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in study of BPS black holes in Anti-de-Sitter space:  entropy and microstates



| will review recent developments
in study of BPS black holes in Anti-de-Sitter space:  entropy and microstates

This topic has been extensively studied in asymptotically-flat spacetimes

* String theory reproduces the Bekenstein-Hawking entropy [Strominger, Vafa 96]
of BPS black holes in asymptotically-flat spacetimes

This has been refined in a very accurate & impressive way since then
[very long list of people...]



* The AdS/CFT correspondence provides us with
a CONSISTENT and NON-PERTURBATIVE definition
of QUANTUM GRAVITY in ANTI-DE-SITTER SPACE,

in terms of an ordinary QFT at the boundary

* It is interesting to study black hole entropy in AdS

* AdSs and AdSs are special. Here AdSy with d > 4



Semiclassical Regime for Gravity

Gravity is weakly coupled and close to Einstein gravity
* In AdS: AdS much larger scale of higher-derivative corr.’s
than Planck scale much higher than AdS scale
large .
FT is
* In QFT: “central charge” Q

(large N) strongly coupled



Semiclassical Regime for Gravity

Gravity is weakly coupled and close to Einstein gravity
* In AdS: AdS much larger scale of higher-derivative corr.’s
than Planck scale much higher than AdS scale
large .
FT is
* In QFT: “central charge” . QI ! o
(large ) strongly couple

conformal bootstrap

Need to take advantage of
integrability (for certain CFT's)

non-perturbative methods

in QFT: supersymmetry

numerics (lattice and/or Montecarlo)



Black Hole Entropy

SBekenstein—Hawking =

Horizon Area

4GNh/C3

Ensemble of states

Black hole = . .
In quantum gravity
Area .
Smicro = 108 Nmicro = —=— + corrections:
4G N

[Bekenstein 72, 73, 74; Hawking 74, 75]

AdS/CFT  Ensemble of states
in boundary QFT

perturbative

higher derivative
non-perturbative (classical sol's)
non-perturbative (branes)



Black Hole Entropy

Horizon Area

SBekenstein Hawking = ——7 ~ £ 7 2 [Bekenstein 72, 73, 74; Hawking 74, 75]
Hawking = o hjS 73 74 Hawking 74,
Nh/c

Ensemble of states ~ AdS/CFT  Ensemble of states

Black hole = in quantum gravity - in boundary QFT

perturbative
Area higher derivative
Shmicro = 10g Niicro = Ve + corrections: non-perturbative (classical sol's)
N non-perturbative (branes)

* Some caveats: o Here consider /arge black holes in AdS

@ Boundary QFT captures all states in AdS



Strategies

Count states in boundary QFT employing a grand canonical partition function

Iy) =Y y%= Y dQ)y?

states charges



Strategies

Count states in boundary QFT employing a grand canonical partition function

=Y = > dQ)y°

states charges

e Lorentzian: extract the degeneracy

1 dy log Z(A)—2miQA 2miA
@ =53 § yar T = fan & e

Assuming large degeneracies, saddle-point approximation — Legendre transform

entropy S = logd(Q) =~ logZ(A)—2miQA

A = extremum



Strategies

Count states in boundary QFT employing a grand canonical partition function

=Y = > dQ)y°

states charges

e Lorentzian: extract the degeneracy

1 dy log Z(A)—2miQA 2miA
@ =53 § yar T = fan & e

Assuming large degeneracies, saddle-point approximation — Legendre transform

entropy S = logd(Q) =~ logZ(A)—2miQA

A = extremum

e FEuclidean:
Euclidean “gravitational

C . . .
L=2Zy, \xst AdS/CFT path integral” with fixed 2

boundary conditions



Partition function at strong coupling: very hard!

* Employ a SUSY partition function, or index: 7= Z (—1)F 4@
states
Ofter computable exactly with localization techniques

Index counts BPS states: applicable to BPS black holes



Partition function at strong coupling: very hard!

