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INTRODUCTION




What is Machine Learning?

The use of computer-based algorithms for constructing useful models of
data.

Machine learning algorithms fall into several broad categories including:
1. Supervised Learning

Semi-supervised Learning

Unsupervised Learning

Reinforcement Learning

Generative Learning
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Machine Learning

Method (
Choose f (X, from F by minimizing a

quantity called the average loss
(or empirical risk) F = Function class

RW) =~ 3N Ly f1) + Cw),

where
T={(y;, x)} are training data,
fi f(x,w) evaluated at x;, and
L(y;, fi), the loss function measures the

quality of the choice of function.
C(w) IS a constraint that guides the choice of f (X, w).




Minimizing the Average LosS

The average loss function defines a “landscape” in the space of functions,
or, equivalently, the space of parameters.

The goal is to find the lowest point in that landscape by moving in the
direction of the negative gradient:

OR(w)
aWi

Wi =Wy —p

Most minimization algorithms are variations on this theme.

Stochastic Gradient Descent (SGD) uses
random subsets (batches) of the training
data to provide noisy estimates of
the gradient.




Minimizing the Average LosS

In the limit N — oo, the average loss R(w) becomes

N
1
RW) =3 ) LI f) + Cw)
i=1

- [dx [dy L(y, f) p(y,x)
Since p(y|x) = p(y,x)/p(x) we can write

= [dxp() |[[dy L(y, f) p(y|x)]




Minimizing the Average LosS

Consider the quadratic loss L(y, f) = (y — f)?

R(w) = f dx p(x) f dy L(y, ) p(lx)

— jdxp(x) fdy y—1N*plx)

and its minimization with respect to the choice of function f.




Minimizing the Average LosS

If we change the function f by a small arbitrary function 6 f a small
change

SR =2 [ dx p()Sf[[ dy(y — fHp(|%)]
will be induced in R. In general, R # 0.

However, if the function f is flexible enough then we shall be able to reach
the minimum of R, where 6R = 0.

But, in order to guarantee that R = 0 for all 6 and for all x the quantity
In brackets must be zero. This implies:

flw*) = j yp(y | x) dy




Classification

According to Bayes’ theorem

Let’s assign the target value y = 1 to objects of class S and the target value

p(x|y) p(y)
JpCx ly) p()dy

p(ylx) =

y = 0 to objects of class B.

Then

That is, the fu

o w*) = f yp( | %) dx = p(1]x)

= p(S]x)
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Classification

1. Insummary, the result
p(x|S)p(S)

f(x,w*) — p(5|x) = p(X|S)p(S) + p(xlB)p(B)

depends only on the form of the loss function provided that:
1. the training data are sufficiently numerous,
2. the function f (x, w) is sufficiently flexible, and
3. the minimum of the average loss, R, can be found.

2. Note, if p(S) = p(B), we arrive at the discriminant
p(x]S) _ skx)
D(.X) — =
p(x|S) +p(x|B)  s(x) + b(x)
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DECISION TREES
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Higgs Boson Production

(a) (b) c (d)
(a) Gluon gluon tusion  (ggF) 12.18
(b) Vector boson fusion (VBF) 1.044
(c) Associated production(\VH) 1.047
(d) Top anti-top fusion  (ttH) 0.393

Before event selection, background ~ 1700 times larger!

http://www.scholarpedia.org/article/The_Higgs Boson_discovery 14



VBF vs. ggF Higgs Boson Production

The Higgs boson mass is an excellent discriminant between Higgs boson
events and

many other classes 25 —

of events. i
) Ver

But clearly it is not +

good for separating § 15]

VBF events from =

ggF events. For that 0 10}

we need other v

observables.

P00 110 120 130 140 150
mye (GeV)
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We shall use decision

trees with the
variables

AN my;

to try to
separate

VV - H (VBF)
from

gg — H (9gF).

2000

1500+

m; (GeV)

500+

eeo VBF

1000+




Decision Trees

A decision tree (DT) is a set of if then else statements that form a tree-like
structure.

Algorithm: recursively partition the space into regions of diminishing
Impurity.

A common impurity measure is the Gini Index:
p (1 —p), where p is the purity
p=S/(S+B)

p =0 or 1: maximum purity
p=0.5: maximum impurity

(Corrado Gini, 1884-1965)
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Decision Trees

1. Eor each valtlgble, g0F ggF VBE
find the partition 0.42 0.35 0.81

(“cut”) that gives 1A ;; |An] ;;
the greatest decrease iIn 2 55
Impurity.
. Choose the best partition " %
among all partitions

and split the data
along that goF
partition into two 0.34

subsets.

