

FCC physics zoom meeting


Flavour at FCC-ee

Jernej F. Kamenik

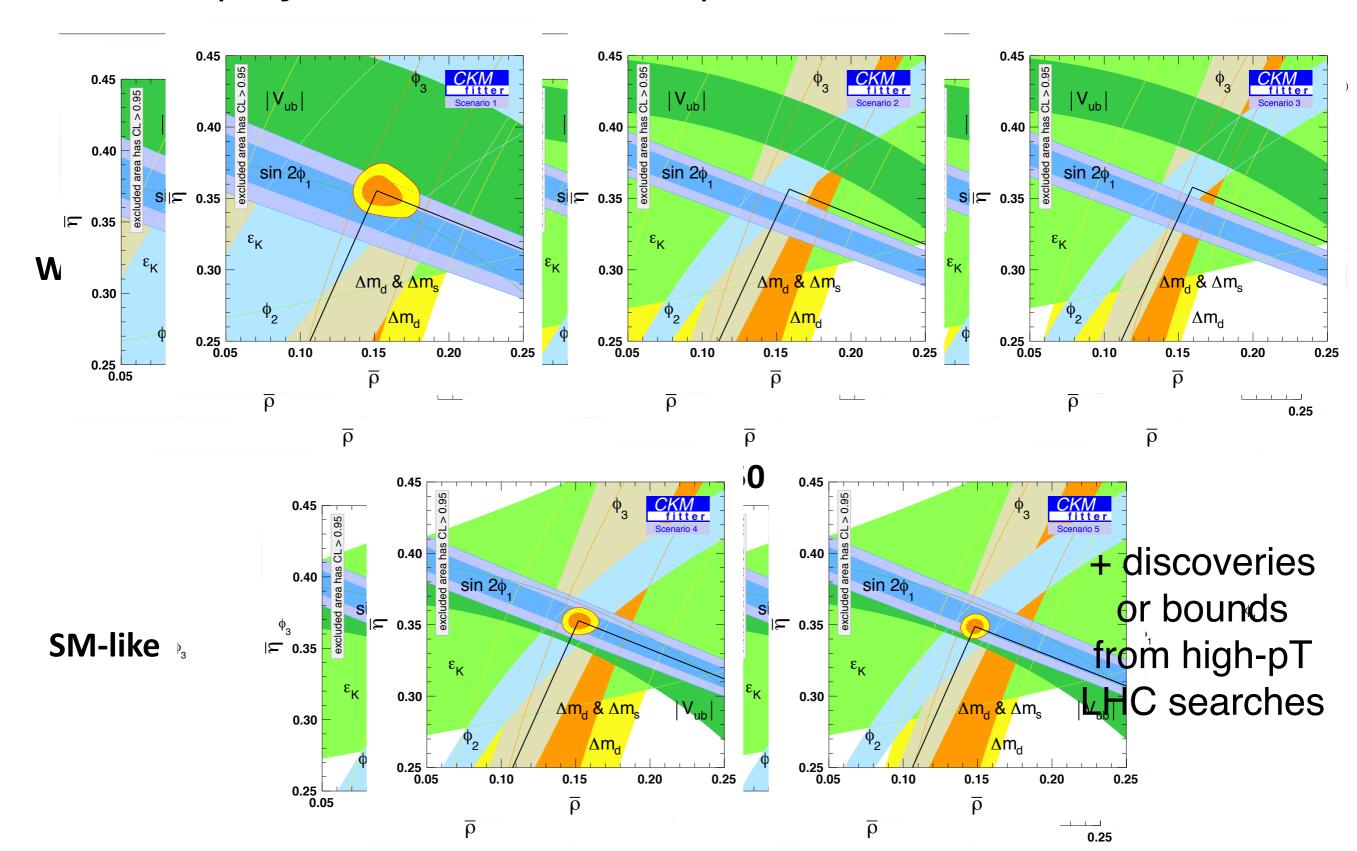
Main reference: FCC CDR Vol 1. Eur. Phys. J.C 79 (2019) 6, 474

