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0.1 Introduction

This section discusses the phenomenon of neutrino flavour oscillations, the big discovery of the last
10 years, which prompted the first major change to the standard model in the last 20 years. We will
discuss the evidence for neutrino oscillations, look at the formalism - both for 2-flavour and 3-flavour
oscillations, and look at oscillation experiments.

0.2 Neutrino Flavour Oscillation in Words

I will first introduce the concept of neutrino flavour oscillations without going into the rigorous theory
(see below). We have seen that the thing we call a neutrino is a state that is produced in a weak
interaction. It is, by definition, a flavour eigenstate, in the sense that a neutrino is always produced
with, or absorbed to give, a charged lepton of electron, muon or tau flavour. The neutrino that is
generated with the charged electron is the electron neutrino, and so on. However, as with the quarks
and the CKM matrix, it is possible that the flavour eigenstates (states with definite flavour) are not
identical to the mass eigenstates (states which have definite mass).

What does this mean? Suppose we label the mass states as ν1, ν2 and ν3 and that they have
different, but close, masses. Everytime we create an electron in a weak interaction we will create one
of these mass eigenstates (ensuring the energy and momentum is conserved at the weak interaction
vertex as we do so). Suppose that we create these with different probabilities (i.e. 10% of the time
we create a ν1 etc). If we could resolve the mass of each state, we could follow each mass state as it
propagates. However, the neutrino masses are too small to experimentally resolve them. We know
we created one of them, but not which one, so what we create, at the weak interaction vertex, is a
coherent superposition of the νi mass states - this coherent superposition we call the electron neutrino
:

|νe >= Ue1|ν1 > +Ue2|ν2 > +Ue3|ν3 > (1)

If this is the case, the following can happen : suppose one generates a neutrino at a source. This
neutrino will have definite flavour, but will be produced as a linear combination of states of definite
mass. The states of definite mass will propagate out of the source towards the detector. If the states
have different masses, then the phase between the states will change with distance from the source
(we will make this clear soon). At the detector, the mass states will have different relative phases to
those the mass states had at the source, and when we go to detect them, it is possible that we will
detect a flavour state which was not present in the beam to begin with. If one restricts oneself to
two-flavour oscillations, we find that the probability of starting with one flavour, say νx, at the source
but detecting another, say νy, at the detector is

P (νx → νy) = sin2(2θ)sin2(1.27∆m2 L(km)

E(GeV )
) (2)

This equation has a number of points of interest

• The angle θ: this is the so-called mixing angle. It defines how different the flavour states are
from the mass states. If θ=0, the flavour states are identical to the mass states (that is, the νx
will propagate from source to detector as a νx with definite momentum. Clearly in this case,
oscillations cannot happen. If θ = π

4
then the oscillations are said to be maximal and at some
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point along the path between source and detector all of the νx we started with will oscillate to
νy.

• The mass squared difference, ∆m2 : If there are 2 flavours there will be 2 mass states.
This parameter is the difference in squared masses of each of these states : ∆m2 = m2

1 −m2
2.

For neutrino oscillations to occur, at least one of the mass states must be non-zero. This simple
statement has huge implications - for oscillations to happen, the neutrino must have mass.
Furthur the masses of the mass states must be different, else ∆m2 = 0 and P (νx → νy) = 0.
You can see why this is : the masses control the relative phase of the two mass wavefunctions.
If they are the same, then the mass states will never get out of phase and you will measure the
same linear combination of mass states at the detector as you generated at the source. Note
also the limitation of neutrino oscillation experiments - they can give us detailed information
on the difference between the mass values, but cannot tell us what the absolute mass of the
states are. Neither can they tell us whether m1 is larger in mass than m2. If ∆m2 → −∆m2

the probability will still be the same.

• L/E : This is the parameter we, as experimentalists control. L is the distance between the
source and the detector, and E is the energy of the neutrino. For a given ∆m2, the probability
of oscillation will change as one moves away from the detector, or scans over different neutrino
energy. Experimentally, if we suspect that ∆m2 has a particular value, then we should build
our experiment to be maximally sensitive to the oscillation probability. That is, we want to
build it such that

1.27∆m2 L

E
=
π

2
(3)

or
L

E
=

π

2.54∆m2
(4)

. We are free then to either change the beam energy, or the baseline (L), or both. Ideally
we want to maximise L and minimise E. This all sounds very nice, but practicalities tend to
intrude. Neutrino beams diverge like an electric field from a point source, so the surface area of
a detector placed at a distance L has to grow by L2, and so does the cost. At the same time,
the neutrino cross-section decreases as the neutrino energy decreases and so the running time
to collect a useful number of events increases linearly (and so does the cost).

