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Why s-tagging?
● Separating s- and u/d-jets is one of hardest problems in jet flavour tagging

● Z→ss decay width measurement, potential Higgs→strange studies, tool for 

various BSM studies (FCNC top, etc) 

● Improvement in s-tagging with the use of ML

● Good detector performance test
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Related Work
● There have been similar studies for hadron colliders, and ongoing studies for e+e- 

colliders.

○ 2003.09517 (Nakai et. al.)

○ 1811.09636 (Duarte-Campderros et. al.)

○ 2011.10736 (Erdmann et. al.)

○ And others



Developing on the work by Lode Vanhecke 
and AR Sahasransu:

● Event generation using 
MadGraph(v2.6.6) and Pythia(v8.243)

○ Now using FCCee samples
● Using gen level information only
● Here jet clustering was done using 

anti-kt algorithm with a radius of 0.4
○ Upgraded in the study presented 

today to eekt (Durham) algorithm 
● 2D Angular distribution of jet 

constituents around the jet axis as the 
distinguishing variable

○ Particle ID assumptions 
● No decay lengths/lifetime info used
● Strange jet tagging using a CNN

*Lode Vanhecke’s Bachelor Thesis at VUB

Strategy/This talk: To confirm/reproduce the results in that thesis using Spring2021 FCCee IDEA samples



Spring2021 IDEA Samples

● Preselection in FCCAnalyses to make 

ntuples with 600,000 Zuds events (only 

Gen-level information):

○ Analysed 100,000 events out of these to 

study jet behaviour

○ Trained the CNN model with these 100,000 

events

○ Tested the model on the next 200,000 

events
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Analysis Frameworks
coffea makes use of uproot and awkward-array to 
provide an array-based syntax for manipulating HEP 
event data in an efficient and numpythonic way.

A parallel analysis on ROOT 6.24/04
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Jet Clustering
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Jet Clustering: Choice of Algorithm Exclusive clustering into exactly 2 jets using 
E-scheme for 100,000 Z       uds events

Due to absence of a distance parameter with respect to the beam in the eekt-algorithm, particles close to 
the beam are not thrown away but clustered into jets, unlike the kt-algorithm; therefore jet axis and jet 
cone spread depend on the choice of clustering algorithm.
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Jet Clustering: Constituent Distribution

Distribution of jet constituents in jets from 100,000 Z     uds events, i.e. 200,000 jets

● Jet constituents have following basic cuts applied: pT> 500 MeV and |cos(θ)| < 0.97 (~=14°)
● s-jets tend to have more kaons, while the d-jets tend to have more pions. 
● The most simple s-tagger would exploit the differences in multiplicity of jet constituents to distinguish 

these jets.
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Jet Clustering: Angular Distribution of Constituents

● Another potential distinguishing feature can be the angular distribution of these jet constituents 

around the jet axis.

● Kaons in the s-jets tend to be closer to the jet axis compared to those in d-jets.
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FCCAnalyses: JetTaggingUtils.cc:get_flavour()

Jet Clustering: MC truth Jet Flavour Assignment

These uds jets will either be inaccurately tagged or 
stay untagged with the current definition of flavour 
assignment.
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Flavour assignment seems derived for cone(-style) 
algorithms, not clear how appropriate for the kT jets 
used here



Jet Clustering: MC truth Jet Flavour Assignment

FCCAnalyses MC Truth

s 61,732 72,044

d 56,872 72,016 

u 46,840 55,940

c 1,006 -

b 94 -

untagged 33,456 -

In a sample of 100,000 Z       uds events, i.e. 200,000 uds jets

This is a potential area for 
improvement in FCCAnalyses, since 
with the present definition of flavour 
assignment, a significant number of 
jets are not assigned a flavour and 
there are others which are 
mistagged.