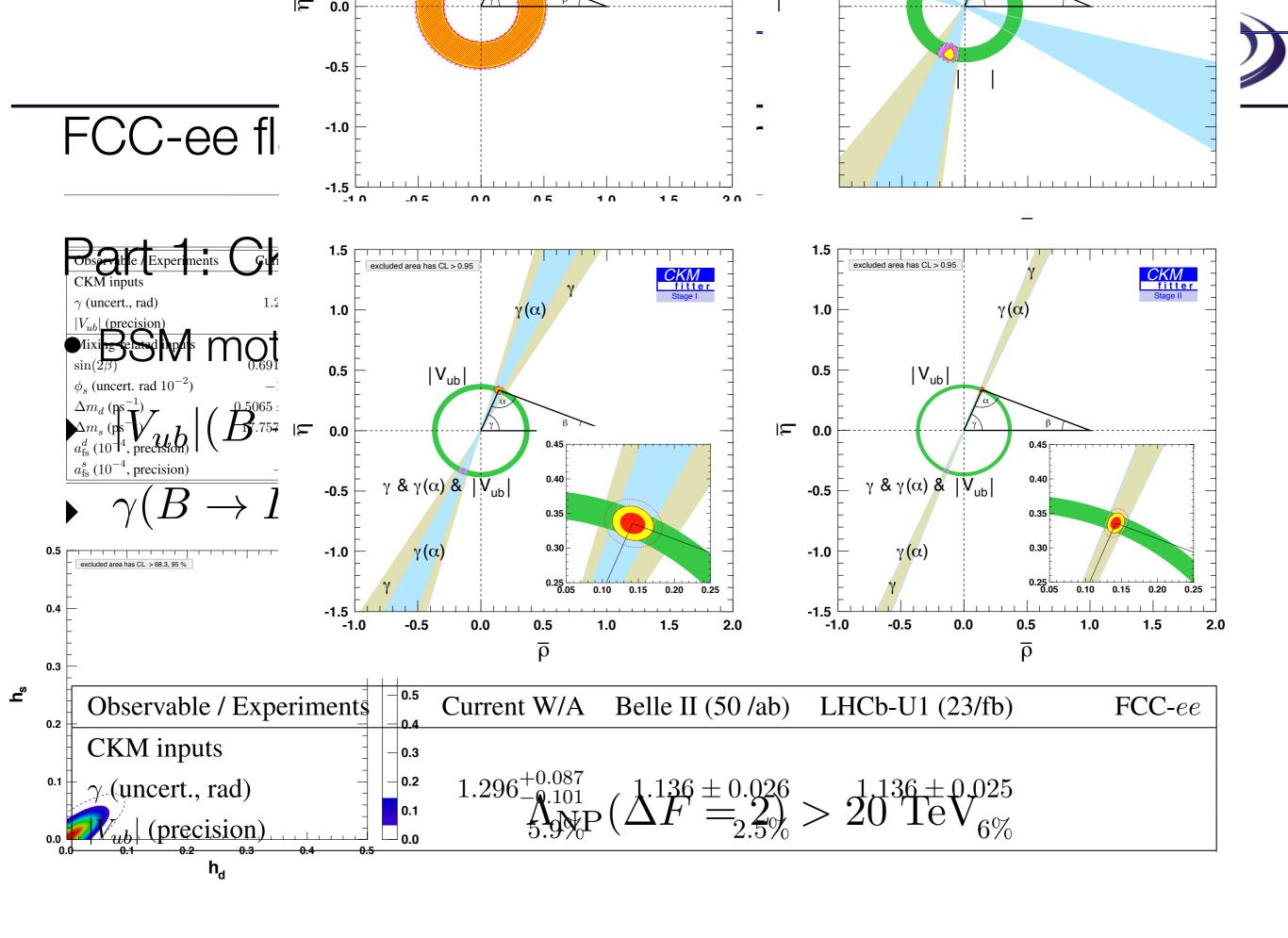
Univerza v Ljubljani

Institut "Jožef Stefan"

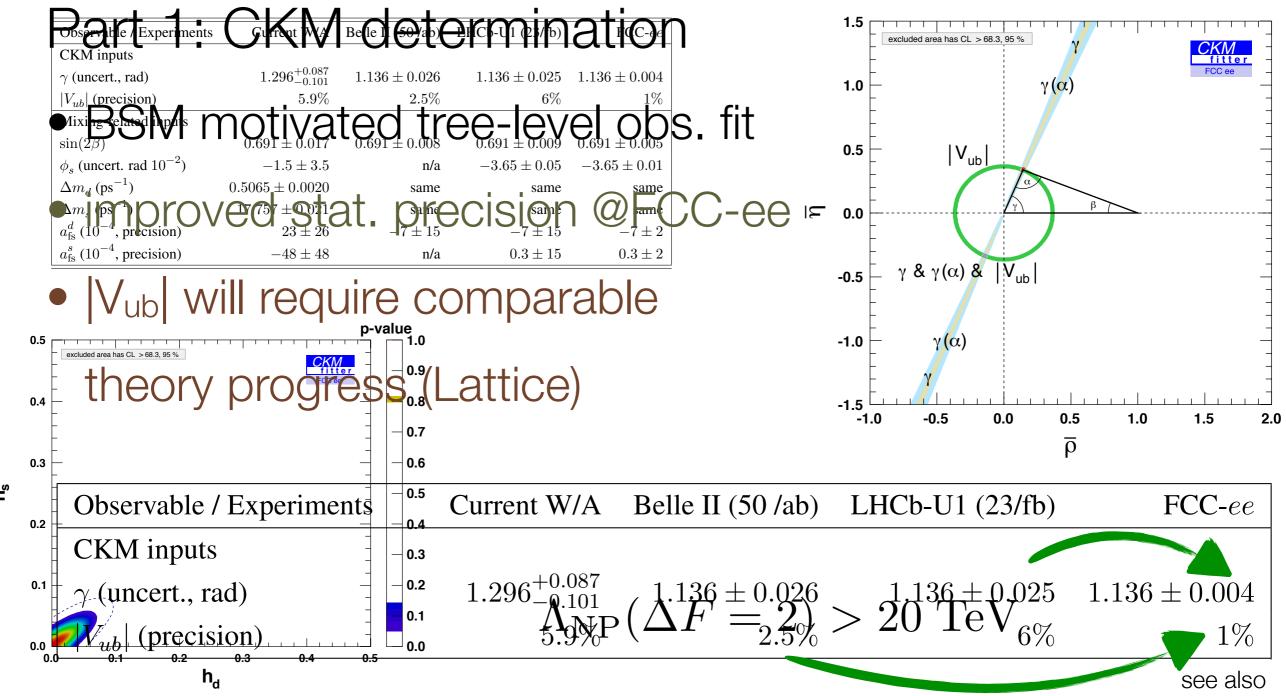
Scope of Flavour Physics @ FCC-ee

- Flavour physics reach with O(10¹³) Z decays (10⁸ W, 10⁶ Higgs, top)
 - rare decays of c- and b-hadrons and CP violation in the heavyquark sector
 - rare lepton decays
 - rare Z, (W, h, t?) decays

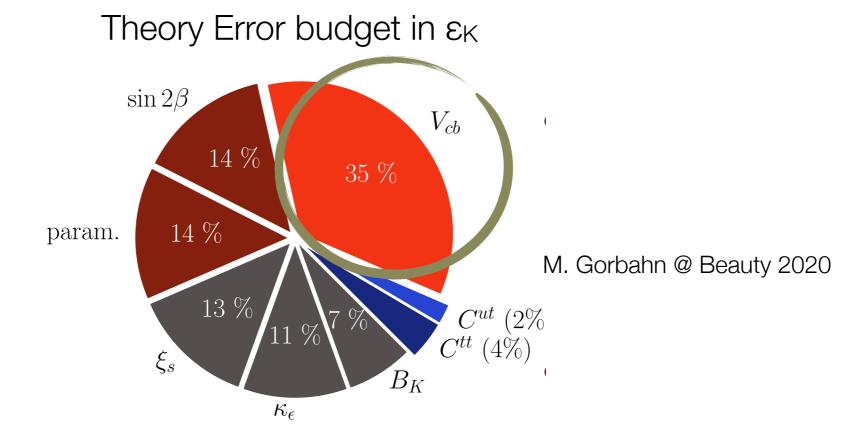



 In the context of ultimate potential of the LHCb upgrade and Belle II experiments.

