^\mp = \text{RR flux} \]

[Hitchin 02; Gualtieri 04; Graña, Minasian, Petrini, Tomasiello 04,05; ...]
By analogy, **generalised G-structure** on E for $G \subset E_{d(d)} \times \mathbb{R}^+$

Theorem: Generic supersymmetric flux backgrounds (M-theory, type II, $d \leq 7$) are equivalent to

- **Minkowski** $\Rightarrow G \subset H_d$ integrable structure
- **AdS** $\Rightarrow G \subset H_d$ structure with singlet intrinsic torsion

where G is the stabiliser group of the Killing spinor(s)
Generalised G-structures and supersymmetry

[Coimbra, Strick.-Const., DW 14; Coimbra, Strick.-Const. 16, 17]

By analogy, **generalised G-structure** on E for $G \subset E_{d(d)} \times \mathbb{R}^+$

Theorem: generic supersymmetric flux backgrounds (M-theory, type II, $d \leq 7$) are equivalent to

- Minkowski \Rightarrow $G \subset H_d$ integrable structure
- AdS \Rightarrow $G \subset H_d$ structure with singlet intrinsic torsion

where G is the stabiliser group of the Killing spinor(s)

for example $D = 4$: susy parameter ϵ in 8 of $H_7 = SU(8) \subset E_{7(7)} \times \mathbb{R}^+$

- $\mathcal{N} = 1$ $\quad G = \text{Stab}(\epsilon_1) = SU(7)$
- $\mathcal{N} = 2$ $\quad G = \text{Stab}(\epsilon_1, \epsilon_2) = SU(6)$ etc
By analogy, generalised G-structure on E for $G \subset E_{d(d)} \times \mathbb{R}^+$

Theorem: generic supersymmetric flux backgrounds (M-theory, type II, $d \leq 7$) are equivalent to

- Minkowski $\Rightarrow G \subset H_d$ integrable structure
- AdS $\Rightarrow G \subset H_d$ structure with singlet intrinsic torsion

where G is the stabiliser group of the Killing spinor(s)

for example $D = 4$: susy parameter ϵ in 8 of $H_7 = \text{SU}(8) \subset E_{7(7)} \times \mathbb{R}^+$

- $\mathcal{N} = 1$ \quad $G = \text{Stab}(\epsilon_1) = \text{SU}(7)$
- $\mathcal{N} = 2$ \quad $G = \text{Stab}(\epsilon_1, \epsilon_2) = \text{SU}(6)$ etc

Analogue of special holonomy \leadsto classification, new solutions, moduli
Example: “generalising G_2” $\mathcal{N} = 1$, $D = 4$ in M-theory

[Ashmore, Strick.-Const., Tennyson, DW 19] [c.f. Lukas, Saffin 04]

For SU(7), generalised invariant tensor in $912_{3/2}$,

$$\psi^{MNP} \in \Gamma(W_C) \quad W \cong \mathbb{R} \oplus \Lambda^3 T^* M \oplus (T^* M \otimes \Lambda^5 T^* M) \oplus \ldots$$

viewing 11d M-theory as 4d $\mathcal{N} = 1$ on X with chiral matter ψ

$$\mathcal{Z} = \{\text{SU}(7) \text{ structures } \psi\} \quad \infty\text{-dim Kähler manifold}$$
Example: “generalising G_2” $\mathcal{N} = 1$, $D = 4$ in M-theory

[Ashmore, Strick.-Const., Tennyson, DW 19] [c.f. Lukas, Saffin 04]

For SU(7), generalised invariant tensor in $912_{3/2}$,

$$\psi^{MNP} \in \Gamma(W_C) \quad W \cong \mathbb{R} \oplus \Lambda^3 T^* M \oplus (T^* M \otimes \Lambda^5 T^* M) \oplus \ldots$$

viewing 11d M-theory as 4d $\mathcal{N} = 1$ on X with chiral matter ψ

$$\mathcal{Z} = \{\text{SU}(7) \text{ structures } \psi\} \quad \infty\text{-dim Kähler manifold}$$

- F-terms: from superpotential \Leftrightarrow involutive SU(7)-inv sub-bundle

$$L_{C_3} C_3 \subset C_3 \quad E_{\mathbb{C}} \cong C_3 \oplus C_{-1} \oplus C_{-3} \oplus C_1$$

$$56 = 7 \oplus 21 \oplus 7 \oplus 2\bar{1}$$
Example: “generalising G_2” $\mathcal{N} = 1$, $D = 4$ in M-theory

