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Wall clock consumption per workflow

Motivation ATLAS

e Successful physics programs
depend on the availability of Monte
Carlo simulated events;

e Simulations, and shower simulation
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in the calorimeter in particular, are a $ lcorusion @ Momoorsucion @ M et grrion
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e An alternative: fast simulation E | eMS
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e Challenge: How to optimize the
hyperparameters of these models -
automatically. | o,
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Context - Shower Simulations

PBWO4 Geometry with 24x24x24
cell segmentation

e The calorimeter is segmented into layers (z),
and in radial (r) and azimuthal angle (phi);

e Incoming particle hits the calorimeter and
generates secondary particles;

e Showering process: Cascade of energy
deposition along the calorimeter layers;

e For the simulation, one shower in a layer
can be seen as an image;

e Currently, the main method used is the
Geant4 Monte Carlo simulation.




Context - Machine Learning Techniques

: . Reinforcement
e Machine Learning: Learns

to improve performance by /‘\
experience; Supervised Unsupervised

e (Generative Models /

distribution of the training set \ Generative models
to reproduce it;

o Learn the true data
Generator

o From noise, generate new
data;
. . ENCODER |

DECODER ol 5
e Variational Autoencoder " g > {
(VAE ) Input-Image Latent-Vector Predicted-lImage from Z
Z\ X) Generated from X p ( Xi Z)
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Implementing VAE for shower simulation

e Training data (Geant4):

o 10k events; Keras
o Incident particles

m Energy: 60 GeV ¥ )

m Direction: perpendicular to the surface of the calorimeter fensor

e Model: learns to simulate the energy deposited in the (24, 24, 24) calorimeter.
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Tuning the hyperparameters

e Hyperparameters: parameters of the model that are used to control the
learning process;

e \We can try to tune it by changing one value at a time and seeing the impact in
the model by hand;

e Metric: SSIM
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AutoML

e Automatically search the best
hyperparameters according to a certain
metric;

e Has the advantage of changing more than
one at the same time;

e Multiple ways of tuning: Random Search,
Bayesian Optimization, Hyperband Algorithm;

e AutoKeras and Keras Tuner;

WK AutoKeras
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AutoML - RandomSearch

e Input
o  Model Score of Trials - Visualization
o Number of trials; -
o Range of each hyperparameter; 8 -
o  Metric (for scoring the trials);
e Randomly pick a new set of v O
hyperparameters (hp) at each trial; a
e Train the model using these hp;
e Calculate a score using the input metric;
e Compare the score to previous trials; 0]
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AutoML - Bayesian Optimization

It optimizes the tuning process by trying to calculate . M
an approximation of the objective function for the # O'O_
tuning (score as a function of the hyperparameters):
Pick a random set of hp, calculate the score;
Estimate the objective function with a Gaussian
process from the values of previous trials; y

e Predict the score of N random sets of hp with this 0]

approximated objective function; 061
e Get the best set and train the model with it; § 0
Use this trained trial to better estimate the
objective function. :2

Early approximation function
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AutoML - Hyperband

Improves the Random Search by exploring a
bigger space in less time (running on fewer
epochs) and keeping the best trials to develop
further:
e Input
o Maximum number of epochs to train (m)

o Factor (n) for which to increase the number of
epochs;

e For each round i, train the m/n' of sets on
n' epoch.
o Choose the best trials to run for more epochs.
e To explore more of the space, we have

brackets (black lines).

Score
o - ~N w s v o ~ [=-}

Hyperband Scheme

//

Trials
Set of hp

\\

\_

Rounds

Number of epochs

)

&

Brackets

)

Score of Trials - Visualization

= HyperBand

0 100

200 300
Tial Number

400

500

600

10



AutoML - Code Details

e Implementation of the VAE for each method using Keras Tuner.
e Jupyter Notebook - Link

def build model(hp):

Vae = VAE B 10 C k ( h p ) 7 Jupyter AutoML-Presentation Last Gheckpont 3 minutos atés (auiosaved) A | g
vae.compile(optimizer=vae.optimizer, loss=[vae.my_loss()]) R e e =1 °

return vae

tuner_rs = MyTuner( he
bU ild_mOdel ) Import libraries used
objective= keras_tuner.Objective('val_all’, direction='min'), e e o S

max_trials=250,
#overwrite=True,
directory="automl’,
project_name='metrica bonita')
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# Events

AutoML - What we want the model to be good a
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AutoML - Metrics to choose the best model

e Loss?
o Problem - different weights for the reconstruction part and the gaussianity of the latent space;
e Loss, but with same weight and order of magnitude for both parts?
o Problem - the value for the cross entropy wasn’t a good measure to look at similarities
capturing the high and low energetic parts in the reconstruction;
e SSIM for the reconstruction?
o Problem - Didn’t take into account the gaussianity of the latent space;
e MSE as a metric to compute the distance between the gaussian distribution
and the learned latent space distribution?
o Problem - Didn’t take into account the reconstruction part;
e Combine MSE and SSIM?

o  Worked well for the results on the evaluations!!
o But....
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AutoML - Metrics to choose the best model

e \What about the generation, that takes into account the physics properties of

the simulation?
o Problem: The best models scored from those metrics didn’t do well with the generation

e Solution: Combined metric - the Machine Learning part and the Physics part.
o The SSIM for the reconstruction;
o MSE as a metric to compute the distance between:
m gaussian distribution and the learned latent space distribution
m total energy deposited in the calorimeter, comparing the Geant4 and the generation with
VAE from random values;
o Mean of the MSE of the energy deposited in each layer, comparing the Geant4 and the
generation with VAE;
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AutoML - Comparison

e Random - Best model using the Random Search.
o 250 trials - 10h50min
o The best model took 13 minutes to train (150 epochs);
e [Bayesian - Best model using the Bayesian Optimization.
o 250 trials - 13h14min
o The best model took 9 minutes to train (90 epochs);
e Hyperband - Best model using the Hyperband.
o 610 trials - 7h34min
o The best model took 6 minutes to train (64 epochs);
e Hand - Best model considering the 4 metrics when using the hand tuning.

o The whole hand tuning process took 3-4 days - 130 models evaluated;
o The best model took 34 minutes to train (1000 epochs);
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AutoML - Results - Reconstruction SSIM
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AutoML - Results - Gaussianity of the Latent Space
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AutoML - Results - Energy per Layer
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AutoML - Results - Total Energy
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AutoML - Comparison

Random Search

+ Simple

- No control of the
tuning process

Tracking of the tuning
process

Approximate objective
function for fast scoring

Too long to approximate a
good enough function

Hyperband

Fast

Explore larger space
Tracking of the tuning
process

Discard some trials too
fast
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Summary and Conclusion

Monte Carlo simulated events are a large part of CPU consumption;

An alternative is to use fast simulation with Machine Learning;

To improve the model, we have to hand tune the hyperparameters;
AutoML can help to optimize those parameters automatically.

To select the best model with the AutoML, it is important to have the right

metric;
o Combined metric (ML and physics) allow the tuner to choose the best considering all
aspects of the problem
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Summary and Conclusion

Future

e Possibility to expand this algorithm to more complex problems!
e Never tried before in shower simulation context, and can help in different
areas, besides using VAEs.
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