On the flip-side, if L
E

is fixed for us by nature (as it is, for example, in solar neutrinos), then we
can only probe a certain range of (∆m2, θ) combinations, since other choices for the values of
these parameters will yield too small a probability of oscillation for observation to be feasible
(we may have to wait decades to get enough events).

There are two types of neutrino oscillation experiments one could think of doing. The first
is to start with a pure beam of known flavour νx, and look to see how many have disappeared.
This is a “disappearance” experiment and measures the survival probability : P (νx → νx) =

1− sin2(2θ)sin2(1.27∆m2 L(km)
E(GeV )

). The second type of experiment is an “appearance” experiment, in
which one starts with a pure beam of known flavour νx and looks to see how many neutrinos of a
different flavour νy are detected.

OK, that’s a bunch of handwaving, but for the purposes of the historical account below will do.
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0.3 Evidence for Neutrino Flavour Oscillations

0.3.1 Solar Neutrinos and the Solar Neutrino Problem

We discussed solar neutrino generation in the previous handout. The solar neutrino flux derived from
Bahcall’s Standard Solar Model is shown in Figure 1 for reference.

The Standard Solar Model predicts that most of the flux comes from the pp neutrinos with
energies below 0.4 MeV. Only the Gallium experiements are sensitive to this component. The Chlorine
experiments can just observe part of the 7Be line, and can see the other components. The big water
experiments (Super-Kamiokande, SNO) can only view the 8B neutrinos as they have too high a
threshold to see below about 5 MeV.

Figure 1: The Standard Solar Model prediction of the solar neutrino flux. Thresholds for each of
the solar experiments is shown at the top. SuperK and SNO are only sensitive to Boron-8 and hep
neutrinos. The gallium experiments have the lowest threshold and can observe pp neutrinos.

Homestake

Ray Davis’ Homestake experiment was the first neutrino experiment designed to look for solar
neutrinos. It started in 1965, and after several years of running produced a result for the average
capture rate of solar neutrinos of 2.56±0.25 SNU (remember that 1 SNU = 10−36 neutrino interactions
per target atom per second). The big surprise was that the Standard Solar Models of the time
predicted that Homestake should have seen about 8.1 ± 1.2 SNU, over three times larger than the
measured rate. This discrepancy became known as the Solar Neutrino Problem.

At the time it was assumed that something was wrong with the experiment. After all, the Home-
stake experiment is based on counting very low rate interactions. How did they know that they were
seeing solar neutrinos at all? They had no directional or energy information. The objections towards
the experiment became harder to maintain when the Super-Kamiokande results were released.

3



Super-Kamiokande

The main mode of solar neutrino detection in Super-Kamiokande is the elastic scattering channel
νe+e

− → νe+e
− which has a threshold of 5 MeV. This threshold comes from the design of the detector

- neutrinos with energies less than 5 MeV which elastically scatter in the water will not generate an
electron with enough momentum to be seen in the detector. Super-Kamiokande observed a capture
rate of about 0.45±0.02 SNU, with a model prediction of 1.0±0.2 SNU, almost a factor of two larger
than observation. In addition, since Super-Kamiokande was able to reconstruct the direction of the
incoming electron (with some large resolution due to both scattering kinematics - Super-Kamiokande
sees the final state electron which isn’t quite collinear with the incoming neutrino direction - and to
multiple scattering of the final state electron - which smears the directional resolution out even more),
it was able to show that the electron neutrinos do indeed come from the sun (see Figure 2).

Figure 2: The cosine of the angle between the measured electron in the Super-Kamiokande solar
neutrino data, and the direction to the sun at the time the event occurred. A clear peak can be seen
for cosθ > 0.5 above an essentially flat background. The peak is broad because of kinematic smearing
and multiple scattering of the final state electron in the water.

SAGE and GALLEX

An obvious drawback of both the Chlorine and the water experiments was that they were only
sensitive to the relatively rare 8B and pep neutrinos.The Gallium experiments were able to observe
part of the bulk pp neutrino flux. SAGE, which ran with 50 tonnes of Gallium, observed a capture
rate of 70.8± 5.0 SNU compared to a model prediction of 129± 9 SNU. It’s counterpart, GALLEX,
observed a rate of 77.5 ± 8 SNU. Again the observations were lower than the prediction - this time
by about 40%. This is, in itself, important as it shows that deficit is energy dependent.