* Employ a SUSY partition function, or index: 7= Z (—1)F 4@
states
Ofter computable exactly with localization techniques

Index counts BPS states: applicable to BPS black holes

* Does an index capture the full entropy? [FB, Hristov, Zaffaroni 16]
[Cabo-Bizet, Cassani, Martelli, Murthy 18]

At least at leading order, yes!
[Boruch, Heydeman, lliesiu, Turiaci 22]

Exploit near-horizon AdS; with su(1,1|1) isometry (Z-extremization)
Similar to asyptotically-flat black holes [Sen 09]

Confirmed by analysis of 2d effective action [Boruch, Heydeman, lliesiu, Turiaci 22

[see L. lliesiu’s talk]



e Which SUSY partition function?

Holography:
AdS/CFT rules

black hole solution as an RG flow

—  read off background
for boundary theory



e Which SUSY partition function?
| =0

Holography: black hole solution as an RG flow —

AdS/CFT rules —  read off background —

for boundary theory =

BPS black holes with BPS Kerr-Newman

R-symmetry magnetic charge rotating black holes
(possibly rotating and with (possibly with electric and
electric/magnetic flavor charges) magnetic flavor charges)
topologically twisted indices superconformal indices

Another interesting class of solutions: spindles [see J. Sparks’ talk]



Magnetically-charged
BPS black holes
In AdS4



BPS Magnetically-Charged Black Holes in AdS,

1
f(r)

X' =xr), P2 =ngdvolgs, Y na =2

% Spherically symmetric, ds? = —f(r)dt® +
static, %-BPS black holes

dr® + g(r) dS;Q
[Cacciatori, Klemm 09; Hristov, Vandoren 10]

* Constructed in: 4d N =2 U(1)* gauge SUGRA (STU model)
or uplift to: 11d supergravity (M-theory) on AdS, x S7

* Magnetic charge for an R-symmetry (4 possibly electric flavor charges q,
& angular momentum)

Bekenstein-Hawking 3 ) 3
SBH:N2 F(ﬂa) éAds/GNNNz
entropy:

* Boundary theory: 3d N =8 ABJM gauge theory U(N); x U(N)_4

Boundary theory is topologically twisted



Topologically Twisted Index
Grand canonical partition function at strong coupling:
protected observable for 3d A/ = 2 SUSY gauge theories with R-symmetry
[Gukov, Pei 15]
Z171[Ya, Ma] = Try (—1)F e~ BH (] AGE [FB, Zaffaroni 15]
[Closset, Kim 16]
H: Hilbert space of states on S? with R-symmetry background (top. twist)
Q>=H - mgkgdja only BPS states with Q2 = 0 contribute

o ) - abkgd | - o bked
Complex fugacities: Yo = P = (A HIBM)



Topologically Twisted Index
Grand canonical partition function at strong coupling:
protected observable for 3d A/ = 2 SUSY gauge theories with R-symmetry
[Gukov, Pei 15]
Z171[Ya, Ma] = Try (—1)F e~ BH (] AGE [FB, Zaffaroni 15]
[Closset, Kim 16]
H: Hilbert space of states on S? with R-symmetry background (top. twist)
Q>=H - mgkgdja only BPS states with Q2 = 0 contribute

o ) - abkgd | - o bked
Complex fugacities: Yo = P = (A HIBM)

* Computable exactly with localization techniques. For ABJM:

N - N -
S [Tl B[] (1-2) (1- )
BN ste1 2mix; 2miz; ¢ ¢ by z; z;

z; _ P _
y 11_\7[ H A /:.ija m—mj—ng+1 H A /?;yb m—m;—np+1
1-z b=3,4

P
GO

—
vl

ij=1a=1,2 5, Ya



TT Index at Large

* Compute contour integral as a multi-dimensional residue  [FB, Hristov, Zaffaroni 15]

Distribution of poles at large V: “Bethe Ansatz Equations”

1:aziﬁ <17y37)(17y47 ﬁ 1193)(1y4)

V0w ) ) (T-w '3 (1 -we ')



TT Index at Large

* Compute contour integral as a multi-dimensional residue  [FB, Hristov, Zaffaroni 15]

Distribution of poles at large V: “Bethe Ansatz Equations”

1:aziﬁ (17%7)(17%7 ﬁ 1193)(1y4)

