

Hyperparameter tuning for FastCaloGan

Alkaid Cheng, Michele Faucci Giannelli, Matthew Barber, Mikel Zemborain, <u>Rui Zhang</u> (With support from the PanDA/iDDS team & FCG team) University of Wisconsin-Madison, Wisconsin Machine Learning for Simulation meeting Oct 28, 2021

Introduction to FastCaloGan

- GAN A ML solution for showering simulation in calorimeter
 - Previous presentation @ ML4Sim by Michele
 - 100 η slices × 3 particles 300 GANs to train
 - Each GAN train ~1M iterations and select the best iteration
 - Challenging hyperparameter optimisation due to large search space and long training time
- Now used in AF3 for pion simulation in mid energy range [16–256] GeV
 - <u>Pub note</u>, <u>AltFast3 paper</u>
 - No HPO was done for v1 (what is in AF3)
 - Time allowed for fine tuning the model before commissioning
- Today:
 - Hyperparameter optimisation (HPO) + improvements on ML side

New training strategy

- The total training time of GANs is significant
 - ×N for HPO
- It is possible to exploit transfer learning
 - A "seed" GAN is trained for long time in each region, then other GANs in the same region start from the best iteration of the seed GAN and hopefully need less iterations.
 - The strategy worked
- It is possible to speed up training
 - In a photon GAN, the GPU utilisation was ~30% \rightarrow not fully using the GPU power
 - Code was rewrote in native TF2 syntax, using TF data loader
 - Try to prepare all data at once on CPU, to prevent CPU-GPU communication during training
 - New code speed up the photon GAN by 2×, pion GAN by 5× (pion GAN is larger therefore the delay from earlier was larger)

HPO service at ATLAS

HPO with a large space

- Given the long training time, random search is used
 - More time efficient than other sequential search such as Bayesian
 - More coverage than Grid search

- Search space definition
 - Five HPs are considered: two Ir's for G and D, two β 's in both Adam, batch size

HP	Method	Range		
G_lr, D_lr	loguniform	(10-5, 10-3)		
G_β, D_β	loguniform	(0.55, 0.99)		
Batch size	categorical	[128, 256, 512, 1024, 2048]		

Photons: HPO

- G_Ir: 10⁻⁵ 10^{-4.5}
 - Then, not much constraints in G_{β}
- D_lr: 10⁻⁵ 10^{-4.5}
 - Then, not much constraints in D_β
- Momenta in Adam optimiser doesn't have big impacts
 - Probably because there is a pre-training step
- Batch size: 1000–1500 looks like a general good choice

Photons: Initialisation algorithm

- "glorot_normal" was used for neuron weights initialisation
- Expected because <u>He initialiser works better for layers with ReLu</u> activation. And we use ReLu.

Initialisation	0.00-0.05	0.20-0.25	0.60-0.65	0.80-0.85	Comments
He_normal (IM)	4—6	5—9			A few failure for 0–0.05
glorot_normal (IM)	2—4	5—10	χ^2		A few failure for 0.20–0.25
he_uniform (1M)	3—6	5—8			Good for both η
glorot_uniform (1M)	2—4	I I–20			Failed for all 20-25
he_uniform (2M)	2—3	4—5	6—10	4—5	2 runs only
Ť					
Iterations					

• he_uniform seems to work best

7

Pions: Optimisation of generator

* "Latent dimension"-"first layer size"-"second layer size"-"third layer size"

Pions: Optimisation of discriminator

* "Latent dimension"-"first layer size"-"second layer size"-"third layer size"

Pions: Others optimisation

Energy normalisation

$$\hat{E} = \frac{E}{E_{\max}} \qquad \hat{E} = \frac{\log\left(\frac{E}{E_{\min}}\right)}{\log\left(\frac{E_{\max}}{E_{\min}}\right)}$$

- Changed latent space from Uniform to Normal
- Increase batch size from 128 to 512
 - χ^2 : 4.2 to **2.7** (Further increasing BS doesn't gain much)
- Discriminator/Generator Training Ratio
 - $5 \rightarrow 3$: no performance gain/loss but reduce training time
- Further details about pion optimisation can be found in this <u>report</u>.

Pions: Summary

 χ^2 improved from 12.7 to 2.6, similar training time, double voxels

Conclusions

- FastCaloGAN is improved significantly from the AF3 paper results
 - Since then a lot of improvements, eg HPO, Voxelisation binning doubled (536 to 1086)
 - Large speed up \rightarrow can train with larger iterations \rightarrow better performance
 - π χ²: 12.7 to 2.6; γ χ²: 13.5 to 3.8
 - Lower χ^2 indicates better performance as shown in the plots, more validations performed but not included today.
- Various places to improve for the future
 - Low energy pions
 - Large eta photons
- It is promising and very possible to see more and more GANs reach <10 χ^2 in the near future