Repeat 1. and 2. for each
subset of data.

m;;
300

<
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m; (GeV)

Decision Trees

Geometrically, a
decision tree is justa [Nfels ggF VBF
d-dimensional 0.42 0.35 0.81
histogram in which the |Anlj; |An];;

bins are created 2.95
recursively.

800

600

400

200
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Decision Trees

Unfortunately, decision trees are unstable!

20



BOOSTED DECISION TREES




Boosted Decision Trees: AdaBoost

In 1997, AT&T researchers Freund and Schapire [Journal of Computer
and Sys. Sci. 55 (1), 119 (1997)] published an algorithm that produced
highly effective classifiers by combining many mediocre ones!

Their algorithm, called AdaBoost, was the first successful method to boost
(i.e., enhance) the performance of poorly performing classifiers by

averaging their outputs:
N

FOow) =) an T(r,wy)

n=1
ND SYSTEM SCIENCES 55, [19-139 (1997)

JOURNAL OF COMPUTER AND §
T —_ tree ARTICLE NoO. 85971504

A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting*

Yoav Freund and Robert E. Schapire’

AT&T Labs, 180 Park Avenue, Florham Park, New Jersey (17932

Received December 19, 1996
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Averaging Methods

The most popular methods (used mostly with decision trees) are:

° Bagging: each tree is trained on a bootstrap*
sample drawn from the training set

° Random Forest:  bagging with randomized trees

° Boosting: each tree trained on a different
reweighting of the training set

*A bootstrap sample is a sample of size N drawn, with replacement, from
another of the same size. Duplicates can occur and are allowed.
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Ision Trees
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VBF vs. ggF
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400

VBF vs. ggF: <Decision Trees>

25 trees

00 100t
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NEURAL NETWORKS
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The NN Zoo

https://www.asimovinstitute.org/neural-network-zoo/
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Neural Networks

Input layer layer O layer 1 layer 2

A (3,5,4,2)-DNN
0 = g(by + wyh(by + wih(by + wgx)))

h(z) =ReLU(z)[=max(0,2z)], tanh(z)

g(z) = ldentity(z), logistic(z) = 1/[1 + exp(-2)]




Deep Neural Networks

® In 2006, Hinton, Osindero, and Teh'! (U. of Toronto ) succeeded in
training a deep neural network for the first time using a very clever
training algorithm.

® But, in 2010, Ciresan et al.? showed that extreme cleverness was not
needed! Just a lot of computing power!

® The authors succeeded in training a DNN with architecture (784, 2500,
2000, 1500, 1000, 500, 10) to classify the hand-written digits in the
MNIST database.

1 Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm
for deep belief nets, Neural Computation 18, 1527-1554.

2 Cirgsan DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big,
simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;
22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/
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Deep Neural Networks

® The database comprises 60,000 28 X 28 = 784-pixel images for training
and validation, and 10,000 for testing.

® The error rate of their (784, 2500, 2000, 1500, 1000, 500, 10) DNN was
35 images out of 10,000.

® The misclassified images are shown on the next slide.

2 Cirgsan DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big,
simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;
22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/
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(784, 2500, 2000, 1500, 1000, 500, 10)

?1 qE 5‘5‘ q'El Q:;E ‘.
71 95 59 ;9 35

T 2)4 18

9 4

488 )

9 4

TE‘ GD 55? ,I.}:'El Il

4 4 50 95 = 1?
?? 5,__,8 ” j’a JE f #D
27 5 8 1 & 6 5 94 6 [

Upper right: correct answer; lower left answer of highest DNN output;
lower right answer of next highest DNN output.
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“George rethinks his life after failing
the Turing Test”




Symbolic Mathematics

In December 2019, Guillaume Lample and Frangois Charton™ at
Facebook Al Research, Paris, made the startling claim: “We achieve
results that outperform commercial Computer Algebra Systems such as
Matlab or Mathematica.”

{ T ] 2 \ g 3 o
- \a k4 ~ L8
BV 'R Wt i i

Lampl
G. Lample and F. Chartorall,mlgeeép Learning for Symbolic Mgﬁ?erm&ics, arXiv:
1912.01412v1.




Symbolic Mathematics

The key idea is that mathematics as a language. Solving a mathematical
problem symbolically is analogous to translating from one language to
another or rephrasing a sentence in the same language.