Working point	Lumi. / IP $[10^{34} \text{ cm}^{-2}.\text{s}^{-1}]$	Total lumi. (2 IPs)	Run time	Physics goal
Z first phase	100	$26 \text{ ab}^{-1} / \text{year}$	2	
Z second phase	200	$52 \text{ ab}^{-1} / \text{year}$	2	150 ab^{-1}


Particle production (10^9)	B^0	B^-	B_s^0	Λ_b	$c\overline{c}$	$ au^- au^+$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	400	400	100	100	800	220

Flavor physics circa 2030: possible scenarios

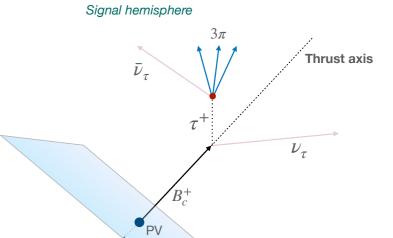


LHCb, 1808.08865 Zupan & Brod, 1308.5663

Part 1: CKM determination

- Complementary measurements of |V_{cb}| (and |V_{ub}|)
 - CKM fit requires knowledge of |Vub/Vcb|
 - Th. predictions of CPV in K decays rely on |V_{cb}|

Part 1: CKM determination

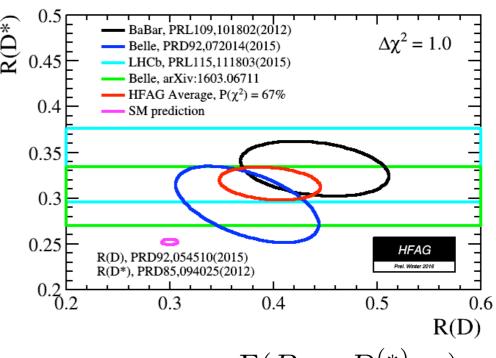

- Complementary measurements of |V_{cb}| (and |V_{ub}|)
 - ▶ using $B_{u,c}$ →µv, τ v $Br(B^- \to \tau^- \bar{\nu}(\gamma))_{\rm SM} = 1.13(1) \times 10^{-4} \left(\frac{f_B}{0.2 {\rm GeV}}\right)^2 \left(\frac{|V_{ub}|}{4 \times 10^{-3}}\right)^2$ $\left[\frac{\Gamma(B^+ \to \tau^+ \nu)}{\Gamma(B_c^+ \to \tau^+ \nu)}\right]_{SM^*} = 0.782 \left|\frac{V_{ub} f_B}{V_{cb} f_{B_c}}\right|^2$
 - Theoretically cleaner compared to exclusive semileptonic decays

Part 1: CKM determination

- Complementary measurements of |V_{cb}| (and |V_{ub}|)
 - ▶ using $B_{\text{U,C}} \rightarrow \mu \text{V,TV}$ $Br(B^- \rightarrow \tau^- \bar{\nu}(\gamma))_{\text{SM}} = 1.13(1) \times 10^{-4} \left(\frac{f_B}{0.2 \text{GeV}}\right)^2 \left(\frac{|V_{ub}|}{4 \times 10^{-3}}\right)^2$ $\left[\frac{\Gamma(B^+ \rightarrow \tau^+ \nu)}{\Gamma(B_c^+ \rightarrow \tau^+ \nu)}\right]_{SM^*} = 0.782 \left|\frac{V_{ub} f_B}{V_{cb} f_{B_c}}\right|^2$
 - ► Exp. feasibility studies of B_c→τν: important normalizing mode

$$\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)$$

relative signal yield precision O(few %)

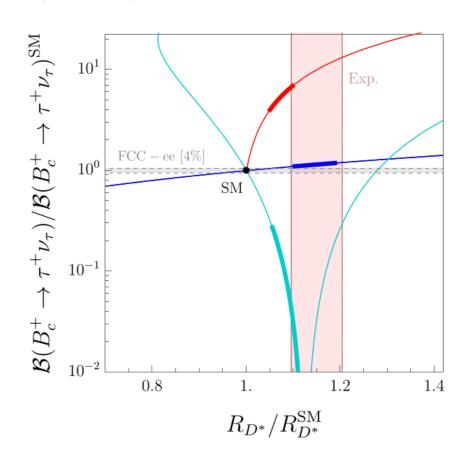

Plane normal to thrust axis (defines hemispheres)

Part 1: CKM determination

- Complementary measurements of |V_{cb}| (and |V_{ub}|)
 - ▶ using $B_{u,c}$ → μv , τv $Br(B^- \to \tau^- \bar{\nu}(\gamma))_{\rm SM} = 1.13(1) \times 10^{-4} \left(\frac{f_B}{0.2 {\rm GeV}}\right)^2 \left(\frac{|V_{ub}|}{4 \times 10^{-3}}\right)^2$ $\left[\frac{\Gamma(B^+ \to \tau^+ \nu)}{\Gamma(B_c^+ \to \tau^+ \nu)}\right]_{SM^*} = 0.782 \left|\frac{V_{ub} f_B}{V_{cb} f_{B_c}}\right|^2$
 - ► Exp. feasibility studies of $B_c \rightarrow \tau v$: $\frac{\hat{b}}{2}_{0.45}^{0.5}$ important normalizing mode