L 20t TS 0 )0
From a numerical analysis, ansatz: logz; = VNt; +iv,

* Use a continuous distribution of poles:

vi(t) =9 () = T p(t) :




Partition Function and Entropy

Grand canonical partition function, at leading order in large N:

log Z711(Ag,0g) =

2A1A5A3Ay

Here y, = e, 0< A, <27 and > A, =27

Bekenstein-Hawking entropy from a (constrained) Legendre transform:

log Z(Ag,0a) — iDaGa = SBH(qa, Ma)

A, =crit



Partition Function and Entropy

Grand canonical partition function, at leading order in large N:

log Z711(Ag,0g) = 2A1A2A3Ay

Here y, = e, 0< A, <27 and > A, =27

Bekenstein-Hawking entropy from a (constrained) Legendre transform:

log Z(Ag,0a) — iDaGa = SBH(da,Na)

Ag=crit

* Z-extremization: Legendre transform is dual to attractor mechanism in AdSy
[Gauntlett, Martelli, Sparks 19][Hosseini, Zaffaroni 19]
[Kim, Kim 19][van Beest, Cizel, Schafer-Nameki, Sparks 20]



Many Examples in Various Dimensions

* Similar strategies reproduce the Bekenstein-Hawking entropy
of various types of BPS black holes in different dimensions,
from both twisted and superconformal indices

Magnetically-charged BPS black holes: (VERY partial list!)

@ in AdS,, with addition of electric charges [FB, Hristov, Zaffaroni 16]
and/or angular momentum [Hristov, Katmadas, Toldo 18; Choi, Hwang 19]

° with exotic horizon 3, [FB, Zaffaroni 16][Closset, Kim 16]

° in other theories / geometries  [Hosseini, Hristov, Passias 17][FB, Khachatryan, Milan 17]

[Hosseini, Zaffaroni 16]

H 6
(e.g. massive Type lIA on 5°) [Gang, Kim, Pando Zayas 19][Bobev, Crichigno 19]

@ in AdS; with hyperbolic horizon [Bae, Gang, Lee 19]

in AdSg with toric-Kahler or 291 X Egz horizon [Hosseini, Yaakov, Zaffaroni 18]
[Crichigno, Jain, Willett 18][Suh 18] + Hristov, Passias, Fluder, Uhlemann]



Many Examples in Various Dimensions

Rotating Kerr-Newman BPS black holes:

@ in AdS4 [Choi, Hwang, Kim 19][Nian, Pando Zayas 19][Choi, Hwang 19]
@ in AdSs (see later) [many...]
@ in AdSe (Cardy limit) [Choi, Kim 19]

@ in AdS7 (Cardy limit) [Kantor, Papageorgakis, Richmond 19][Nahmgoong 19]



Perturbative and Higher-Derivative Corrections

* In QFT, we can compute corrections to the TT index at large N.

Analytic computations turn out to be too difficult, [Liu, Pando Zayas, Rathee, Zhao 17]

. . - 22
— resort to numerical evaluations and fitting: [Bobev, Hong, Reys 22]

N3/2 n
log Zg = ——— /20, Ay AsA NS
0g 4o 3 1Q2A3A, g A,
1

log Z =log Zy + N7 fi(Aa,na) — log N + fo(Aayng) + O(N72)

In SO(8)-symmetric case A, = 7, for generic horizon 3, and internal manifold S7 | T

™

k? + 32 1
Tt N%—flogN + ...

logZ = (1-g)|- N >

2k s
N2
3 +



Perturbative and Higher-Derivative Corrections

* In QFT, we can compute corrections to the TT index at large N.