Consider the expression 2 + 3 x (5 + 2). It is first written as a tree:
Next, the tree is converted to a sequence:

[+2 X 3+52].
+ Operators, functions, or variables are modeled with
/\ .
3 X specific tokens.
PN
3+
PN
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Symbolic Mathematics

The authors’ system simplifies, integrates functions, and solves 15t and 2nd
order differential equations.

The training data are pairs (x, t) of correctly formed, randomly
generated, expressions x with associated solutions t.

For example, for integration, at least two approaches are used:
1. Forward: (x,t) wheret = [x

2. Backward: (x,t) where x = Dt

The Facebook toolkit seq2seq is used to translate one mathematical
sequence into another. https://github.com/facebookresearch/fairseq
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Symbolic Mathematics

...and here 1s something truly wonderful...

The authors trained their model using the subset of randomly generated
functions that sympy can integrate, e.g.,

import sympy as sm

= sm.Symbol('z")

X = sm.exXxp(-z)*sm.cos(z)
= sm.integrate(x, z)

X, t

_, e *sin(z) e *cos(z)
.and four | € €08 (2), 5 - 5 1s that sympy
could not.




THE FUTURE OF MACHINE
LEARNING




The Future of Machine Learning

° |In Particle Physics

® The standard approach to classification and regression problems is
to use physical insight to arrive at suitable variables and functions.

° However, in recent work, machine learning has matched or
outperformed the work of expert physicists.

° In Society

® The most far-reaching application of machine learning is artificial
Intelligence (Al), a technological development that could transform
our societies more profoundly than did the Industrial Revolution.




AlphaGo 4, Homo sapiens 1

2016 — Google’s AlphaGo program beats Go champion Lee Sodol.
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Photograph: Yonhap/Reuters 41



ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without
human knowledge

David Silver'*, Julian Schrittwieser'*, Karen Simonyan'*, Ioannis Antonoglou!, Aja Huang', Arthur Guez',
Thomas Hubert!, Lucas Baker!, Matthew Lai', Adrian Bolton!, Yutian Chen!, Timothy Lillicrap', Fan Hui', Laurent Sifre!,
George van den Driessche!, Thore Graepel' & Demis Hassabis!

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

356 | NATURE | VOL 550 | 19 OCTOBER 2017
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AlphaZero

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

David Silver,* Thomas Hubert,'* Julian Schrittwieser,*
Toannis Antonoglou,’ Matthew Lai,! Arthur Guez,! Marc Lanctot,’
Laurent Sifre,! Dharshan Kumaran,! Thore Graepel,*
Timothy Lillicrap,’ Karen Simonyan,! Demis Hassabis’

1DeepMind, 6 Pancras Square, London N1C 4AG. .
“These authors contributed equally to this work. arXiv: 1712 01815V1

Al 5 Dec 2017

“Starting from random play, and given no domain knowledge
except the game rules, AlphaZero achieved within 24 hours a
supernuman level of play in the games of chess and shogi (Japanese
chess) as well as Go, and convincingly defeated a world-champion
program in each case.”
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McKinsey&Company

A FUTURE THAT WORKS:

JANUARY 2017

EXECUTIVE SUMMARY
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“Almost half the activities people are paid almost $16 trillion in wages to
do in the global economy have the potential to be automated by adapting
currently demonstrated technology, according to our analysis of more
than 2,000 work activities across 800 occupations.”

McKinsey & Company,
A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND
PRODUCTIVITY
Executive Summary January 2017
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The Future of Machine Learning

By 2050, the following Al systems might be in routine use:
1. personal predictive medical systems

2. personal tutors

3. autonomous house servants

4. autonomous vehicles that can drive safely in Delhi!

The potential of machine learning and Al is vast and exciting.

But some have argued (e.g, Henry Kissinger, Bill Gates, Elon Musk) that
the dangers are also vast: autonomous drone soldiers, Al-enhanced
computer viruses...

Your lives may well come to depend on Al systems...
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VBF vs. ggF: Results

:@ Background (test sample)

* Background (training sample)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

(1/N) dN/dx
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Ensemble Methods

Suppose you have an ensemble of classifiers f (x, w, ), which, individually,
perform only marginally better than random guessing. Such classifiers are
called weak learners.

It 1s possible to build highly effective classifiers by averaging their outputs:

N
FOO = ag+ ) an f (W)
n=1

Jerome Friedman & Bogdan Popescu (2008)
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Adaptive Boosting

The AdaBoost algorithm of Freund and Schapire uses decision trees f (X,
w) with weights w assigned to each object to be classified, and each
assigned a target value of either y = +1, or -1, e.g., +1 for signal, —1
for background.