[Ashmore, Strick.-Const., Tennyson, DW 19] [c.f. Lukas, Saffin 04]

For SU(7), generalised invariant tensor in $912_{3/2}$,

$$\psi^{MNP} \in \Gamma(W_C) \quad W \simeq \mathbb{R} \oplus \Lambda^3 T^* M \oplus (T^* M \otimes \Lambda^5 T^* M) \oplus \ldots$$

viewing 11d M-theory as 4d $\mathcal{N} = 1$ on X with chiral matter ψ

$$\mathcal{Z} = \{\text{SU(7) structures } \psi\} \quad \infty\text{-dim Kähler manifold}$$

- **F-terms**: from superpotential \Leftrightarrow involutive SU(7)-inv sub-bundle

 $$L_{C_3} C_3 \subset C_3 \quad E_\mathbb{C} \simeq C_3 \oplus C_{-1} \oplus C_{-3} \oplus C_1$$
 $$56 = 7 \oplus 21 \oplus \bar{7} \oplus \bar{21}$$

- **D-terms**: moment map for GDiff symmetry acting on \mathcal{Z} by $\delta \psi = L_V \psi$

 $$\mu(V) = 0, \quad \forall V \in \Gamma(E) \simeq \text{gdiff}$$
Typical of supersymmetry conditions: first solve F-terms (holomorphic)

- \mathcal{Z} is Kähler (infinite-dimensional) with group action G
- orbits of $G_{\mathbb{C}}$ intersect $\mu = 0$ if “stable” – algebraic condition

Kähler–Einstein, Sasaki–Einstein, Hermitian Yang-Mills, ...

[Yau; Tian; Donaldson, ...]

[9x256]Symplectic quotient/GIT

[28x88]• Z is Kähler (infinite-dimensional) with group action G

[28x73]• orbits of $G_{\mathbb{C}}$ intersect $\mu = 0$ if “stable” – algebraic condition

[28x53]Kähler–Einstein, Sasaki–Einstein, Hermitian Yang-Mills, ...

[31x36]Yau; Tian; Donaldson, ...]
Involutive structure defines a complex

\[\cdots \xrightarrow{\text{d}_C} \Lambda^p C^*_3 \xrightarrow{\text{d}_C} \Lambda^{p+1} C^*_3 \xrightarrow{\text{d}_C} \cdots \]

- deforming \(\psi \) but not flux sources gives

\[
\text{local moduli space} \simeq H^3(\Lambda^* C^*_3, d_C) \oplus H^6(\Lambda^* C^*_3, d_C) \\
\simeq H^3_{dR}(M, \mathbb{C}) \oplus H^6_{dR}(M, \mathbb{C})
\]

- same as \(G_2 \)! however currently no good flux examples ...
Involutive structure defines a complex

\[\cdots \xrightarrow{d_C} \Lambda^p C_3^* \xrightarrow{d_C} \Lambda^{p+1} C_3^* \xrightarrow{d_C} \cdots \]

- deforming \(\psi \) but not flux sources gives

\[\text{local moduli space} \simeq H^3(\Lambda^* C_3^*, d_C) \oplus H^6(\Lambda^* C_3^*, d_C) \]
\[\simeq H^3_{dR}(M, \mathbb{C}) \oplus H^6_{dR}(M, \mathbb{C}) \]

- same as \(G_2 \)! however currently no good flux examples ...

Can extend to type II (e.g. GMTP backgrounds)

- other new results e.g. moduli of Graña–Polchinksi background (matches naive superpotential expectation) [Ashmore, Stric.-Const., Tennyson, DW 19; Smith, Tennyson, DW w.i.p.]
Further directions and extensions

Other dimensions and amounts of supersymmetry

- $\frac{1}{4}$-susy: “exceptional Calabi–Yau” including moduli [Ashmore, DW 15];
- $\frac{1}{2}$-susy: (Mink. and AdS) [Malek 17]

- heterotic Hull–Strominger system including moduli [Ashmore, Strick.-Const., Tennyson, DW 19] [cf de la Ossa, Svanes 14; Garcia-Fernandez, Rubio, Tipler 19]
Further directions and extensions

Other dimensions and amounts of supersymmetry

- $\frac{1}{4}$-susy: “exceptional Calabi–Yau” including moduli [Ashmore, DW 15];
 $\frac{1}{2}$-susy: (Mink. and AdS) [Malek 17]