$$\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)$$

alternative test of LFU in c.c.
B decays



Part 1: CKM determination

- Complementary measurements of |V_{cb}| (and |V_{ub}|)
 - ▶ using $B_{u,c}$ →µv, τ v $Br(B^- \to \tau^- \bar{\nu}(\gamma))_{SM} = 1.13(1) \times 10^{-4} \left(\frac{f_B}{0.2 \text{GeV}}\right)^2 \left(\frac{|V_{ub}|}{4 \times 10^{-3}}\right)^2$ $\left[\frac{\Gamma(B^+ \to \tau^+ \nu)}{\Gamma(B_c^+ \to \tau^+ \nu)}\right]_{SM^*} = 0.782 \left|\frac{V_{ub} f_B}{V_{cb} f_{B_c}}\right|^2$
 - ► Exp. feasibility studies of B_c→τν: important normalizing mode

$$\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)$$

alternative test of LFU in c.c.
B decays

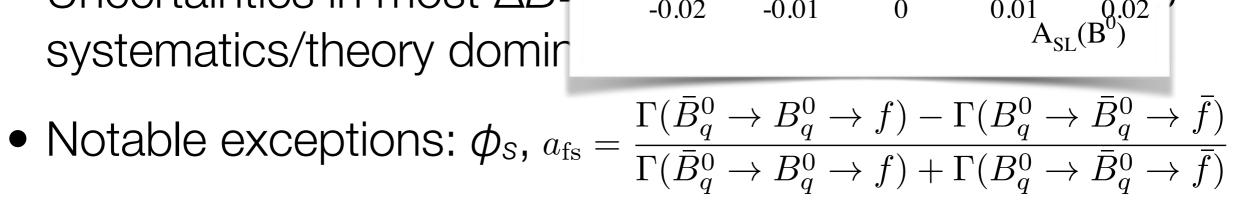
Part 1: CKM determination

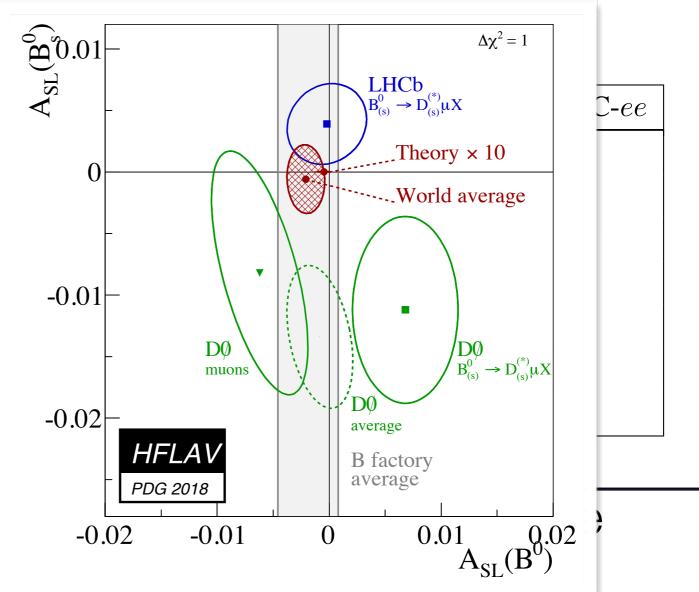
- Complementary measurements of |V_{cb}| (and |V_{ub}|)
 - ▶ using B_{u,c}→μν,τν
 - ▶ using on-shell W→cb
 - $\sigma(e^+e^- \to W^+W^-) \sim 10 \mathrm{pb}$ (in energy range of FCC-ee)
 - ▶ With SM value of $\mathcal{B}(W^+ \to c\bar{b}) \sim 10^{-3}$ a precision of $\delta V_{cb}/V_{cb} \sim 0.1\%$ might be within reach...
 - ▶ Relies crucially on efficient c- and b-jet identification

Part 2: CPV in $\Delta B=2$

Observable / Experiments	Current W/A	Belle II (50 /ab)	LHCb-U1 (23/fb)	FCC-ee
Mixing-related inputs				
$\sin(2\beta)$	0.691 ± 0.017	0.691 ± 0.008	0.691 ± 0.009	
ϕ_s (uncert. rad 10^{-2})	-1.5 ± 3.5	n/a	-3.65 ± 0.05	
$\Delta m_d (\mathrm{ps}^{-1})$	0.5065 ± 0.0020	same	same	
$\Delta m_s (\mathrm{ps}^{-1})$	17.757 ± 0.021	same	same	
$a_{\rm fs}^d$ (10 ⁻⁴ , precision)	23 ± 26	-7 ± 15	-7 ± 15	
$a_{\rm fs}^s$ (10 ⁻⁴ , precision)	-48 ± 48	n/a	0.3 ± 15	

- Uncertainties in most ΔB =2 observables will start to be systematics/theory dominated
- Notable exceptions: ϕ_s , $a_{fs} = \frac{\Gamma(\bar{B}_q^0 \to B_q^0 \to f) \Gamma(B_q^0 \to \bar{B}_q^0 \to \bar{f})}{\Gamma(\bar{B}_q^0 \to B_q^0 \to f) + \Gamma(B_q^0 \to \bar{B}_q^0 \to \bar{f})}$




$F_{a_{fs}} CC - F_{eq} F_{fl} F_{fl$

Part 2: CPV in $\Delta B=2$

	Observable / Experiments	Current W/A
= -	-Maxing related input 10^{-4}	,
= +(2.22 ± 0.27 $\times 10^{-5}$ ϕ_s (uncert. rad 10^{-2})	0.691 ± 0.017
' (ϕ_s (uncert. rad 10^{-2})	-1.5 ± 3.5
	$\Delta m_d (\mathrm{ps}^{-1})$	0.5065 ± 0.0020
	$\Delta m_s (\mathrm{ps}^{-1})$	17.757 ± 0.021
	$a_{\rm fs}^d$ (10 ⁻⁴ , precision)	23 ± 26
	$a_{\rm fs}^s$ (10 ⁻⁴ , precision)	-48 ± 48