A summary of these results is shown in Figure 3.
In all experiments, the model seems to overestimate the solar neutrino capture rate by approxi-

mately a factor of two although, crucially, the discrepancy appears to be energy dependent - the lower
in energy the experiment is able to probe, the less the discrepancy. Such a discrepancy has two main
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Figure 3: The state of the solar neutrino problem before SNO. Each group of bars represents a different
type of experiment : Chlorine on the left, water in the middle and Gallium on the right. The blue
bars in each cluster represent the measurements of individual experiments, in SNUs. The middle bar
shows the Standard Solar Model prediction. In all cases, the measurements are less than predicted.

solutions. One is that our model of the Sun is just wrong, and the other is that there is something
wrong with the neutrinos coming from the sun.

It is now believed that Bahcall’s Standard Solar Model (SSM) describes the sun well. This is largely
on the basis of data obtained from studies of helioseismology - or sun quakes. Helioseismology utilizes
waves that propagate throughout the Sun to measure the invisible internal structure and dynamics
of a star. There are millions of distinct, resonating, sound waves, seen by the doppler shifting of
light emitted at the Sun’s surface. The periods of these waves depend on their propagation speeds
and the depths of their resonant cavities, and the large number of resonant modes, with different
cavities, allows us to construct extremely narrow probes of the temperature, chemical composition,
and motions from just below the surface down to the very core of the Sun. The SSM predicts the
velocity of sound waves in the Sun as a function of radial distance out from the core. This is shown
in Figure 4. The model agrees with measured data to better than 0.5%. Since these sound speeds
depend very much on the chemical composition and structure of the star, which are predictions from
the SSM, the model is regarded as reliable. Certainly there is no way that one could tweak the model
to remove up to 50% of the neutrino output whilst leaving all other observables unaffected.

In order to show that neutrino flavour oscillations are the cause of the Solar Neutrino Problem, it
is necessary to be able to observe the solar flux in a way that is not dependent on the flavour of the
neutrino. All solar experiments detected solar neutrinos through charged current interactions in the
detector : νe +X → e− + Y . The radiochemical experiments used the charged current interaction to
generate the unstable ion, whereas the water Cerenkov experiments needed the final state electron as
a tag that a νe had interacted in the detector. This immediately creates a problem - solar neutrino
energies are less than about 30 MeV, whereas the charged muon mass is 105 MeV. In order to interact
via the charged current there must be sufficient energy available to create the charged leptons. From
the point of view of all the solar experiments, electron neutrinos might well be changing to muon
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Figure 4: The speed of sound waves in the Sun as a function of radial distance from the solar core.
The graph shows the fractional difference of the SSM from helioseismological data.

or tau neutrinos, but as there is not enough energy to create the respective charged lepton, and as
all the experiments relied on that charged current interaction to detect the neutrino, all experiments
just wouldn’t be able to see the νµ or ντ part of the flux. What was needed was a way to detect all
flavours of neutrinos and this was finally provided by the SNO detector.

The SNO experiment uses a tank of heavy water as its target. Heavy water consists of deuterium,
containing a proton and a neutron, rather than just hydrogen. The important point is that the
deuteron is a very fragile nucleus. It only takes about 2 MeV to break it apart into a proton and a
neutron. Solar neutrinos have energies up to 30 MeV and so any of the neutrino νe, νµ or ντ can break
apart a deuteron in a neutral current interaction. SNO was able to detect the final state neutron and
so all those neutrinos that weren’t visible to the radiochemical or water Cerenkov experiments are
visible to SNO. SNO was able to detect neutrino via three different interactions:

• The Elastic Scattering (ES) channel :

ν + e− → ν + e− (5)

This is the same sort of interaction used by Super–Kamiokande. Electron neutrinos can interact
via both the charged and neutral currents (draw some Feynman diagrams to convince you of
this), whereas νµ and ντ neutrinos interact only via the neutral current. This reaction probes a
combination of the electron, muon and tau neutrino flux given by

φ(νe) + 0.15(φ(νµ) + φ(ντ )) (6)

• The Charged Current (CC) channel :

νe + d→ p+ p+ e− (7)

This reaction can only be initiated by electron neutrinos and therefore only measure φ(νe).
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• The Neutral Current (NC) channel :

ν + d→ n+ p+ ν (8)

This is the important reaction. It measure the total flux : φ(νe)+φ(νµ)+φ(ντ ). The experimental
challenge is to measure that final state neutron. SNO did this 3 different ways as cross checks
on their final result.