- heterotic Hull–Strominger system including moduli [Ashmore, Strick.-Const., Tennyson, DW 19] [cf de la Ossa, Svanes 14; Garcia-Fernandez, Rubio, Tipler 19]

Kähler potential on \mathcal{Z} gives “exceptional Hitchin functionals”

- SU(7) structure extends G_2, ECY extends cplx-struct functional
- quantisation and topological theories? (heterotic [Svanes, Tennyson w.i.p.])
Further directions and extensions

Other dimensions and amounts of supersymmetry

- $\frac{1}{4}$-susy: “exceptional Calabi–Yau” including moduli [Ashmore, DW 15]; $\frac{1}{2}$-susy: (Mink. and AdS) [Malek 17]

- heterotic Hull–Strominger system including moduli [Ashmore, Strick.-Const., Tennyson, DW 19] [cf de la Ossa, Svanes 14; Garcia-Fernandez, Rubio, Tipler 19]

Kähler potential on \mathcal{Z} gives “exceptional Hitchin functionals”

- SU(7) structure extends G_2, ECY extends cplx-struct functional
- quantisation and topological theories? (heterotic [Svanes, Tennyson w.i.p.])

Existence of solutions from stability?

- for extended G_2: $d\phi = 0$ then vary in $H^{3}_{dR}(M)$ for $d \ast \phi = 0$
- toric backgrounds for type II and ECY?
Consistent truncations
Basic idea

Solutions of truncated theory are solutions of full theory

\[\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} M^2 \phi^2 + \frac{1}{2} (\partial \pi)^2 - \frac{1}{2} m^2 \pi^2 - \lambda \phi \pi^2 \]

\[(\partial^2 + M^2)\phi = -\lambda \pi^2 \quad (\partial^2 + m^2)\pi = -2\lambda \phi \pi \]

- truncate to \(\phi \surd\), truncate to \(\pi \times\), even if \(M \gg m\)
- symmetry: keep singlets under \(\mathbb{Z}_2\) where \(\phi \rightarrow \phi, \pi \rightarrow -\pi\)

Usually fields come from Kaluza–Klein modes in compactification

- gives consistent “uplift” of dimensionally reduced theory
- closed sector at large \(N\) in holography
- (partial) check of stability (AdS swampland conjecture)
Long history searching for suitable ansätze

- **Scherk–Schwarz**: \(M = \mathcal{G} \), expand in \((\text{left-})\text{invariant objects}\) on \(M \)

\[
g^{\mu \nu} = \phi^{a b}(y) \hat{e}^a(\mathbf{x}) \hat{e}^b(\mathbf{x}), \quad \text{etc} \quad [\hat{e}_a, \hat{e}_b] = f_{a b}^\ c \hat{e}_c
\]

giving theory with maximal susy \cite{Scherk, Schwarz 79}

- “mysterious spheres”: \(S^4 \) and \(S^7 \) in M-theory, \(S^5 \) in IIB, complicated ansatz, maximal susy \cite{de Wit, Nicolai 87; Natase, Vaman, van Nieuwenhuizen 99}

- conv. \(G \)-structure with constant singlet torsion \cite{Gauntlett, Kim, Varela, DW 09; Cassani, Dall’Agata, Faedo 10; Gauntlett, Varela 10; \ldots}
General framework

Long history searching for suitable ansätze

- **Scherk–Schwarz**: $M = \mathcal{G}$, expand in (left-)invariant objects on M

$$g^{\mu\nu} = \phi^{ab}(y) \hat{e}_a^\mu(x) \hat{e}_b^\nu(x), \text{ etc } \quad [\hat{e}_a, \hat{e}_b] = f_{ab}^c \hat{e}_c$$

giving theory with maximal susy [Scherk, Schwarz 79]

- “mysterious spheres”: S^4 and S^7 in M-theory, S^5 in IIB, complicated ansatz, maximal susy [de Wit, Nicolai 87; Natase, Vaman, van Nieuwenhuizen 99]

- conv. G-structure with constant singlet torsion [Gauntlett, Kim, Varela, DW 09; Cassani, Dall’Agata, Faedo 10; Gauntlett, Varela 10; ...]

General picture?

