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I will review recent developments

in study of BPS black holes in Anti-de-Sitter space: entropy and microstates

This topic has been extensively studied in asymptotically-flat spacetimes

? String theory reproduces the Bekenstein-Hawking entropy [Strominger, Vafa 96]

of BPS black holes in asymptotically-flat spacetimes

This has been refined in a very accurate & impressive way since then
[very long list of people. . . ]
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? The AdS/CFT correspondence provides us with

a consistent and non-perturbative definition

of quantum gravity in anti-de-Sitter space,

in terms of an ordinary QFT at the boundary

? It is interesting to study black hole entropy in AdS

? AdS3 and AdS2 are special. Here AdSd with d ≥ 4



Semiclassical Regime for Gravity

? In AdS:
Gravity is weakly coupled(

AdS much larger

than Planck scale

) and close to Einstein gravity(
scale of higher-derivative corr.’s

much higher than AdS scale

)

? In QFT:
large

“central charge”

(large N)

QFT is

strongly coupled

Need to take advantage of

non-perturbative methods

in QFT:

conformal bootstrap

integrability (for certain CFT’s)

supersymmetry

numerics (lattice and/or Montecarlo)

. . .
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Black Hole Entropy

SBekenstein-Hawking =
Horizon Area

4GN ~/c3
[Bekenstein 72, 73, 74; Hawking 74, 75]

Black hole =
Ensemble of states
in quantum gravity

AdS/CFT
=

Ensemble of states
in boundary QFT

Smicro = logNmicro =
Area

4GN
+ corrections:


perturbative

higher derivative

non-perturbative (classical sol’s)

non-perturbative (branes)

. . .

? Some caveats: Here consider large black holes in AdS

Boundary QFT captures all states in AdS
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Strategies

Count states in boundary QFT employing a grand canonical partition function

I(y) =
∑
states

yQ =
∑

charges Q

d(Q) yQ

• Lorentzian: extract the degeneracy

d(Q) =
1

2πi

∮
dy

yQ+1
I(y) =

∮
d∆ elog I(∆)−2πiQ∆ y = e2πi∆

Assuming large degeneracies, saddle-point approximation → Legendre transform

entropy S = log d(Q) ' log I(∆)− 2πiQ∆
∣∣∣
∆ = extremum

• Euclidean:

I = ZMd−1×S1

AdS/CFT
=

Euclidean “gravitational

path integral” with fixed

boundary conditions

B.C.
∑
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Partition function at strong coupling: very hard!

? Employ a SUSY partition function, or index: I =
∑
states

(−1)F yQ

Ofter computable exactly with localization techniques

Index counts BPS states: applicable to BPS black holes

? Does an index capture the full entropy? [FB, Hristov, Zaffaroni 16]

[Cabo-Bizet, Cassani, Martelli, Murthy 18]

[Boruch, Heydeman, Iliesiu, Turiaci 22]
At least at leading order, yes!

Exploit near-horizon AdS2 with su(1, 1|1) isometry (I-extremization)

Similar to asyptotically-flat black holes [Sen 09]

Confirmed by analysis of 2d effective action [Boruch, Heydeman, Iliesiu, Turiaci 22]

[see L. Iliesiu’s talk]
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• Which SUSY partition function?

Holography: black hole solution as an RG flow

AdS/CFT rules → read off background

for boundary theory

BPS black holes with

R-symmetry magnetic charge

(possibly rotating and with

electric/magnetic flavor charges)

↓
topologically twisted indices

BPS Kerr-Newman

rotating black holes

(possibly with electric and

magnetic flavor charges)

↓
superconformal indices

Another interesting class of solutions: spindles [see J. Sparks’ talk]
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Magnetically-charged

BPS black holes

in AdS4



BPS Magnetically-Charged Black Holes in AdS4

? Spherically symmetric,

static, 1
16

-BPS black holes

ds
2

= −f(r) dt
2

+
1

f(r)
dr

2
+ g(r) ds

2
S2

X
i

= X
i
(r) , F

a=1,2,3,4
= na dvolS2 ,

∑
na = 2

[Cacciatori, Klemm 09; Hristov, Vandoren 10]

? Constructed in: 4d N = 2 U(1)4 gauge SUGRA (STU model)

or uplift to: 11d supergravity (M-theory) on AdS4×S7

? Magnetic charge for an R-symmetry (+ possibly electric flavor charges qa
& angular momentum)