The value assigned to each leaf of f (x, w) is also 1.

Consequently, for object n, associated with values (y,, X,,)

f(x,w)y,>0 for a correct classification f
(X, W)y, <0 for an incorrect classification

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)
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Adaptive Boosting

Initialize weights w in training set (e.g., setting each to 1/N)
for k=1 to K:

1. Create a decision tree f (x, w) using the current weights.
2.  Compute its error rate /7/on the weighted training set.

3. Compute [/=In (1-/,))/ [J and store as [/, =[]
4

Update each weight w, in the training set as follows:

w, =w,exp[-L/, f(x,w)y,]/A, where A is a normalization constant
such that Y w, = 1. Since

f(x,, w)y,<0 for an incorrect classification, the weight of
misclassified objects is increased.

At the end, compute the average ' (x) = /. f(x, w,)

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)
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Adaptive Boosting

AdaBoost is a highly non-intuitive algorithm. However, soon after its
Invention, Friedman, Hastie and Tibshirani showed that the algorithm
IS mathematically equivalent to minimizing the following average loss
function

R(F) = j exp(—y F(x)) p(x,y) dx dy

Minimizing e fesginctien ﬂ%ld:sl a, f(x,, wy),
D(x) = logistic(2F) = 1/(1 + exp(—2 F(x))

which can be interpreted as a probability, even though F cannot!

J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical
view of boosting,” The Annals of Statistics, 28(2), 377-386, (2000)
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Convolutional Neural Networks

Many of the remarkable breakthroughs in tasks such as face recognition
use a type of DNN called a convolutional neural network (CNN).

CNNs are functions that compress data and classify objects using their
compressed representations using a fully connected NN. The compression
dramatically reduces the dimensionality of the space to be searched.

Comnvolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

cmmempme . dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
O S T
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Convolutional Neural Networks

A CNN comprises three types of processing layers: 1. convolution, 2.
pooling, and 3. classification.

1.

Convolution layers
The input layer 1s “convolved” with one or more matrices using
element-wise products that

are then summed. In this example,

: . . 1/1/1/0]|0
since the sliding matrix fits 9 o/1/1/1]0| [a
times, we compress the input from 0/0/1)1]1
a5x5toatoa3x 3 matrix. 010111110
0({1(1(0]|0
| Convolved
mage Feature

Comnvolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

cmmempme . dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
O S T

-|
1
-}

i:_
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Convolutional Neural Networks

Pooling Layers
After convolution, and a pixel by pixel non-linear map (using, e.g.,
the function y = max(0, x) = ReLU(x)), a coarse-graining of the layer
1s performed

called max pooling in which the maximum
values within a series of small windows
are selected and become the output of

a pooling layer.

Max(1,1,5,6)=6

max pool with 2x2 filters
and stride 2 6 8

~ |~
W= NN

Sl Ol O H

Convolution Poaling Convolution Pooling Fully
Connect:

Y

Rectified Feature Map

cat (0.04)
boat (0.94)
1 bird (0.02)
i - ! I | o
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Convolutional Neural Networks

Classification Layers

After an alternating sequence of convolution and pooling layers, the
outputs go to a standard neural network, either shallow or deep. The
final outputs correspond to the different classes and like all flexible
classifiers, a CNN approximates,

M
p(Clx) = P(HICIP(C)/ ) PGxICnIP(Crn)
m=1

Comnvolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

cmmempme . dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
-~

[—1

||
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Pileup Mitigation Example: PUMM L

Basic idea*

Treat a jet as a 3-color image in the (n, @)-plane, where each color
corresponds to be different category of particle.

1. Red p of all neutral particles
2. Green pr of charged particles from pileup (PU)

3. Blue pr of charged particles from the primary
Interaction, i.e., leading vertex (LV)

Use machine learning to map the 3-color image to an image of the p of
neutral particles from the leading vertex. The jet is then formed from the
charged and neutral particles from the leading vertex.

* Pileup Mitigation with Machine Learning (PUMML)
Metodiev, Komiske, Nachman, Schwarz, JHEP 12 (2017) 051, arXiv:1707.08600




Classification

The result
p(x|S)p(S)
x) =p(S|x) =
) =P = 25199 + pGIBIPB)
was derived in 1990* in the context of neural networks.

But notice, our discussion so far made no mention of neural networks!

* Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990); Wan, IEEE Trans.
Neural Networks 4, 303-305 (1990);

Richard and Lippmann, Neural Computation. 3, 461-483 (1991)
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