Using the measurement of the three independent reaction channels, SNO was able to disentan-
gle the individual fluxes of neutrinos. Their measurement of the neutrino fluxes was, in units of
10−8cm−2s−1,

φCC = φ(νe) = 1.76± 0.01

φES = φ(νe) + 0.15(φ(νµ) + φ(ντ )) = 2.39± 0.26

φNC = φ(νe) + φ(νµ) + φ(ντ ) = 5.09± 0.63

The numbers are striking. The total flux of muon and tau neutrinos from the Sun (φ(νµ) +φ(ντ ))
is (3.33±0.63)×10−8cm−2s−1, roughly 3 times larger than the flux of νe. Since we know the Sun only
produces electron neutrinos, the only conclusion is that neutrinos must change flavour between the
Sun and the Earth. Furthur, the SSM predicts a total flux of neutrinos with energies greater than 2
MeV (the deuteron break-up energy) of

φSSM = (5.05± 1.01)× 10−8cm−2s−1 (9)

which is in very good agreement with the NC flux measured by SNO. Here endeth the Solar Neutrino
Problem. Previous experiments were seeing less electron neutrino than predicted, because two-thirds
of the electron neutrinos were changing flavour on the way from the sun to the earth. The total flux
is predicted well by the SSM.

What you should know

• What the solar neutrino problem was, including the specific experiments that were involved
(Homestake, Gallex, Super–Kamiokande, SNO)

• Why neither the solar model, or details of the specific experiment could account for the solar
neutrino problem, and why the phenomenon of neutrino flavour oscillation could.

• How SNO definitively solved the solar neutrino problem

0.3.2 Atmospheric Neutrinos and the Atmospheric Neutrino Anomaly

The atmosphere is constantly being bombarded by cosmic rays. These are composed of protons
(95%), alpha particles (5%) and heavier nuclei and electrons (< 1%). When the primary cosmic rays
hit nuclei in the atmosphere they shower, setting up a cascade of hadrons. The atmospheric neutrinos
stem from the decay of these hadrons during flight. The dominant part of the decay chain is

π+ → µ+νµ µ+ → e+νeνµ (10)

π− → µ−νµ µ− → e−νeνµ (11)
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At higher energies, one also begins to see neutrinos from kaon decay as well. In general the spectrum
of these neutrinos peaks at 1 GeV and extends up to about 100s GeV. At moderate energies one can
see that the ratio

R =
(νµ + νµ)

(νe + νe)
(12)

should be equal to 2. In fact, computer models of the entire cascade process predict this ratio to be
equal to 2 with a 5% uncertainty. The total flux of atmospheric neutrinos, however, has an uncertainty
of about 20% due to various assumptions in the models.

A detector looking at atmospheric neutrinos is, necessarily, positioned on (or just below) the
Earth’s surface (see Figure 5). Flight distances for neutrinos detected in these experiments can thus
vary from 15 km for neutrinos coming down from an interaction above the detector, to more than
13,000 km for neutrinos coming from interactions in the atmosphere below the detector on the other
side of the planet.

Figure 5: A diagram of an atmospheric neutrino experiment. A detector near the surface sees neutrinos
that travel about 15 km looking up, while neutrinos arriving at the detector from below can travel
up to 13,000 km. This distance is measured by the “zenith angle”; the polar angle as measured from
the vertical direction at the detector : cosθzen = 1 is for neutrinos coming directly down, whereas
cosθzen = −1 describes upwards-going neutrinos.

Atmospheric Neutrino Detectors and the Atmospheric Neutrino Anomaly

There have been effectively two categories of detectors used to study atmospheric neutrinos - water
Cerenkov detectors and tracking calorimeters. Of the former, the most influential has been Super-
Kamiokande (again). We will not discuss the latter.