Bekenstein-Hawking

entropy:
SBH = N

3
2 F (na) `2AdS/GN ∼ N

3
2

? Boundary theory: 3d N = 8 ABJM gauge theory U(N)1 × U(N)−1

Boundary theory is topologically twisted



Topologically Twisted Index

Grand canonical partition function at strong coupling:

protected observable for 3d N = 2 SUSY gauge theories with R-symmetry

[Gukov, Pei 15]

[FB, Zaffaroni 15]

[Closset, Kim 16]
ZTTI[ya, na] = TrH (−1)F e−βH eiJ

aAbkgd
a

H: Hilbert space of states on S2 with R-symmetry background (top. twist)

Q2 = H −mbkgd
a Ja only BPS states with Q2 = 0 contribute

Complex fugacities: ya = ei∆a = ei(A
bkgd
a +iβmbkgd

a )

? Computable exactly with localization techniques. For ABJM:

Z =
1

(N !)2

∑
m,m̃∈ZN

∫
C

N∏
i=1

dxi

2πixi

dx̃i

2πix̃i
x
mi
i x̃

−m̃i
i ×

N∏
i 6=j

(
1−

xi

xj

)(
1−

x̃i

x̃j

)
×

×
N∏

i,j=1

∏
a=1,2

( √
xi
x̃j
ya

1− xi
x̃j
ya

)mi−m̃j−na+1 ∏
b=3,4

( √
x̃j
xi
yb

1− x̃j
xi
yb

)m̃j−mi−nb+1
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TT Index at Large

? Compute contour integral as a multi-dimensional residue [FB, Hristov, Zaffaroni 15]

Distribution of poles at large N : “Bethe Ansatz Equations”

1 = xi

N∏
j=1

(
1− y3

x̃j
xi

)(
1− y4

x̃j
xi

)(
1− y−1

1
x̃j
xi

)(
1− y−1

2
x̃j
xi

) = x̃j

N∏
i=1

(
1− y3

x̃j
xi

)(
1− y4

x̃j
xi

)(
1− y−1

1
x̃j
xi

)(
1− y−1

2
x̃j
xi

)

From a numerical analysis, ansatz: log xj =
√
N tj + i vj

? Use a continuous distribution of poles:

vj(t)− ṽj(t) : -1 1 2

-0.4

-0.2

0.2

ρ(t) :

-1 1 2

0.1

0.2

0.3

0.4
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Partition Function and Entropy

Grand canonical partition function, at leading order in large N :

logZTTI(∆a, na) = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a

+ . . .

Here ya = ei∆a , 0 ≤ ∆a ≤ 2π and
∑

∆a = 2π.

Bekenstein-Hawking entropy from a (constrained) Legendre transform:

logZ(∆a, na)− i∆aqa

∣∣∣
∆a=crit

= SBH(qa, na)

? I-extremization: Legendre transform is dual to attractor mechanism in AdS4

[Gauntlett, Martelli, Sparks 19][Hosseini, Zaffaroni 19]

[Kim, Kim 19][van Beest, Cizel, Schafer-Nameki, Sparks 20]
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Many Examples in Various Dimensions

? Similar strategies reproduce the Bekenstein-Hawking entropy

of various types of BPS black holes in different dimensions,

from both twisted and superconformal indices

Magnetically-charged BPS black holes: (VERY partial list!)

in AdS4, with addition of electric charges [FB, Hristov, Zaffaroni 16]

and/or angular momentum [Hristov, Katmadas, Toldo 18; Choi, Hwang 19]

with exotic horizon Σg [FB, Zaffaroni 16][Closset, Kim 16]

in other theories / geometries

(e.g. massive Type IIA on S6)

[Hosseini, Hristov, Passias 17][FB, Khachatryan, Milan 17]

[Hosseini, Zaffaroni 16]

[Gang, Kim, Pando Zayas 19][Bobev, Crichigno 19]

in AdS5 with hyperbolic horizon [Bae, Gang, Lee 19]

in AdS6 with toric-Kahler or Σg1 × Σg2 horizon [Hosseini, Yaakov, Zaffaroni 18]

[Crichigno, Jain, Willett 18][Suh 18] + Hristov, Passias, Fluder, Uhlemann]



Many Examples in Various Dimensions

Rotating Kerr-Newman BPS black holes:

in AdS4 [Choi, Hwang, Kim 19][Nian, Pando Zayas 19][Choi, Hwang 19]

in AdS5 (see later) [many. . . ]

in AdS6 (Cardy limit) [Choi, Kim 19]

in AdS7 (Cardy limit) [Kantor, Papageorgakis, Richmond 19][Nahmgoong 19]



Perturbative and Higher-Derivative Corrections

? In QFT, we can compute corrections to the TT index at large N .