Uncertainties in most ΔB=

Part 2: CPV in $\Delta B=2$

Observable / Experiments	Current W/A	Belle II (50 /ab)	LHCb-U1 (23/fb)	FCC-ee
Mixing-related inputs				
$\sin(2\beta)$	0.691 ± 0.017	0.691 ± 0.008	0.691 ± 0.009	0.691 ± 0.005
ϕ_s (uncert. rad 10^{-2})	-1.5 ± 3.5	n/a	-3.65 ± 0.05	-3.65 ± 0.01
$\Delta m_d (\mathrm{ps}^{-1})$	0.5065 ± 0.0020	same	same	st ne
$\Delta m_s (\mathrm{ps}^{-1})$	17.757 ± 0.021	same	same	same
$a_{\rm fs}^d$ (10 ⁻⁴ , precision)	23 ± 26	-7 ± 15	-7 ± 15	-7 ± 2
$a_{\rm fs}^s$ (10 ⁻⁴ , precision)	-48 ± 48	n/a	0.3 ± 15	0.3 ± 2

- Significant improvement in both observables @FCC-ee
- Observation of CPV in B_d mixing possible (a_{fs})

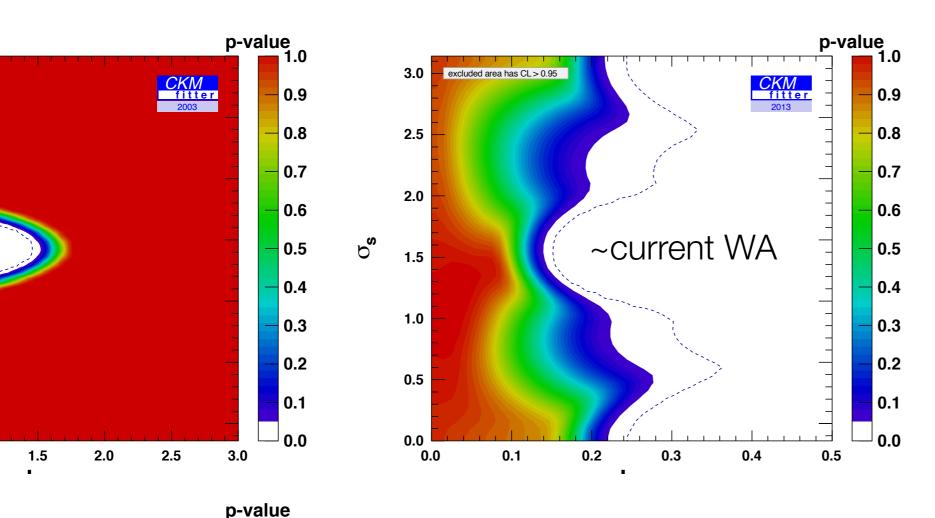
S. Monteil @ FCC week 2019

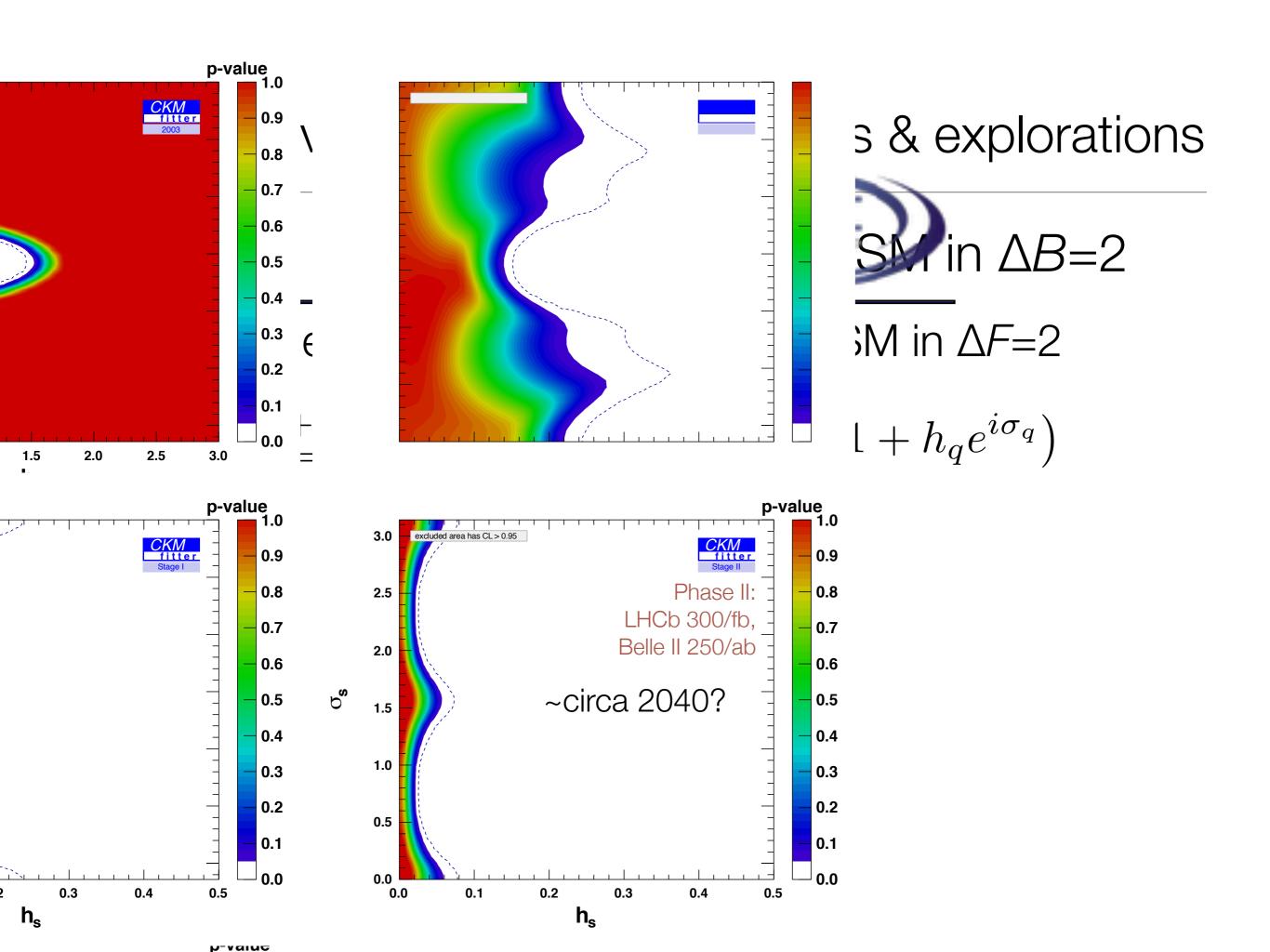
Not included: (γ+φ_s) from B_s → D_sK [30 10⁶ events]
 in progress... V. Tisserand @ FCC week 2018