Analytic computations turn out to be too difficult, [Liu, Pando Zayas, Rathee, Zhao 17]

. . - 22
— resort to numerical evaluations and fitting: [Bobev, Hong, Reys 22]

N3/2 n
log Zyg = ————/2A1 A0 A3 A -2
0g 4o 3 182203084 g A,

1
logZ =log Zy + N*fi(Aa,na) — SlogN + fo(Aa,na) + O(N”3)

——
higher deriv. 1-loop

In SO(8)-symmetric case A, = 7, for generic horizon 3, and internal manifold S7 | T

™

k? + 32 1
Tt N%—flogN + ...

logZ = (1-g)|- N >

2k s
N2
3 +



Pel’tu I’batlve 1—|_OOp COI’I’eCtIOH [Liu, Pando Zayas, Rathee, Zhao 17]

* log corrections to entropy have been extensively studied [Sen 08]
for asymptotically-flat black holes

Window into QG: 1-loop effect from matter fields in near-horizon region

* For AdS, black holes: contribution from whole space [Jeon, Lal 17]
[Liu, Pando Zayas, Rathee, Zhao 17]



Pel’tu I’batlve 1—|_OOp COI'reCtlon [Liu, Pando Zayas, Rathee, Zhao 17]

* log corrections to entropy have been extensively studied [Sen 08]
for asymptotically-flat black holes

Window into QG: 1-loop effect from matter fields in near-horizon region

* For AdS, black holes: contribution from whole space [Jeon, Lal 17]
[Liu, Pando Zayas, Rathee, Zhao 17]

Computation in 11d SUGRA on My x S7: (My is reg. Euclidean black hole)
p

@ in odd dimensions, only zero-modes contribute

@ examine fields of 11d SUGRA, including ghosts

@ M, is non-compact — space of L? harmonic forms H%, (M, R)
dimyeg H2Z? = 2(1 — g)

Reproduces log Zs,, x5t (Nay Aa) = .. — ;glogN + ...




FIrSt ngher—Denvat'Ve COI’reCtIOH [Bobev, Charles, Hristov, Reys 20/21]

% Add 4-derivative corrections to 4d N' = 2 minimal gauged SUGRA
Higher-derivative couplings: Weyl multiplet, T-log multiplet



FlrSt ngher—Del’lvatlve COI’reCtIOI’] [Bobev, Charles, Hristov, Reys 20/21]

% Add 4-derivative corrections to 4d N' = 2 minimal gauged SUGRA
Higher-derivative couplings: Weyl multiplet, T-log multiplet

e Any solution to 2-J action is also a solution of 4-0 action,
and preserves same amount of SUSY (special to AdS,)

log Z = 777‘/—'.(AN% +BN%) +7T(.7:*X)CN%
@ F,x depend on boundary geometry of asymtpotically-locally-AdS, solution
Mag. AdSBH: F=(1-g) x=21-g9)
o A, B,C depend on theory: fix them with selected localization computations

. _ 2k _ k%48 _ 1
ABIM: A== B_724m C—*ﬁ




FlrSt ngher—Del’lvatIVG COI’reCtIOI’] [Bobev, Charles, Hristov, Reys 20/21]

% Add 4-derivative corrections to 4d N' = 2 minimal gauged SUGRA
Higher-derivative couplings: Weyl multiplet, T-log multiplet

e Any solution to 2-J action is also a solution of 4-0 action,
and preserves same amount of SUSY (special to AdS,)

IOgZ:777‘/—'.(AN%+BN%)+7T(]:*X)CN%

@ F,x depend on boundary geometry of asymtpotically-locally-AdS, solution
Mag. AdSBH: F=(1-g) x=21-g9)

o A, B,C depend on theory: fix them with selected localization computations

. _ 2k _ k%48 _ 1
ABIM: A== B_724m C—*ﬁ

* Grav. evaluation of TT index:

™2k ([ 2 324Kk 4
log Zs, xs1 = —(1— g)—5 <N3— o N%>+...

* In order to address generic fugacities, need to add vector multiplets



An interesting conjecture

By a very careful numerical analysis, [Bobev, Hong, Reys 22]

conjecture for TT index of ABJMy, to all perturbative orders in ﬁ:
V2kA1 A3 A3 Ay : Ng ~ 3 o o1 1—9g ~
108§Zslng¢1:*f;?a NAQ*? A) =5 logNa
+ fo(k,Ayn) +0(e™VNF) 4 O(e” VIR
- k ™ 1 Hb(;ﬁa)(Ab + Aq)
N = N — —_— a = —————————
where a TRETTD N AR, 2 M

a=1 b(#a)