Analytic computations turn out to be too difficult, [Liu, Pando Zayas, Rathee, Zhao 17]

[Bobev, Hong, Reys 22]→ resort to numerical evaluations and fitting:

logZ0 = −N
3/2

3

√
2∆1∆2∆3∆4

∑
a

na
∆a

logZ = logZ0 + N
1
2 f1(∆a, na)︸ ︷︷ ︸
higher deriv.

− 1

2
logN︸ ︷︷ ︸

1-loop

+ f2(∆a, na) + O
(
N−

1
2

)

In SO(8)-symmetric case ∆a = π
2

, for generic horizon Σg and internal manifold S7/Zk:

logZ = (1− g)

[
−π
√

2k

3
N

3
2 +

π√
2k

k2 + 32

24
N

1
2 − 1

2
logN

]
+ . . .
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Perturbative 1-Loop Correction [Liu, Pando Zayas, Rathee, Zhao 17]

? log corrections to entropy have been extensively studied [Sen 08]

for asymptotically-flat black holes

Window into QG: 1-loop effect from matter fields in near-horizon region

? For AdS4 black holes: contribution from whole space [Jeon, Lal 17]

[Liu, Pando Zayas, Rathee, Zhao 17]

Computation in 11d SUGRA on M4 × S7: (M4 is reg. Euclidean black hole)

in odd dimensions, only zero-modes contribute

examine fields of 11d SUGRA, including ghosts

M4 is non-compact → space of L2 harmonic forms HpL2(M4,R)

dimregHp=2
L2 = 2(1− g)

Reproduces logZΣg×S1(na,∆a) = . . . − 1− g
2

logN + . . .
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First Higher-Derivative Correction [Bobev, Charles, Hristov, Reys 20/21]

? Add 4-derivative corrections to 4d N = 2 minimal gauged SUGRA

Higher-derivative couplings: Weyl multiplet, T-log multiplet

• Any solution to 2-∂ action is also a solution of 4-∂ action,

and preserves same amount of SUSY (special to AdS4)

logZ = −πF
(
AN

3
2 +BN

1
2

)
+ π

(
F − χ

)
C N

1
2

F , χ depend on boundary geometry of asymtpotically-locally-AdS4 solution

Mag. AdS BH: F = (1− g) χ = 2(1− g)

A,B,C depend on theory: fix them with selected localization computations

ABJMk: A =
√

2k
3

B = − k2+8

24
√

2k
C = − 1√

2k

? Grav. evaluation of TT index:

logZΣg×S1 = −(1− g)
π
√

2k

3

(
N

3
2 − 32 + k2

16k
N

1
2

)
+ . . .

? In order to address generic fugacities, need to add vector multiplets
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An interesting conjecture

By a very careful numerical analysis, [Bobev, Hong, Reys 22]

conjecture for TT index of ABJMk, to all perturbative orders in 1
N1/2 :

logZS1×Σg6=1
= −
√

2k∆1∆2∆3∆4

3

4∑
a=1

na
∆a

(
N̂

3
2

∆ −
ca
k
N̂

1
2

∆

)
− 1− g

2
log N̂∆

+ f0(k,∆, n) +O
(
e−
√
Nk)+O

(
e−
√
N/k)

where N̂∆ = N − k

24
+

π

12k

4∑
a=1

1

∆a
ca =

∏
b(6=a)(∆b + ∆a)

8∆1∆2∆3∆4

∑
b( 6=a)

∆b



Kerr-Newman rotating

BPS black holes

in AdS5



Kerr–Newman BPS black holes in AdS5

Rotating & electrically-charged 1
16

-BPS black holes in AdS5 [Gutowski, Reall 04]

[Chong, Cvetic, Lu, Pope 05][Kunduri, Lucietti, Reall 06]

Constructed in: 5d N = 2 U(1)3 gauged SUGRA (STU model)

or uplift to: 10d type IIB SUGRA on AdS5 × S5

Angular momentum Here: J1, J2

Electric charges Charges for U(1)3 ⊂ SO(6): R1, R2, R3

SUSY (1 cplx supercharge Q)