Theorem: Given a generalised G-structure on M with constant, singlet intrinsic torsion, keeping all G-invariant fields gives consistent truncation of M-theory or type II on M [Cassani, Josse, Petrini, DW 19]
Maximal susy: “generalised Scherk–Schwarz”, \(G = \mathbb{1} \) “trivial structure”

\(E \) is parallelisable, admits global frame, \(M = G_E/H_E \) where \(g_E = a/i \)

invariant gen. tensors: \(\hat{E}_A \in \Gamma(E) \) basis for \(E \)

singlet torsion: \(L_{\hat{E}_A} \hat{E}_B = X_{AB}^C \hat{E}_C \) Leibniz alg. \(a \)

scalars \(G^{MN} = \phi^{AB}(y) \hat{E}_A^M \hat{E}_B^N \), vectors \(A_{\hat{\mu}}^M = a_{\hat{\mu}}^A(y) \hat{E}_A^M \) etc.
Generalised Scherk–Schwarz

Maximal susy: “generalised Scherk–Schwarz”, $G = 1$ “trivial structure”

E is parallelisable, admits global frame, $M = G_E/H_E$ where $g_E = a/i$

invariant gen. tensors: $\hat{E}_A \in \Gamma(E)$ basis for E

singlet torsion: $L_{\hat{E}_A} \hat{E}_B = X_{AB}^C \hat{E}_C$ Leibniz alg. a

scalars $G^{MN} = \phi^{AB}(y)\hat{E}_A^M \hat{E}_B^N$, vectors $A^M_{\mu} = a^A_{\mu}(y)\hat{E}_A^M$ etc.

• “mysterious spheres” are generalised parallelisable [Lee, Strick.-Const., DW 14]

• \sim gauged maximal supergravity, embedding tensor X_{AB}^C

[de Wit, Nicolai 87; Hull, Reid-Edwards 05; Geissbuhler 11; Graña, Marquéz 12; Berman, Musaev, Thompson 12; Godazgar, Godazgar, Nicolai 13; ...]
Developments

For generalised Scherk–Schwarz

- **full consistency** of IIB S^5 truncation (and massive IIA S^6) [Baguet, Hohm, Samtleben 15; ...] [also Ciceri, de Wit, Varela 14]

- **reduction to algebraic problem** [Inverso 17; Bugden, Hulik, Valach, DW 21]
 → classification of all compact simple gaugings [Valach, DW w.i.p.]

- **Poisson–Lie U-duality**: $\{\hat{E}_A\}$ and $\{\hat{E}'_A\}$ give same algebra α [Sakatani 20; Malek, Thompson 20; Bugden, Hulik, Valach, DW 21]

- **no dyonic** $N=8$ SO(8) gaugings, but other dyonic gaugings possible [Lee, Strick.-Const., DW 15; Guarino, Jafferis, Varela 15; Inverso, Samtleben, Trigiante 16]

- **all** $\frac{1}{2}$-susy $D=5$, 6, 7 gaugings [Malek, Samtleben 19; Malek, Vall Camell 20]

- **all** $\frac{1}{4}$-susy $D=5$ gaugings [Josse, Malek, Petrini, DW 21]

- **proof of “pure supergravity” conjecture** of [Gauntlett, Varela 19]
 also $d>7$ and many other cases (Maldacena–Nunez, β-deformed, etc ...)
Developments

For generalised Scherk–Schwarz

- full consistency of IIB S^5 truncation (and massive IIA S^6) [Baguet, Hohm, Samtleben 15; ...] [also Ciceri, de Wit, Varela 14]

- reduction to algebraic problem [Inverso 17; Bugden, Hulik, Valach, DW 21]
 \Rightarrow classification of all compact simple gaugings [Valach, DW w.i.p.]

- Poisson–Lie U-duality: $\{\hat{E}_A\}$ and $\{\hat{E}'_A\}$ give same algebra \mathfrak{a} [Sakatani 20; Malek, Thompson 20; Bugden, Hulik, Valach, DW 21]

Mapping the landscape

- no dyonic $\mathcal{N} = 8$ SO(8) gaugings, but other dyonic gaugings possible [Lee, Strick.-Const., DW 15; Guarino, Jafferis, Varela 15; Inverso, Samtleben, Trigiante 16]

- all $\frac{1}{2}$-susy $D = 5, 6, 7$ gaugings [Malek, Samtleben 19; Malek, Vall Camell 20];
 all $\frac{1}{4}$-susy $D = 5$ gaugings [Josse, Malek, Petrini, DW 21]

- proof of “pure supergravity” conjecture of [Gauntlett, Varela 19]

also $d > 7$ and many other cases (Maldacena–Nunez, β-deformed, etc ...)
Kaluza–Klein spectroscopy

[Malek, Samtleben 19,20]

Can you do more? Complete spectrum?? Still determined by a??