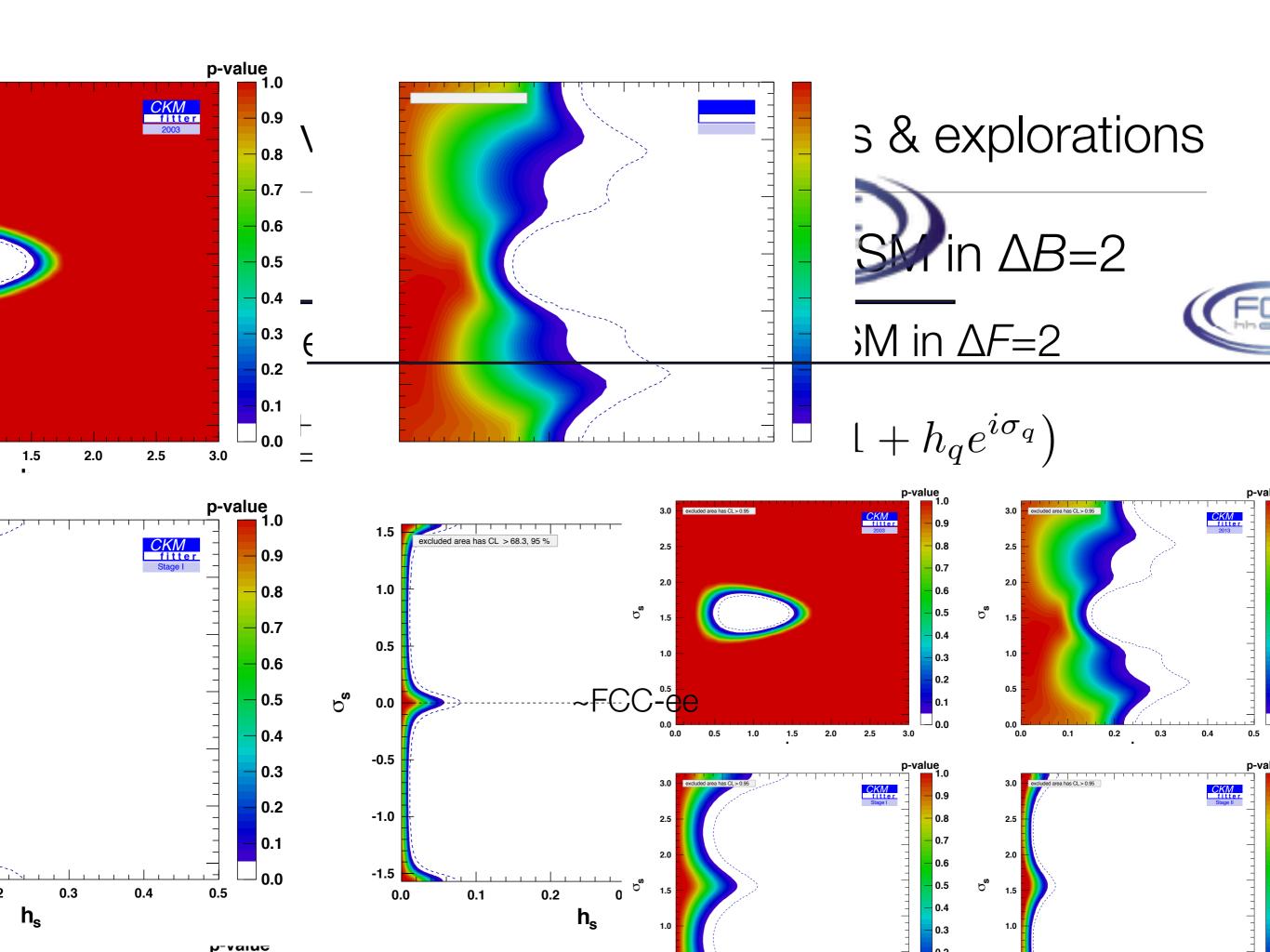
Combining 1 & 2: Impact on CPV BSM in $\Delta B=2$

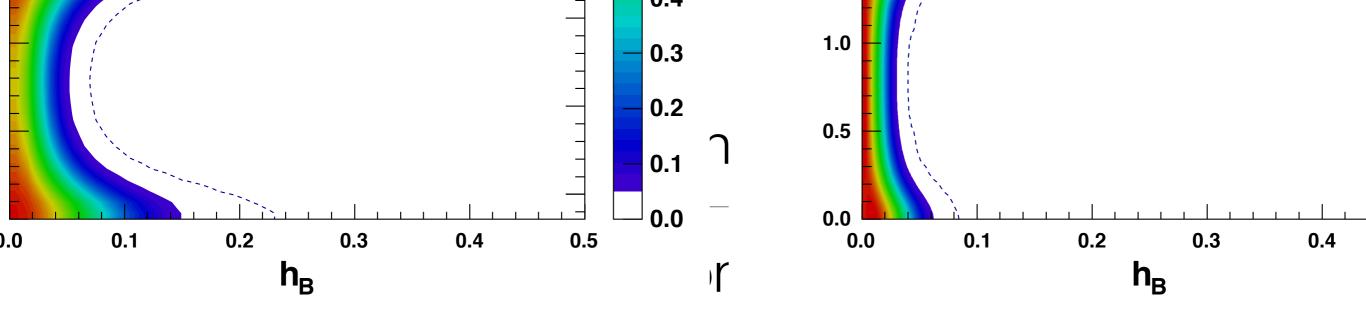
Model-independent parametrization of BSM in ΔF =2

$$\langle B_q | \mathcal{H}_{\Delta B=2}^{\text{SM+NP}} | \bar{B}_q \rangle = \langle B_q | \mathcal{H}_{\Delta B=2}^{\text{SM}} | \bar{B}_q \rangle \left(1 + h_q e^{i\sigma_q} \right)$$


Assumptions:


- ▶ NP only at short distances (UV)
- CKM unitary (& determined from NP free obs.)