Bekenstein-Hawking

entropy (S3 horizon):
SBH =

Area

4GN
= π

√
R1R2 +R1R3 +R2R3 − 2N2(J1 + J2)

Angular momenta, charges and entropy scale ∼ N2 ∼ `3AdS

GN



4d Superconformal Index [Romelsberger 05; Kinney, Maldacena, Minwalla, Raju 05]

• Dual boundary theory: 4d N = 4 SU(N) SYM

? Superconformal index:

Counts (with sign) BPS states on S3 = protected operators on flat space

Index of N = 4 SYM:

I(p, q, y1, y2) = Tr (−1)F e−β{Q,Q
†} pJ1+ 1

2R3 qJ2+ 1
2R3 y

1
2 (R1−R3)
1 y

1
2 (R2−R3)
2

Write: p = e2πiτ q = e2πiσ ya = e2πi∆a

Introduce ∆3 such that: ∆1 + ∆2 + ∆3 − τ − σ ∈ Z

? Equals the Euclidean partition function on S3 × S1

with background flat connections:
I = ZS3×S1(τ, σ,∆1,∆2)
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? Exact integral formula: [Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]

[Sundborg 99][Romelsberger 05][Kinney, Maldacena, Minwalla, Raju 05]

I = κN

∮
Trk(G)

rk(G)∏
i=1

dzi
2πizi

×
∏3
a=1

∏
ρ∈Radj

Γ̃
(
ρ(u) + ∆a; τ, σ

)∏
α∈g Γ̃

(
α(u); τ, σ

)
with

z = e2πiu κN =
(p; p)

rk(G)
∞ (q; q)

rk(G)
∞

|WeylG|
Γ̃(u; τ, σ) =

∏∞

m,n=0

1− pm+1qn+1/z

1− pmqnz

? Taking the large N limit turns out to be tricky. . .

One saddle point with ui ∈ R found long ago [Kinney, Maldacena, Minwalla, Raju 05]

it describes gas of gravitons in AdS5, but not black holes

• Many different approaches have been devised by now
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Cardy Limit [Choi, Kim, Kim, Nahmgoong 18][Honda 19][Arabi Ardehali 19]

? Integrand simplifies in a (high temperature) Cardy limit:

• angular chemical potentials τ, σ → 0 (with τ/σ fixed)

• electric chemical potentials Im ∆a → 0 with Re ∆a fixed

I = ZS3×S1 '
τ,σ→0

∫
drk(G)u e

iπ
6τσV2(u)+

iπ(τ+σ)
2τσ V1(u)

V1,2(u): piecewise polynomial functions, that depends on gauge/matter rep.

In a suitable range of Re ∆a’s, V2 has a local minumum at u = 0.

[Di Pietro, Komargodski 14][Arabi Ardehali 15][Di Pietro, Honda 16]

? Next, take large N limit:

(here [x] = x− dxe) log I = −iπN2 [∆1][∆2][∆3]

τσ
+ . . .

? (Constrained) Legendre transform reproduces Bekenstein-Hawking entropy:

SBH = log I − 2πi
(∑

Xa
Ra
2 + 2τJ

) ∣∣∣constrained
extremum

Cardy limit captures limit of: charges� central charge
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Cardy limit of N = 1 theories can be studied at generic N , and in greater detail.

? In 2d, Cardy limit follows from modular invariance

? In 4d no modular invariance, yet central charges control the Cardy limit

Obtained by reduction on S1, careful treatment of

3d EFT of massive and zero modes, involves SU(N)N

• E.g., for the so-called “R-charge index”, or “index on 2nd sheet”:

I = Tr e−iπR e−β{Q,Q
†} e2πiτ(J1+ 1

2R) e2πiσ(J2+ 1
2R)

where R is an R-symmetry (with mild constraints), [Cassani, Komargodski 21]

[see also: Kim, Kim, Song 19; Cabo-Bizet, Cassani, Martelli, Murthy 19; Lezcano, Hong, Liu, Pando Zayas 20]

[Amariti, Fazzi, Segati 21; Jejjala, Lei, van Leuven, Li 21; Cabo-Bizet 21][Arabi Ardehali, Murthy 21]

log I = πi
(τ + σ + 1)3

24τσ
TrR3 − πi (τ + σ + 1)(τ2 + σ2 − 1)

24τσ
TrR

+ log
∣∣G1-form

∣∣+O
(
e−

#
τ
)

• N = 4 SYM: Asymptotic behaviour for τ, σ → Q [Arabi Ardehali, Murthy 21]
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? Relax any limit on fugacities, only large N