- potential $V(\phi)$ for truncation scalars ϕ^{AB} has several AdS extrema
- $M = \text{SO}(d+1)/\text{SO}(d)$ \Rightarrow expand fluctuations in $\text{SO}(d+1)$ reps r_i; only mass eigenstates for round sphere
- however mass matrix only depends on r_i, ϕ^{AB} and X_{AB}^C
- gives full spectrum at any extremum (in BPS multiplets if supersymmetric)
- includes example with no isometries [Cesaro, Larios, Varela 21]
Kaluza–Klein spectroscopy

[Malek, Samtleben 19,20]

Can you do more? Complete spectrum?? Still determined by a??

- Potential $V(\phi)$ for truncation scalars ϕ^{AB} has several AdS extrema
- $M = \text{SO}(d + 1)/\text{SO}(d) \Rightarrow$ expand fluctuations in $\text{SO}(d + 1)$ reps r_i; only mass eigenstates for round sphere
- However mass matrix only depends on r_i, ϕ^{AB} and X_{AB}^C
- Gives full spectrum at any extremum (in BPS multiplets if supersymmetric)
- Includes example with no isometries [Cesaro, Larios, Varela 21]
AdS swampland conjecture: no stable, non-susy AdS bkgds [Ooguri, Vafa 16]

- S^7 in M-theory $\text{SO}(3) \times \text{SO}(3)$ extremum: unstable to higher KK modes
 [Malek, Nicolai, Samtleben 20]
- S^6 in massive IIA G_2 extremum: perturbatively stable!
 [Guarino, Malek, Samtleben 20,21]
- IIB S-fold gauging: conformal manifold of non-susy perturb. stable vacua!
 [Giambrone, Guarino, Malek, Samtleben, Sterckx, Trigiante 21]
Implications and new directions

AdS swampland conjecture: no stable, non-susy AdS bkgds [Ooguri, Vafa 16]

- S^7 in M-theory $SO(3) \times SO(3)$ extremum: unstable to higher KK modes
 [Malek, Nicolai, Samtleben 20]

- S^6 in massive IIA G_2 extremum: perturbatively stable!
 [Guarino, Malek, Samtleben 20,21]

- IIB S-fold gauging: conformal manifold of non-susy perturb. stable vacua!
 [Giambrone, Guarino, Malek, Samtleben, Sterckx, Trigiante 21]

Full spectrum of conformal dimensions in holographic dual \rightsquigarrow topology of conformal manifold [Giambrone, Malek, Samtleben, Trigiante 21; GGMSST 21]
AdS swampland conjecture: no stable, non-susy AdS bkgds [Ooguri, Vafa 16]

- S^7 in M-theory $SO(3) \times SO(3)$ extremum: unstable to higher KK modes
 [Malek, Nicolai, Samtleben 20]

- S^6 in massive IIA G_2 extremum: perturbatively stable!
 [Guarino, Malek, Samtleben 20, 21]

- IIB S-fold gauging: conformal manifold of non-susy perturb. stable vacua!
 [Giambrone, Guarino, Malek, Samtleben, Sterckx, Trigiante 21]

Full spectrum of conformal dimensions in holographic dual \leadsto topology of conformal manifold [Giambrone, Malek, Samtleben, Trigiante 21; GGMSST 21]

Cubic interactions? Consistent truncations with less susy? susy breaking deformations? . . . many new possibilities
Holography
Old problem: $\mathcal{N} = 1$ marginal deformations for $\mathcal{N} = 4$

Superpotential deformation \cite{Leigh, Strassler 95}

$$\Delta \mathcal{W} = \frac{1}{2} \lambda_1 \text{tr} \Phi^1 \Phi^2 \Phi^3 + \frac{1}{6} \lambda_2 \text{tr} \left[(\Phi^1)^3 + (\Phi^2)^3 + (\Phi^3)^3 \right]$$

Gravity dual? deforming S^5 and adding fluxes

- $\lambda_2 = 0$: "β-deformation", $U(1)^3$ isometry, exact dual \cite{Lunin, Maldacena 05}
- $\lambda_1 \neq 0, \lambda_2 \neq 0$: tour de force to 2nd/3rd order \cite{Aharony, Kol, Yankielowicz 02}
 only $U(1)_R$ isometry, as hard as finding explicit Calabi–Yau metrics
Old problem: $\mathcal{N} = 1$ marginal deformations for $\mathcal{N} = 4$