Kerr-Newman rotating
BPS black holes
In AdS5



Kerr—Newman BPS black holes in AdSy

Rotating & electrically-charged %—BPS black holes in AdS5 [Gutowski, Reall 04]
[Chong, Cvetic, Lu, Pope 05][Kunduri, Lucietti, Reall 06]

o Constructed in: 5d V=2 U(1)® gauged SUGRA (STU model)
or uplift to: 10d type IIB SUGRA on AdSs x S°

@ Angular momentum Here: Ji, Jo
Electric charges Charges for U(1)3 € SO(6): Ry, Ry, R3

@ SUSY (1 cplx supercharge Q)

Bekenstein-Hawkin A
& Sen = 2 _ \/RiRy + RiRs + RoRs — 2N2(Jy + Ja)

entropy (S® horizon): 4G N

23
Angular momenta, charges and entropy scale ~ N? ~ e



4d SuperCOHfOI'mal |ndeX [Romelsberger 05; Kinney, Maldacena, Minwalla, Raju 05]

e Dual boundary theory: 4d N =4 SU(N) SYM

* Superconformal index:

Counts (with sign) BPS states on S® = protected operators on flat space



4d Superconformal IndeX [Romelsberger 05; Kinney, Maldacena, Minwalla, Raju 05]
e Dual boundary theory: 4d N =4 SU(N) SYM

* Superconformal index:

Counts (with sign) BPS states on S® = protected operators on flat space
Index of N =4 SYM:
1 _ 1 —
I(p,q’ylny) — TI' (—l)F e—ﬁ{Q,QT}le-F%Rs qu—‘r%Rg y12 (Rl R3) y22 (R2 RS)

Write: p= 6271'7,7' qg= 6271'20' Yo = eQ‘rr'LAa

Introduce Az such that: A1 +As+A3—7—0€Z

* Equals the Euclidean partition function on S3 x S1

with background flat connections:

1= ZS'3><S1 (T7 UaAlvAQ)



* Exact integral formula: [Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]

with

z

[Sundborg 99][Romelsberger 05][Kinney, Maldacena, Minwalla, Raju 05]

r 3 =
sy Ha:l Hpeﬁkadj F(p(u) + Ay, U)

dz;
1=k ]{ NG 1
N Trk(C) Zl;ll 2Tz, HaEgF(a(u);T7 a)

XD (g; gY@
[Weyls|

0o 1— pm+1qn+1/z
m,n=0 W

(p; )

L(y;7,0) = H

KN =



* Exact integral formula: [Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]

[Sundborg 99][Romelsberger 05][Kinney, Maldacena, Minwalla, Raju 05]

r 3 o
% M) dz; Ha:l Hpeiﬁadj F(p(u) =+ Aa; T, U)
T = RN H - X
Trk(G) 2777,Zi

HaEg f(a(u);T, 0)

with
L \TK(G) . \TR(G) m+1, n+1
1 e} s @)oo ™ 1-—
2= 62‘1r'Lu KN = (p7 p) (q q) F(U;T, 0_) _ HOO p q /Z
[Weylg| mn=0  1—pmqrz
* Taking the large N limit turns out to be tricky. ..
One saddle point with u; € R found long ago [Kinney, Maldacena, Minwalla, Raju 05]

it describes gas of gravitons in AdSs, but not black holes

e Many different approaches have been devised by now



Cardy Limit [Choi, Kim, Kim, Nahmgoong 18][Honda 19][Arabi Ardehali 19]

* Integrand simplifies in a (high temperature) Cardy limit:

e angular chemical potentials 7,0 — 0 (with 7/0 fixed)

e electric chemical potentials Tm A, — 0 with ReA, fixed

I=Zgsys1 = /drk(G)u 5 Va(W+IELA VA (w)
T,0—=0

V1,2(u): piecewise polynomial functions, that depends on gauge/matter rep.
In a suitable range of Re A,'s, V2 has a local minumum at v = 0.