This analysis reveals interesting non-perturbative corrections

Various tools:

Bethe Ansatz formula [Closset, Kim, Willet 17; FB, Milan 18]

[Lanir, Nedelin, Sela 19; Lezcano, Pando Zayas 19]

[Arabi Ardehali, Hong, Liu 19; FB, Colombo, Soltani, Zaffaroni, Zhang 20]

Non-analytic extension [Cabo-Bizet, Murthy 19]

[Cabi-Bizet, Cassani, Martelli, Murthy 20; Cabo-Bizet 20]

Direct saddle-point approximation [Choi, Jeong, Kim, Lee 21]

Truncation of plethystic expansion [Copetti, Grassi, Komargodski, Tizzano 20]

[Choi, Jeong, Kim 21]

Giant graviton expansion [Imamura 21/22; Gaiotto, Lee 21]

[Murthy 22; Lee 22]



Bethe Ansatz Formula for 4d Superconformal Index

Alternative formula: (set τ = σ) [Closset, Kim, Willett 17]

[FB, Milan 18]

[FB, Rizi 21]

I =
∑

u∈MBAE

Z(u; ∆, τ, τ) H(u; ∆, τ)−1

1 MBAE are solutions to “Bethe Ansatz Equations” for rk(G) complexified

holonomies [ui] living on a complex torus T 2
τ of modular parameter τ :

MBAE :

SU(N) N = 4 SYM
Qi(u) =

3∏
a=1

N∏
j=1

θ(∆a − uij ; τ)

θ(∆a + uij ; τ)
= 1

uij =

ui − uj 6= 0

Equations are defined on T 2
τ and are invariant under SL(2,Z)

2 Z: same integrand as in integral formula H: Jacobian H = det
ij

∂Qi
∂uj



? ∃ Discrete family of exact solutions [Hosseini, Nedelin, Zaffaroni 16][Hong, Liu 18]

labelled by {m, r} with m · n = N and r ∈ Zn

Basic solution {1, 0}: uj ∼ τ
N j

Other solutions – forming SL(2,Z) orbits: e.g.

? Contrib. of basic solution reproduces Bekenstein-Hawking entropy:
[FB, Milan 18]

lim
N→∞

I(τ,∆1,∆2)
∣∣∣
basic
solution

' exp

(
−iπN2 [∆1]τ [∆2]τ [∆3]τ

τ2

)
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Non-Perturbative Corrections from QFT

Expansion of the index at large N : I =
∑

solutions∈MBAE

eO(N2) + ...

It looks like a semiclassical expansion

? Large N contribution of {m, r} solutions (with fixed m, r): (cfr. Cardy limit)

log I{m,r} = − iπN
2

m

[m∆1]τ̌ [m∆2]τ̌ [m∆3]τ̌
(mτ + r)2︸ ︷︷ ︸

on-shell action

+ logN + O(1)︸ ︷︷ ︸
1-loop ?

+
∑

e
2πiN
m

[m∆a]τ̌
τ̌ + ...

︸ ︷︷ ︸
Euclidean D3-branes

+ . . .

where τ̌ = mτ + r [Lezcano, Hong, Liu, Pando Zayas 20][Aharony, FB, Mamroud, Milan 21]
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“Classical” Non-Perturbative Corrections

Fill-in bulk geometry

for given boundary conditions

[Witten 98; Dijkgraaf, Maldacena, Moore, Verlinde 00]

[Maloney, Witten 07]

S3

×
S1

A

?

• ∃ infinite family of complex Euclidean solutions (including orbifolds)

of 10d type IIB supergravity

? SUSY, but not extremal,

with correct boundary conditions [Cabo-Bizet, Cassani, Martelli, Murthy 18]

[Aharony, FB, Mamroud, Milan 21]

• (Renormalized) on-shell action Fgrav

Reproduces O(N2) contribution to log I{m,r}



“Stringy” Non-Perturbative Corrections

? A class of non-perturbative corrections [Aharony, FB, Mamroud, Milan 21]

from Euclidean SUSY D3-branes

wrapped on 10d geometry at the horizon

On-shell action:

SD3 = 2πN
∆g
a

τg
or SD3 = 2πN

∆g
a

σg

S3

×
S1

S5

S1

S3

? Effect of D3-brane corrections:

I = ZS3×S1 ' e−Fgrav +
∑
k

e−Fgrav eikSD3 ' exp

{
− Fgrav︸︷︷︸
O(N2)

+
∑
k

eikSD3︸ ︷︷ ︸
O(e−N )

}

? Criterium to retain a complex saddle:

ImSD3 > 0 for all (SUSY) D3-brane embeddings

Violation implies “D3-brane condensation” towards some other saddle point.