Atmospheric neutrino experiments measure two quantities : the ratio of νµ to νe observed in the
flux, and zenith angle distribution of the neutrinos (that is, the path length distribution). To help
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Experiment Type of experiment R
Super-Kamiokande Water Cerenkov 0.675± 0.085

Soudan2 Iron Tracking Calorimeter 0.69± 0.13
IMB Water Cerenkov 0.54± 0.12

Kamiokande Water Cerenkov 0.60± 0.07
Frejus Iron Tracking Calorimeter 1.0± 0.15

Table 1: Measurements of the double ratio for various atmospheric neutrino experiments.

interpret the results and to cancel systematic uncertainties most experiments report a double ratio

R =
(Nµ/Ne)DATA
(Nµ/Ne)SIM

(13)

where Nµ is the number of νµ events which interacted in the detector (called “muon-like”) and Ne

is the number of νe events which interacted (called “electron-like”). The ratio of Nµ
Ne

is measured in
the data and is also measured in a computational model of the experiment, which incorporates all
known physics of atmospheric neutrino production, neutrino propagation to the detector and detector
response. The absolute flux predictions cancel in this double ratio. If the observed flavour composition
agrees with expectation that R = 1.

A compilation of R values from a number of different experiments is shown in Table 1. With the
exception of Frejus, all measurements of R are significantly less than 1, indicating that either there
was less νµ in the data than in the prediction, or there was more νe, or both. This became known as
the Atmospheric Neutrino Anomaly.

In addition to low values ofR, Super-Kamiokande was able to measure the direction of the incoming
neutrinos. Neutrinos are produced everywhere in the atmosphere and can reach the detector from all
directions. In principle, we expect the flux of neutrinos to be isotropic - the same number coming
down as going up. The zenith angle distributions from Super-Kamiokande are shown in Figure 6.
In this figure, the left column shows the νe (“e-like”) events, where as the right column depicts νµ
events. The top and middle rows show low energy events where the neutrino energy was less than 1
GeV, whilst the bottom row shows events where the neutrino energy was greater than 1 GeV. The
red line shows what should be expected from standard cosmic ray models and the black points show
what Super-Kamiokande actually measured. Clearly, whilst the electron-like data agrees reasonably
well with expectation, the muon-like data deviates significantly. At low energies appoximately half
of the νµ are missing over the full range of zenith angles. At high energy the number of νµ coming
down from above the detector seems to agree with expectation, but half of the same νµ coming up
from below the detector are missing.

These results are reasonably easy to explain within the context of flavour oscillations. Neutrinos
arriving at the Super-Kamiokande detector at different zenith angles have travelled anywhere from 15
km (for neutrinos coming straight down) to 13000 km (for neutrinos coming straight up). Referring
back to the oscillation probability in Equation 4, we see that if ∆m2 ∼ 10−3eV2 and the neutrino
energy is about 10 GeV, then for neutrinos coming down the oscillation probability will be roughly
zero, whereas for neutrinos coming up, the oscillation probability will be roughly sin2(2θ). Furthur,
the fact that νµ neutrinos are reduced, but the electron neutrinos are not enhanced suggests that
the dominant oscillation mode for the atmospheric neutrinos is νµ → ντ . Unfortunately Super-
Kamiokande cannot easily detect ντ interactions and can’t check this option itself. An experiment
called OPERA, currently just beginning at CERN, can and will by looking for the appearance of ντ
in a pure νµ beam.
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Figure 6: Zenith angle distributions of νµ and νe-initiated atmospheric neutrino events detected by
Super-Kamiokande. The left column shows the νe (“e-like”) events, where as the right column depicts
νµ events. The top and middle rows show low energy events where the neutrino energy was less than
1 GeV, whilst the bottom row shows events where the neutrino energy was greater than 1 GeV. The
red line shows what should be expected from standard cosmic ray models and the black points show
what Super-Kamiokande actually measured.
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Both the solar and atmospheric neutrino problems can be explained by neutrino flavour oscillations.
Let’s look a bit more rigorously at this phenomenon. We will first do this assuming that only 2 neutrino
flavours exist - say νe and νµ, and then we will generalise to the 3-neutrino case.

What you should know

• What the atmospheric neutrino anomaly was, including the double ratio and the zenith angle
dependencies of the muon and electron neutrino flux from cosmic ray showers.

• How neutrino flavour oscillations can be used to predict such zenith angle and energy depen-
dencies.

• How the data from Super–Kamiokande showed that the atmospheric neutrino anomaly could
be interpreted in the context of neutrino flavour oscillations.