[Di Pietro, Komargodski 14][Arabi Ardehali 15][Di Pietro, Honda 16]



Cardy lelt [Choi, Kim, Kim, Nahmgoong 18][Honda 19][Arabi Ardehali 19]

* Integrand simplifies in a (high temperature) Cardy limit:

e angular chemical potentials 7,0 — 0 (with 7/0 fixed)
e electric chemical potentials Tm A, — 0 with ReA, fixed
I=Zgsys1 = /drk(G)u e375 Ve (W EEZAVi(w)
7,00

V1,2(u): piecewise polynomial functions, that depends on gauge/matter rep.
In a suitable range of Re A,'s, V2 has a local minumum at u = 0.
[Di Pietro, Komargodski 14][Arabi Ardehali 15][Di Pietro, Honda 16]

* Next, take large N limit:
! Aq][As][A
logZ = —imN? 7[ 1[A2][As] +

(here [z] =z — [z]) TO
* (Constrained) Legendre transform reproduces Bekenstein-Hawking entropy:

Sew = log T — 2mi (Z X, B 27’J>

constrained
extremum

Cardy limit captures limit of: charges > central charge



Cardy limit of N' =1 theories can be studied at generic NV, and in greater detail.
* In 2d, Cardy limit follows from modular invariance

* In 4d no modular invariance, yet central charges control the Cardy limit

Obtained by reduction on S*, careful treatment of
3d EFT of massive and zero modes, involves SU(N)n



Cardy limit of N' =1 theories can be studied at generic NV, and in greater detail.
* In 2d, Cardy limit follows from modular invariance

* In 4d no modular invariance, yet central charges control the Cardy limit

Obtained by reduction on S*, careful treatment of
3d EFT of massive and zero modes, involves SU(N)n
e E.g., for the so-called “R-charge index”, or “index on 2nd sheet”:
T — Ty ¢~ imR o=B{Q.Q"} 2mir(1i+5R) 2mio(J2+5R)

where R is an R-symmetry (with mild constraints), [Cassani, Komargodski 21]

[see also: Kim, Kim, Song 19; Cabo-Bizet, Cassani, Martelli, Murthy 19; Lezcano, Hong, Liu, Pando Zayas 20]
mariti, Fazzi, Segati ; Jejjala, Lel, van Leuven, Li ; Cabo-Bizet rabi Ardehali, Murthy
A iti, Fazzi, S i 21; Jejjala, Lei L Li 21; Cabo-Bi 21][Arabi Ardehali, Murthy 21

(r+o+1)?

2 2 _
logZ = i TrR® — mi (rto+ Dl +o 1)

24710 2410
+ 10g|6:1-fo|'m ! + O(e_ﬁ)

Tr R

e N =4SYM: Asymptotic behaviour for 7,0 — Q [Arabi Ardehali, Murthy 21]



* Relax any limit on fugacities, only large N

This analysis reveals interesting non-perturbative corrections

Various tools:

@ Bethe Ansatz formula [Closset, Kim, Willet 17; FB, Milan 18]
[Lanir, Nedelin, Sela 19; Lezcano, Pando Zayas 19]
[Arabi Ardehali, Hong, Liu 19; FB, Colombo, Soltani, Zaffaroni, Zhang 20]

@ Non-analytic extension [Cabo-Bizet, Murthy 19]
[Cabi-Bizet, Cassani, Martelli, Murthy 20; Cabo-Bizet 20]

@ Direct saddle-point approximation [Choi, Jeong, Kim, Lee 21]

@ Truncation of plethystic expansion [Copetti, Grassi, Komargodski, Tizzano 20]
[Choi, Jeong, Kim 21]

@ Giant graviton expansion [Imamura 21/22; Gaiotto, Lee 21]
[Murthy 22; Lee 22]



Bethe Ansatz Formula for 4d Superconformal Index

Alternative formula: (set T =0) [Closset, Kim, Willett 17]
[FB, Milan 18]
[FB, Rizi 21]

7= Z Z(u; A7, 7) H(u; A, 7)1

u € Mpae

Q Migag are solutions to “Bethe Ansatz Equations” for rk(G) complexified
holonomies [u;] living on a complex torus T2 of modular parameter 7:

MBAE : L O(Ag — uij;7) o —
Z' = 7’ = 1 ZJ
SU(N) N = 4 SYM @) (11;[1]1;[1 O0(Ag + uij;7) u—uj #0