Clustering the jets inclusively may 
reduce this effect. Though it hasn’t 
been checked yet.
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Jet Tagging with a CNN
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Convolutional Layer
● Slide the filter across the image, 

one column at a time; when at the 

end of the row, move down a row

Max Pooling Layer
● Reduce sub-matrices to a single 

value - the highest value within 

the sub-matrix

*https://anhreynolds.com/blogs/cnn.html

*https://anhreynolds.com/blogs/cnn.html

Convolutional Neural Networks: Basics behind Image Recognition



*Lode Vanhecke’s Bachelor Thesis at VUB

Strategy:

● 2D histograms of uds jet 
constituents in the 𝜃-𝜙 space 
centered around the jet-axis

● Pass through a CNN 
classifier

● Choose working points with 
required fake rates

Network Structure:
● Similar structure as above, except the image resolution changed from 50x50 pixels to 29x29 pixels 

and one fewer module
○ 10 inputs
○ 4 modules with a convolutional layer (16 filters), a maxpool layer, and a 50% dropout layer
○ Flattened to a dense layer
○ Fully connected to the output layer (3 nodes) with softmax activation function
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Jet Images 

● Images are made for different constituent types (next slide)

● θ-ϕ distribution is weighted by a normalisation factor = |p| (constituent)/ |p| (jet)

○ To make the tagger less dependent on momentum (we still need to check if this is true)
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CNN Input
Jet Images from 10 Categories (inspired by assumptions 

of particle ID, no fake rate etc included):

1. K+-

2. pi+-

3. Kl

4. e+-

5. μ+- 

6. photons

7. p + n

8. Ks->pi+pi-

9. pi0->gmgm
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Each image is 29x29 pixels, encompassing the range (-0.5, 0.5) 
radians in the θ-ϕ space centered around the jet axis.



CNN Training
● Trained the CNN with 100,000 di-jet    

Z    uds events, i.e. 200,000 jets.

● Implemented in Tensorflow

● ~14k trainable parameters (lightweight)

-> No obvious overfitting/overtraining

● Categorical cross entropy as loss 

function 
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(y is true class label vector, and p is 
network prediction vector)



Performance
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Classifier score distribution that leads to these 
ROC curves

*compare to Michele Selvaggi (TOP2021)

Performance at 10% fake rate is ~50%

While testing the 

model on 200,000 

events



Working points

● Three working points defined at fake rates 

of 10%, 5%, and 1%, respectively
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10% fake rate 5% fake rate 1% fake rate

Classifier Score 
(strange node)

0.5955 0.6320 0.6480

Signal Efficiency 47.2% 27.7% 7.5%



Signal Efficiency vs |p|

Increase in signal efficiency wrt |p| 

in 10% and 5% working points

Little improvement in 1% working 

point 
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1%



Signal Efficiency vs pT

Increase in signal efficiency up to a 

threshold visible at all working 

points 
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10%

5%

1%

Tagging below 10 GeV jet pT might challenging



Signal Efficiency vs θ

No signal efficiency dependence 

on the polar angle, up to 

forward/backward jets
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10%

5%

1%

Drop in efficiency consistent with IDEA 

acceptance as cuts were introduced on 

particles before making the jet images



Z Peak Reconstruction
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● Z peak before tagging vs 

after tagging both jets

● Ignored background and b/c 

quark decays (for now)

10%

5% 1%



Summary
● First look at a CNN based s-tagger on Spring2021 IDEA event samples

○ Studied jet constituent multiplicity and angular distribution around the jet axis as potential 

distinguishing variables

○ Implemented a CNN model in Tensorflow and trained with jet images from 100,000 events

○ Evaluated this trained network on the jets from 200,000 events to review its performance

○ 3 working points at fake rates of 10%, 5%, and 1%, with signal efficiencies of 47%, 28%, and 8% 

respectively

● Performed in FCCAnalyses, in parallel with stand-alone ROOT and coffea

● Study performed to familiarise ourselves with FCC software and samples
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Potential Improvements
● Study the contribution of each category in the classifier

● Background samples not included

● Retrain with reconstructed particles

● Introduce Kinematic Cuts on input information
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Outlook
● K. Gautam and E. Plörer are full-time on FCC-ee

● Looking forward to contributing to FCC-ee centrally coordinated tagging effort

● Looking for input on potential to include CNNs in flavour tagging if complementary. 

○ Suggestions?