0.4 Two Flavour Neutrino Oscillations

The ground rules are : the eigenstates of the Hamiltonian are |ν1 > and |ν2 > with eigenvalues
m1 and m2 for neutrinos at rest. A neutrino of type j with momentum p is an energy eigenstate

with eigenvalues Ej =
√
m2
j + p2. Neutrinos are produced in weak interactions in weak eigenstates of

definite lepton number (|νe >, |νµ > or |ντ >) that are not energy eigenstates. These two sets of states
are related to each other by a unitary matrix. which we can write as U where, in two dimensions,

U =

(
Uα1 Uα2

Uβ1 Uβ2

)
(14)

Suppose that we generate a neutrino beam with some amount of neutrino flavours νe and νµ. Then
in terms of the mass states ν1 and ν2 we can write(

|νe >
|νµ >

)
= U

(
|ν1 >
|ν2 >

)
=

(
Uα1 Uα2

Uβ1 Uβ2

)(
|ν1 >
|ν2 >

)
(15)

More compactly we can write the flavour state να as a linear combination,

|να >=
∑
k=1,2

Uαk|νk > (16)

Suppose we generate a neutrino beam containing a flavour state |να(0, 0) > which describes a
neutrino generated with a definite flavour α at space-time point (x, t) = (0, 0). Suppose we aim the
neutrinos along the x-axis and let them propagate in a free space towards a detector some distance L
away.

The ν1,2 propagate according to the time-dependent Schrodinger Equation with no potentials

i
∂

∂t
|νi(x, t) >= E|νi(x, t) >= − 1

2mi

∂2

∂x2
|νi(x, t) > i∃1, 2 (17)

The solution to this equation is a plane-wave :

|νk(x, t) >= e−i(Ekt−pkx)|νk(0, 0) >= e−iφk |νk(0, 0) > (18)
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where pk = (t,p) is the 4-momentum of the neutrino mass state |νk > and x = (t,x) is the 4-space
vector.

At some later space-time point (x, t) then the flavour state α will be

|να(x, t) >=
∑
k=1,2

Uαk|νk(x, t) >=
∑
k=1,2

Uαke
−iφk |νk(0, 0) > (19)

Inverting the mixing matrix we can write

|νk(0, 0) >=
∑
γ

U∗γk|νγ(0, 0) > (20)

Substituting Equation 20 into Equation 19 we then write the flavour state |να > at space-time
point (x, t) in terms of the flavour states at the generation point

|να(x, t) >=
∑
k=1,2

Uαke
−iφk

∑
γ

U∗γk|νγ(0, 0) >=
∑
γ

∑
k

U∗γke
−iφkUαk|νγ(0, 0) > (21)

and so the transition amplitude for detecting a neutrino of flavour β at space-time point (t, x)
given that we generated a neutrino of flavour α at space-time point (0, 0) is

A(να(0, 0)→ νβ(x, t)) = < νβ(x, t)|να(0, 0) >

=
∑
γ

∑
k

Uγke
iφkU∗βk < νγ(0, 0)|να(0, 0) >

=
∑
k

Uαke
iφkU∗βk

where the last step comes from the orthogonality of the flavour states, < νγ(0, 0)|να(0, 0) >= δγα.
The oscillation probability is the coherent sum

P (νβ → να) = |A(νβ(0, 0)→ να(x, t))|2 = |
∑
k

Uαke
iφkU∗βk|2

=
∑
k

Uαke
iφkU∗βk

∑
j

U∗αje
−iφjUβj

=
∑
j

∑
k

UαkU
∗
βkU

∗
αjUβje

−i(φj−φk)

In the case of 2-dimensions, there is only one unitary matrix - the 2x2 rotation matrix which which
rotates a vector in the flavour basis into a vector in the mass basis :

U =

(
cosθ sinθ
−sinθ cosθ

)
so that (

να
νβ

)
=

(
cosθ sinθ
−sinθ cosθ

)(
ν1

ν2

)
where θ is an unspecified parameter known as the mixing angle. This will have to be measured by an
experiment. Using this matrix, we can find work out the oscillation probability in a somewhat more
transparent form. The sum is over 4 elements with combinations of k∃(1, 2) and j∃(1, 2) :
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• (k=1,j=1) : Uα1U
∗
β1U

∗
α1Uβ1e

−i(φ1−φ1) = |Uβ1|2|Uα1|2

• (k=1, j=2) : Uα1U
∗
β1U

∗
α2Uβ2e

−i(φ2−φ1)