Equations are defined on T2 and are invariant under SL(2,7Z)

0Qi

Ouj

@ Z: same integrand as in integral formula ~ H: Jacobian H = det
i



[Hosseini, Nedelin, Zaffaroni 16][Hong, Liu 18]

* 3 Discrete family of exact solutions
with m-n=N and reZ,

e Basic soLuTioN  {1,0}: uj ~ % J Q
@ Other solutions — forming SL(2,Z) orbits: e.g.

labelled by {m,r}



[Hosseini, Nedelin, Zaffaroni 16][Hong, Liu 18]

* 3 Discrete family of exact solutions
with m-n=N and reZ,

e Basic soLuTioN  {1,0}: uj ~ % J Q
@ Other solutions — forming SL(2,Z) orbits: e.g.

labelled by {m,r}

* Contrib. of BASIC SOLUTION reproduces Bekenstein-Hawking entropy:
[FB, Milan 18]

~ exp (—z’er2 [A1]- [A7-22]T [AB]T)

lim I(’T, Al, AQ) BASIC

N—oo SOLUTION



Non-Perturbative Corrections from QFT

Expansion of the index at large N: T = Z O+

solutions € Mpae

It looks like a semiclassical expansion



Non-Perturbative Corrections from QFT

2
Expansion of the index at large N: T = Z PN+
solutions € Mpae

It looks like a semiclassical expansion

* Large N contribution of {m,r} solutions (with fixed m,r): (cfr. Cardy limit)
iﬂNQ [mAl];.[mAg];.[mAg];.
logZ =— logN + O(1
08 Lim.r} ” (mr + 12 + logN + O(1)
on-shell action 1-loop ?
+ 6% [mA‘?a]f‘ + ... +

Euclidean D3-branes

=<

where =mT+r [Lezcano, Hong, Liu, Pando Zayas 20][Aharony, FB, Mamroud, Milan 21]



“Classical” Non-Perturbative Corrections

Fill-in bulk geometry

Al ) st
for given boundary conditions 5 %
[Witten 98; Dijkgraaf, Maldacena, Moore, Verlinde 00] - 5’3

[Maloney, Witten 07]

e Jinfinite family of complex Euclidean solutions (including orbifolds)
of 10d type IIB supergravity

* SUSY, but not extremal,

with correct boundary conditions [Cabo-Bizet, Cassani, Martelli, Murthy 18]
[Aharony, FB, Mamroud, Milan 21]

e (Renormalized) on-shell action Fgay

Reproduces O(N?) contribution to log Ty ry



“Stringy” Non-Perturbative Corrections

* A class of non-perturbative corrections [Aharony, FB, Mamroud, Milan 21]

from Euclidean SUSY D3-branes C 1
S
Sl@ 6;3

\

wrapped on 10d geometry at the horizon
On-shell action:

A8 g N/
SD3:27TNJ or SD3:27TNA7? Ss@ @SB
T8 o8

« Effect of D3-brane corrections:

T = ZSSX,Sl ~ S*Fgrav + E e*Fgrav eiksm ~ exp{ — Fgrav 4 E eikSD3



“Stringy” Non-Perturbative Corrections

* A class of non-perturbative corrections [Aharony, FB, Mamroud, Milan 21]
from Euclidean SUSY D3-branes C gt
wrapped on 10d geometry at the horizon sl@ 6 x

53
\

On-shell action:

Ag AE N/
Spz = 27N ?ga or Spz = 27N 7; Ss@ S°

« Effect of D3-brane corrections:

I: ZSSXSI ~ 6*Fgrav + E e*Fgrav eikSD3 ~ eXp _ Fgrav + E eikSD3
O(N?) O(e=M)

* Criterium to retain a complex saddle:
Im Spz > 0 for all (SUSY) D3-brane embeddings

Violation implies “D3-brane condensation” towards some other saddle point.
Expected to signal that complex saddle point does not contribute to the integral.

Matches with expansion of index.