Combining 1 & 2: Impact on CPV BSM in $\Delta B=2$

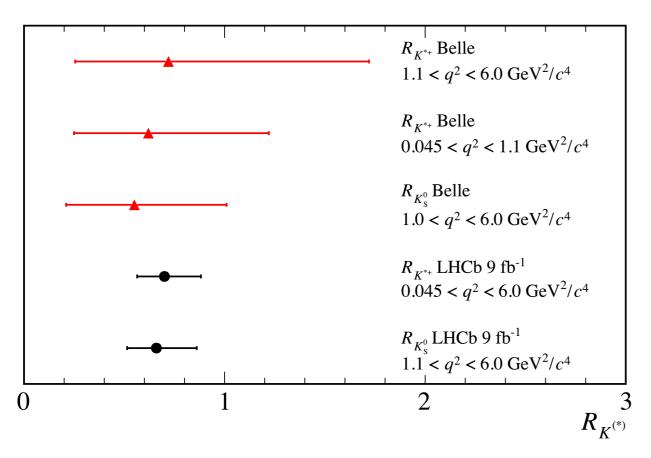

Model-independent parametrization of BSM in ΔF =2

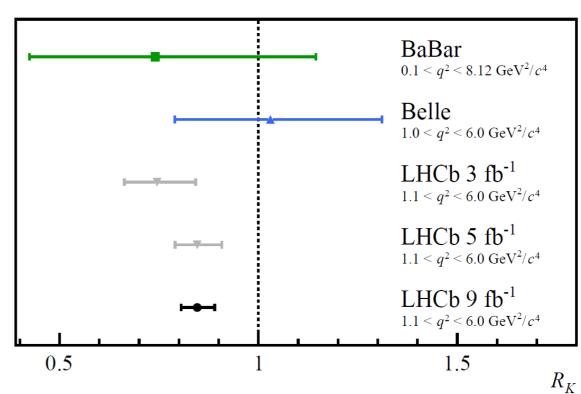
$$\langle B_q | \mathcal{H}_{\Delta B=2}^{\text{SM+NP}} | \bar{B}_q \rangle = \langle B_q | \mathcal{H}_{\Delta B=2}^{\text{SM}} | \bar{B}_q \rangle \left(1 + h_q e^{i\sigma_q} \right)$$

The past 3003 jtop left and present (top right) top straints on UBS (contains) where $h_B \equiv h_d = h_s$, over plots show future sensitivities for the Stage I and Stage II scenarios described in the text, assuming that with the SM. The dotted curves show the 99.7% CL contours.

, where we set $\bar{\rho}$, $\bar{\eta}$, $h_{d,s}$ and $\sigma_{q,s}$ also the property of $\bar{\rho}$. (

$$\overline{\langle B_q | \mathcal{H}_{\Delta B=2}^{\text{SM}+\text{NP}} | \bar{B}_q \rangle} = \langle B_q | \mathcal{H}_{\Delta B=2}^{\text{SM}} | \bar{B}_q \rangle \left(1 + h_q e^{i\sigma_q} \right)$$


agree with the sumed that future measure agree with the sum of the


el (one \underline{loap}) (for \underline{n}), hierarchical couplings.

in Table I for Stage II. While any assumption sible future NP signals includes a high degree 1.0 0.5 NP loop Scales (in Couplings orden ba mixing tree level $=|V_{ti}V_{tj}^*|$ (CKM-like) one loop 3 excluded area halcie 39 -1.0 $|C_{ij}| = 1$ tree level 2×10^3 one loop $\stackrel{1}{\sim}$ 10^2 (nothierarchy) 0.0

Part 3: Rare b-hadron decays to taus

Motived by current intriguing exp. situation in rare B decays

$$R_H \equiv \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to H\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to He^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

Part 3: Rare b-hadron decays to taus

Motived by current intriguing exp. situation in rare B decays

• FCC-ee (unique) probe of SM predictions for B \rightarrow K^(*) $\tau^+\tau^-$

```
R_{K^+}^{\mu\tau} = 0.87 \pm 0.02 \quad , \quad R_{K^0}^{\mu\tau} = 0.87 \pm 0.02 \quad , \quad \text{15 GeV}^2 < q^2 < 22 \text{ GeV}^2 \quad \text{J.F.K. et al., 1705.11106} \\ \text{Li \& Liu, 2012.00665} \quad R_{K^{*+}}^{\mu\tau} = 2.44 \pm 0.09 \; , \quad R_{K^{*0}}^{\mu\tau} = 2.45 \pm 0.08 \; , \qquad \text{15 GeV}^2 < q^2 < 19.2 \text{ GeV}^2.
```

- + Complete kinematical reconstruction
- Access to angular observables, tau polarization

Part 3: Rare b-hadron decays to taus

Motived by current intriguing exp. situation in rare B decays

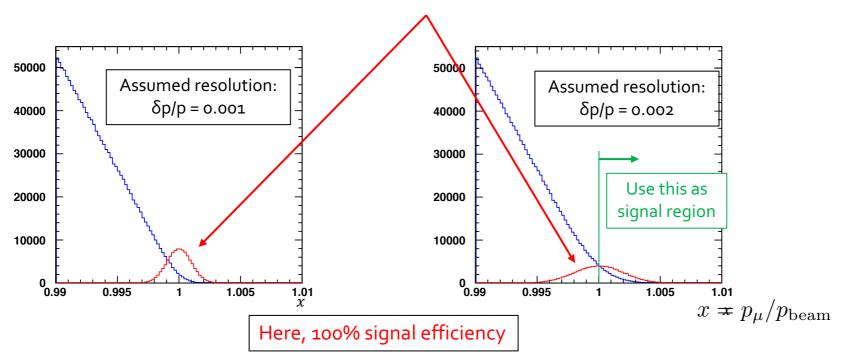
• FCC-ee (unique) probe of SM predictions for B \rightarrow K^(*) $\tau^+\tau^-$