Superpotential deformation [Leigh, Strassler 95]

$$\Delta \mathcal{W} = \frac{1}{2} \lambda_1 \text{tr} \Phi^1 \Phi^2 \Phi^3 + \frac{1}{6} \lambda_2 \text{tr} [(\Phi^1)^3 + (\Phi^2)^3 + (\Phi^3)^3]$$

Gravity dual? deforming S^5 and adding fluxes

- $\lambda_2 = 0$: “β-deformation”, $U(1)^3$ isometry, exact dual [Lunin, Maldacena 05]
- $\lambda_1 \neq 0, \lambda_2 \neq 0$: tour de force to 2nd/3rd order [Aharony, Kol, Yankielowicz 02]
 only $U(1)_R$ isometry, as hard as finding explicit Calabi–Yau metrics

But ... much of field theory quite simple, since only depends on holomorphic structure. Is there a generic supergravity analogue?

Can we understand the dual geometry beyond classic Sasaki–Einstein examples?
Inv. tensors define $USp(6) \subset E_6(6) \times \mathbb{R}^+$ structure $\Rightarrow g_{mn}, B^i_{mn}, C_{mnpq}, \phi, \chi, \Delta$

V structure, K

\[E \simeq TM \oplus 2 T^* M \oplus \Lambda^3 T^* M \oplus 2\Lambda^5 T^* M \]

H structure, X

\[\text{ad} \tilde{F}_C \otimes \text{det} T^* M \simeq T^* M \oplus 2\Lambda^3 T^* M \oplus \ldots \]

Differential conditions: singlet intrinsic torsion

- **F-terms**: X defines involutive sub-bundle

\[E_C \simeq C_+ \oplus C_- \oplus C_0, \quad L_{C+} C_+ \subset C_+ \]

- **D-terms**: moment map for $GDiff$, generated by L_V

\[\mu(V) = -\frac{i}{4} \int_M \text{tr} X(L_V \bar{X}) = \int_M c(K, K, V) \quad \forall V \in \mathfrak{gdiff} \]

- **R-charges**: $L_K X = 3iX$ and $L_K K = 0$
For Sasaki–Einstein writing $\tau = \chi + i e^{-2\phi}$ and $u^i = \tau_2^{-2}(\tau, 1)^i$

\[
\begin{align*}
X &= -\frac{1}{2}i u^i e^{\frac{1}{4}i\Omega \wedge \bar{\Omega}} \cdot \sigma \wedge \Omega, \\
K &= e^{C} \cdot (\xi - \sigma \wedge \omega),
\end{align*}
\]

"Cauchy–Riemann structure"

"contact structure"

Universal form of central charge

\[
a^{-1} \propto \int_M c(K, K, K)
\]

SCFT result [Kol 02,03; Green, Komargodski, Seiberg, Tachikawa, Wecht 10]

all marginal deformations are in the superpotential and are all exactly marginal unless there is a global symmetry

follows directly from moment map structure of ESE [Ashmore, Gabella, Graña, Petrini, DW 16]

What about the missing deformed solutions? Analogue with CY theorem …
Exceptional Sasaki geometry and the superpotential dual

[Ashmore, Petrini, Tasker, DW 21]

Using the GIT picture
Exceptional Sasaki geometry and the superpotential dual

[Ashmore, Petrini, Tasker, DW 21]

Using the GIT picture

- “Exceptional Sasaki” = relax D-term (n.b. Sasaki ⊂ ES)
- GDiff_C orbit generated by $\delta X = L_V X$ with $V \in \Gamma(E_C) \simeq \text{gdiff}_C$ and intersects moment map condition on ESE background

Physically

$$\text{orbit } [X] = \{ X' : X' = \text{GDiff}_C \cdot X \}$$ encodes superpotential \mathcal{W}