Expected to signal that complex saddle point does not contribute to the integral.

Matches with expansion of index.
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Perturbative and Higher-Derivative Corrections

Perturbative and higher-derivative corrections poorly understood in this example

? logN term in basic solution [David, Lezcano, Nian, Pando Zayas 21]

Can be reproduced by Kerr/CFT applied to near-horizon

Computation in Lorentizian signature and microcanonical ensemble

Suggests no contribution from the bulk

? O(1) terms

Absence of O(N): first higher-derivative correction vanishes [Melo, Santos 20]

Expected 1-loop contribution from gas of gravitons in black hole background
[cfr. Kinney, Maldacena, Minwalla, Raju 05]

Perturbative series truncates (compatible with Cardy limit). Why?
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An Interesting Class of Matrix Models

? The integral formula for the index can be recast in the form:

I =
1

N !

∫
dNua

∏
a6=b

(
1− e

2πi
τ
uab
)

exp

[
−
∑
a6=b

(
Vσ(uab) + Vτ (uab)

)]
with Vσ periodic in u→ u+ σ , Vτ periodic in u→ u+ τ

[Choi, Jeong, Kim, Lee 21]

At large N , family of saddle points with

τ

σuniform distribution of eigenvalues

on a parallelogram in the u-plane

? Saddle are labelled by r, s ∈ Z
Generalize the (m = 1, r) solutions to BAE’s to τ 6= σ

∃ only in certain ranges of τ, σ,∆a → agreement with D3-brane stability

At leading order, contributions agree.



In all approaches, there seems to be other potential contributions:

BAEs: continuous branches of solutions [Arabi Ardehali, Hong, Liu 19]

Saddle point: multi-cut solutions with filling fractions

Poorly understood.

Hint of new BPS black hole solutions?



? Truncation of the Plethystic Expansion [Copetti, Grassi, Komargodski, Tizzano 20]

I =

∫
U∈SU(N)

[DU ] exp

(
∞∑
k=1

1

k
f(yka , p

k, qk) TrUk TrU−k
)

Truncation to one or two terms:

at large N reproduces fairly well Hawking-Page transition between AdS5 and black hole

? Giant graviton expansion [Imamura 21/22; Gaiotto, Lee 21; Murthy 22; Lee 22]

I(∆a, τi) = IKK(∆a, τi)
∞∑

n1,n2,n3=0

e−N
∑
a ∆ana Zn1,n2,n3

(∆a, τi)

where Zn1,n2,n3 =

∮
C

3∏
I=1

nI∏
a=1

du
(I)
a

( 3∏
I=1

Z4d
I

) (∏
I 6=J

Z2d
I,J

)
[Imamura 21]

U(n1)× U(n2)× U(n3) gauge theory with bifundamentals

• Bulk: n1, n2, n3 D3-branes wrapping three intersecting S3’s in S5

• Index: I(y) = 1 + #y + . . .+ #yN + . . .

↑ trace relations

At large N , reproduces black hole entropy [Choi, Kim, Lee, Lee 22]
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Quantum mechanics of BPS and near-BPS black holes

can be studied in great detail using near-horizon AdS2 region

and Schwarzian-like effective field theory [Iliesiu, Turiaci 20]

[Heydeman, Iliesiu, Turiaci, Zhao 20; Boruch, Heydaman, Iliesiu, Turiaci 22]

[Lin, Maldacena, Rozenberg, Shan 22]

[See L. Iliesiu and J. Maldacena’s talks]

Can it be reproduced from the boundary QFT?



Some Open Questions

AdS Black hole entropy beyond SUSY [see Larsen, Nian, Zeng 19]

Near-horizon JT-like gravity from field theory?

Classification of Euclidean/Lorentzian BPS gravitational saddles

Index: potential new contributions

Gravity: indications of hairy or multi-center BPS black holes
[Markeviciute, Santos 18]

[Monten, Toldo 21; Cai, Liu 22]

Resummation of contributions and phase transitions
[see Copetti, Grassi, Komargodski, Tizzano 20]