Perturbative and Higher-Derivative Corrections

Perturbative and higher-derivative corrections poorly understood in this example

* IOgN term in BASIC SOLUTION [David, Lezcano, Nian, Pando Zayas 21]

Can be reproduced by Kerr/CFT applied to near-horizon

Computation in Lorentizian signature and microcanonical ensemble

Suggests no contribution from the bulk



Perturbative and Higher-Derivative Corrections
Perturbative and higher-derivative corrections poorly understood in this example

* IOgN term in BASIC SOLUTION [David, Lezcano, Nian, Pando Zayas 21]

Can be reproduced by Kerr/CFT applied to near-horizon

Computation in Lorentizian signature and microcanonical ensemble

Suggests no contribution from the bulk

* O(1) terms
Absence of O(N): first higher-derivative correction vanishes [Melo, Santos 20]

Expected 1-loop contribution from gas of gravitons in black hole background
[cfr. Kinney, Maldacena, Minwalla, Raju 05]

Perturbative series truncates (compatible with Cardy limit). Why?



An Interesting Class of Matrix Models

* The integral formula for the index can be recast in the form:

N'/d H 1,6 2riy ab> exp|: Z(Vg(uabwvf(uab))}

with Vs periodic in u — u+ o, V; periodicinu —> u+ 7
[Choi, Jeong, Kim, Lee 21]

At large N, family of saddle points with
uniform distribution of eigenvalues

on a parallelogram in the u-plane

* Saddle are labelled by r,s € Z ‘
Generalize the (m = 1,r) solutions to BAE's to 7 # o
J only in certain ranges of 7,0,A, — agreement with D3-brane stability
At leading order, contributions agree.



In all approaches, there seems to be other potential contributions:

@ BAEs: continuous branches of solutions [Arabi Ardehali, Hong, Liu 19]

@ Saddle point: multi-cut solutions with filling fractions

Poorly understood.

Hint of new BPS black hole solutions?



* Truncation of the Plethystic Expansion [Copetti, Grassi, Komargodski, Tizzano 20]

=1 _
r=[ vl es| Y0kt Ut T
UeSU(N) =k

Truncation to one or two terms:

at large N reproduces fairly well Hawking-Page transition between AdSs and black hole



* Truncation of the Plethystic Expansion [Copetti, Grassi, Komargodski, Tizzano 20]

=1 _
r=[ vl es| Y0kt Ut T
UeSU(N) =k

Truncation to one or two terms:

at large N reproduces fairly well Hawking-Page transition between AdSs and black hole

* Giant graviton expansion [Imamura 21/22; Gaiotto, Lee 21; Murthy 22; Lee 22]

I(Aa;Ti) :IKK(AaaTi) Z e_NZa Aana an,ng,ng(Aa;Ti>

ni,nz,n3=0

3 ng 3
where Zni,ma,mns :?{ H H duél) (H Z?d) (H Z%?J) [Ilmamura 21]
¢ I=1

I=1a=1 I£J
U(n1) x U(n2) x U(nz) gauge theory with bifundamentals
e Bulk: n1,n2,n3 D3-branes wrapping three intersecting S°'s in S°

e Indexx Z(y)=1+ #y +...+#yN +...

1 trace relations

At large N, reproduces black hole entropy [Choi, Kim, Lee, Lee 22]



Quantum mechanics of BPS and near-BPS black holes
can be studied in great detail using near-horizon AdS, region

and Schwarzian-like effective field theory [lliesiu, Turiaci 20]
[Heydeman, lliesiu, Turiaci, Zhao 20; Boruch, Heydaman, lliesiu, Turiaci 22]
[Lin, Maldacena, Rozenberg, Shan 22]

[See L. lliesiu and J. Maldacena'’s talks]

Can it be reproduced from the boundary QFT?



Some Open Questions

@ AdS Black hole entropy beyond SUSY [see Larsen, Nian, Zeng 19]
Near-horizon JT-like gravity from field theory?

o Classification of Euclidean/Lorentzian BPS gravitational saddles
Index: potential new contributions

Gravity: indications of hairy or multi-center BPS black holes

[Markeviciute, Santos 18]
[Monten, Toldo 21; Cai, Liu 22]

@ Resummation of contributions and phase transitions

[see Copetti, Grassi, Komargodski, Tizzano 20]