- $\delta X = L_V X$ part of long vector deforming Kähler potential
- orbit is renormalisation flow of Kähler potential; class $[X]$ does not change for domain wall flow – non-renormalization of \mathcal{W}

$$X' = -\frac{1}{3} i L_K X, \quad K^* = \mu \quad \text{where } K^*_M = c_{MNP} K^N K^P$$
We find new family of Exceptional Sasaki solutions with $\mathcal{L}_\xi f = 3i f$

$$K = e^c \cdot (\xi - \sigma \wedge \omega)$$

$$X = e^{b^i(\tau, f) + c} \cdot (df + \nu^i(\tau, f) \sigma \wedge \Omega)$$

with $b^i \in \Gamma(\wedge^2 T^*_C M)$ linear in f and ν^i quadratic in f

- complicated deformed metric g, axion-dilaton and fluxes
- valid for marginal deformation of any Sasaki–Einstein
- for S^5 matches to 2nd order [Aharony et al 02] with

$$f = \frac{1}{6} d_{ijk} z^i z^j z^k$$

on CY cone over SE

and same discrete symmetries as ΔW [cf Baggio, Bobev, Chester, Lauria, Pufu 17]

- for $f = z^1 z^2 z^3$ on S^5 gives $GDiff_C$ of LM solution
ESE solution exists in open neighbourhood of Sasaki–Einstein point

- moment map $\tilde{\mu} = \mu - K^*$ for GDiff_K (preserves K)
- stable points form open set in \mathcal{Z} (Kempf–Ness + no additional sym)
- Monge–Ampère-type equation?
Spectrum of single trace chiral operators

Count single-trace mesonic operators $\text{tr } \Phi^{i_1} \cdots \Phi^{i_n}$ of R-charge $\frac{2}{3} k$

- deformations of C_+, counted by cohomology of

 \[\cdots \xrightarrow{dC} \Lambda^p C^*_+ \xrightarrow{dC} \Lambda^{p+1} C^*_+ \xrightarrow{dC} \cdots \]

 independent of choice of X in class $[X]$

 i.e. holomorphic data and can calculate at ES point

- for SE gives “transverse Dolbeault cohomology” [Eager, Schmude, Tachikawa 12]

- if $\eta = df$ nowhere vanishing (not β-def, not $Y^{p,q}$) gives “η-cohomology”

 \[\cdots \xrightarrow{d} \eta \wedge \Lambda^p T^*_C M \xrightarrow{d} \eta \wedge \Lambda^{p+1} T^*_C M \xrightarrow{d} \cdots \]

 can calculate using transverse Dolbeault [Tasker 21]
New results

- **universal result** for Hilbert series, counting chirals with R-charge \(\frac{2}{3}k \)

\[
\tilde{H}(t) = \sum_k (\text{# of chiral ops.}) t^{2k} = 1 + I_{s.t.}(t) - \frac{t^6}{1 - t^6}
\]

where \(I_{s.t.}(t) \) is single trace index

- for regular Sasaki–Einstein

 \(S^5 \) : \(\tilde{H}(t^{1/2}) = \frac{(1 + t)^3}{1 - t^3} \) matches math \(HC_0(k) \) [van den Bergh]

 \(T^{1,1} \) : \(\tilde{H}(t^{1/3}) = \frac{1 + 4t + 2t^2}{1 - t^2} \) prediction (checked to level 7)

 \(dP_6 \) : \(\tilde{H}(t^{1/6}) = \frac{1 + 7t}{1 - t} \) prediction
Future directions

Key point is that $[X]$ captures holomorphic information:

- **same formalism for M-theory** (MN, BBBW, ...): count chirals?
- **3d $\mathcal{N} = 2$ theories and SE$_7$ deformations; $d > 7$ and relation to spindles?**
- **superconformal index** from $(\Lambda^p C^*_+, d_C)$ complex via localisation on M

 [Ashmore, Smith, Tasker, Tennyson, DW w.i.p.]

should reduce to holomorphic structure of probe geometry

From moment map/GIT:

- **general picture of dual of a-max$/\mathcal{F}$-max** [Ashmore, Petrini, DW w.i.p.]
- **extension of “K-stability” of SE and existence of solutions; relation to flow in QFT?** [cf Collins, Xie, Yau 16; Fazzi, Tomasiello 19]
Exceptional generalised geometry \rightsquigarrow new results for flux backgrounds

- moduli for flux compactifications, but need more examples
- mapping out landscape of consistent truncations
- powerful new Kaluza–Klein spectroscopy
- new holomorphic structures in holography
Exceptional generalised geometry \rightsquigarrow new results for flux backgrounds

- **moduli** for flux compactifications, but need more examples
- mapping out *landscape of consistent truncations*
- powerful new *Kaluza–Klein spectroscopy*
- **new holomorphic structures** in holography

Thank you!