J.F.K. et al., 1705.11106 Li & Liu, 2012.00665

• Potentially also complementary leptonic mode $B_{(s)} \rightarrow \tau^+\tau^-$

$$BR(B_s \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$$

 $BR(B_d \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$


Bobeth et al., 1311.0903 see also U. Haisch, 1206.1230

(Expected sensitivity at Belle II to BRs of O (10⁻⁴) ~ O(10⁻⁵))

see also LHCb-CONF-2016-011

Insert signal and smear track momenta

• In these plots, assume $Br(Z \rightarrow \tau \mu) = 10^{-7}$, i.e. 100,000 muons

Sensitivity to signal:

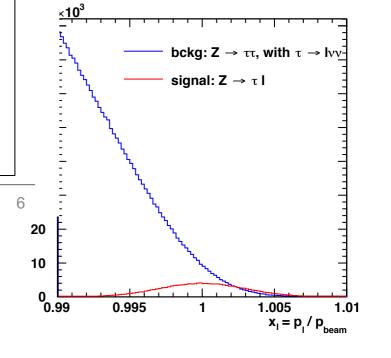
- Since number of background events is high, use primitive estimator: s/\sqrt{b}
- s and b are number of signal and background events, respectively, in signal region
 - - Eventually one will do more sophisticated statistical analysis, but for now...
- 95% c.l. corresponds approximately to number of signal events equal: $s_{95} = 2\sqrt{b}$

Mogens Dam / NBI Copenhagen

1st FCC Physics Workshop

19 January 2017

at least 3 orders of magnitude


M. Dam, SciPostPhys.Proc.1,041(2019) see also De Romeri et al. JHEP 1504 (2015) 051

3 explorations

$x \neq p_{\mu}/p_{\text{beam}}$ | T decays

Illiana & Masip, hep-ph/0207328

Part 4: Flavour violating Z decays

- Lepton flavour violating processes Z→eτ,τμ
- ullet Similar possibility in the quark sector? i.e. $Z o j_b j_{b/2}$
 - Motivation: Probing FCNC Z-penguins directly

c.f. Isidori & Guadagnoli, 1302.3909

• In SM $\mathcal{B}(Z \to s\bar{b}) \sim 10^{-8}$ - could be probed to 1% level?

Need very efficient b-, s-tagging!

Preliminary study in context of LC

2.8x 109

Current b

 4.4×1

τ_> μγ

FCC-ee flavour physics

3 vs. 3 prong

 $Z \rightarrow \mu \tau$ Property 12×10^{-6}

10-9

Part 5: tau physics

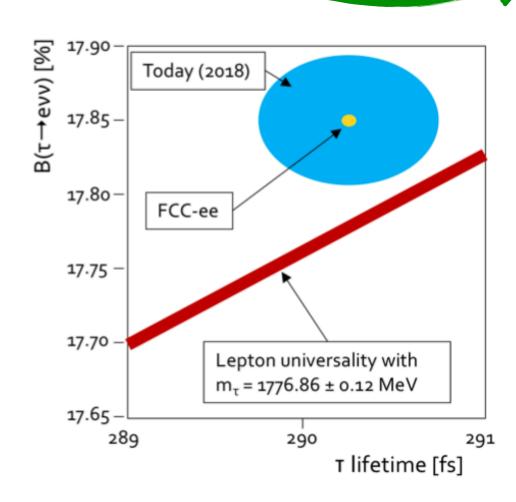
Several tau properties Electron BF [%] and decays could be T-> Muon BF determined more

FCC-ee stat Current WA FCC-ee syst Mass [MeV] 1776.86 +/- 0.12 0.004 0.1 17.82 +/- 0.05 0.00010.003 17.39 +/- 0.05 0.0001 0.003 Lifetime [fs] 290.3 +/- 0.5 0.005 0.04

precisely

< 67,000

ecays


gs

Interesting implications
Current WA FCC-ee stat FCC-ee syst for LFU (in tau decays) 0.1

M-Dam-SciPostPhys.Proc.1041(2019) 0.003

0.00010.003 17.39 +/- 0.05

0.005 0.04 290.3 +/- 0.5

Conclusions

- FCC-ee could be a powerful and competitive probe of flavour physics post-2030
 - FCC-ee can compete favourably with ultimate precision of LHCb and Belle II
 - There are processes for which FCC-ee is unique
 - Luminosity is key. Most of measurements reported here are statistically limited!

Conclusions

- FCC-ee could be a powerful and competitive probe of flavour physics post-2030
- Effort underway to understand exp. precision with which rare decays of c- and b-hadrons and CP violation in heavy-quark sector & LFV processes could be measured
 - Flavour Physics defines shared (vertexing, tracking, calorimetry) and specific (hadronic PID) detector requirements
 - In next phase important interplay of physics performance with detector concepts

Conclusions

- FCC-ee could be a powerful and competitive probe of flavour physics post-2030
- Effort underway to understand exp. precision with which rare decays of c- and b-hadrons and CP violation in heavy-quark sector & LFV processes could be measured
- Less explored areas include flavour studies using top & Higgs decays, spectroscopy, quarkonium physics
 - Example: top & Higgs decays to exclusive hadronic final states

see e.g. Mangano & Melia, 1410.7475 Kagan et al., 1406.1722 Konig et al., 1505.03870

Additional resources

• Past FCC-ee Flavour Physics vidyo meetings (2014-2015):

https://indico.cern.ch/event/336998/,

https://indico.cern.ch/event/359433/,

https://indico.cern.ch/event/380986/,

https://indico.cern.ch/event/403492/,

https://indico.cern.ch/event/462662/

• FCC-ee Flavour Mini Workshop (2018): https://indico.cern.ch/event/687191/