• (k=2, j=1) : Uα2U
∗
β2U

∗
α1Uβ1e

−i(φ1−φ2)

• (k=2, j=2) : Uα2U
∗
β2U

∗
α2Uβ2e

−i(φ2−φ2) = |Uβ2|2|Uα2|2

So the oscillation probability is

P (να → νβ) = (|Uβ1|2|Uα1|2 + |Uβ2|2|Uα2|2) + Uα1U
∗
β1Uα2U

∗
β2(ei(φ2−φ1) + e−i(φ2−φ1))

= (|Uβ1|2|Uα1|2 + |Uβ2|2|Uα2|2) + 2Uα1U
∗
β1Uα2U

∗
β2cos(φ2 − φ1)

= (sin2θcos2θ + cos2θsin2θ) + 2(cosθ)(−sinθ)(sinθ)(cosθ)cos(φ2 − φ1)

= 2cos2θsin2θ(1− cos(φ2 − φ1))

= 2sin2(2θ)sin2(
φ2 − φ1

2
)

where in the last two steps I have used the trigonometric identites cosθsinθ = 1
2
sin(2θ) and 2sin2(θ) =

1− cos(2θ).

Digresson

If the derivation above is a bit confusing, I find it is easier to understand if you write it out explicitly.
Those who understood and could happily reproduce it can skip this bit.

Let’s start with assumption of mixing between two flavour states να and νβ with two mass states
ν1 and ν2 via a 2x2 mixing matrix:(

να
νβ

)
=

(
cosθ sinθ
−sinθ cosθ

)(
ν1

ν2

)
where θ is an unspecified parameter known as the mixing angle. We can write the mass states as(

ν1

ν2

)
=

(
cosθ −sinθ
sinθ cosθ

)(
να
νβ

)
Let us suppose that we start with a beam of neutrinos with some amount of να and νβ at space-

time point (0, 0) and that we direct a beam along the x-axis. Let the neutrino propagate in a vacuum
to a detector at some distance L from the generation point. Using the plane wave solution to the
Schrodinger equation above we can write the mass states at some space-time point (t, x) as

(
|ν1(x, t) >
|ν2(x, t) >

)
=

(
e−iφ1 0

0 e−iφ2

)(
|ν1(0, 0) >
|ν2(0, 0) >

)
(22)

=

(
e−iφ1 0

0 e−iφ2

)(
cosθ −sinθ
sinθ cosθ

)(
|να(0, 0) >
|νβ(0, 0) >

)
(23)

Detection of the neutrino just means that we have a different mixed state at (x,t) :(
|να(x, t) >
|νβ(x, t) >

)
=

(
cosθ sinθ
−sinθ cosθ

)(
|ν1(x, t) >
|ν2(x, t) >

)
(24)

13



and putting it all together :(
|να(x, t) >
|νβ(x, t) >

)
=

(
cosθ sinθ
−sinθ cosθ

)(
e−iφ1 0

0 e−iφ2

)(
cosθ −sinθ
sinθ cosθ

)(
|να(0, 0) >
|νβ(0, 0) >

)
(25)

My matrices are getting too big, so I will write c = cosθ and s = sinθ. Expanding out these
matrices gives(

|να(x, t) >
|νβ(x, t) >

)
=

(
c2e−iφ1 + s2e−iφ2 −cse−iφ1 + sce−iφ2

−cse−iφ1 + sce−iφ2 s2e−iφ1 + c2e−iφ2

)(
|να(0, 0) >
|νβ(0, 0) >

)
(26)

Suppose we wish to know the probability for finding a |νβ > state in the beam at the detector
given that we generated a |να > neutrino at the source. The amplitude, from Equation 26, is

< νβ(x, t)|να(0, 0) > = (cosθsinθ(eiφ2 − eiφ1) < να(0, 0)|
+ (sin2θeiφ1 + cos2θeiφ2) < νβ(0, 0)|)|να(0, 0) >

(27)

where the exponents have change sign due to the fact that < να,β(0, 0)| = |να,β >∗.
If the beam is pure |να > at the source then < νβ(0, 0)|να(0, 0) >= 0 and < να(0, 0)|να(0, 0) >= 1.

Equation 27 becomes

< νβ(x, t)|να(0, 0) >= cosθsinθ(eiφ2 − eiφ1) (28)

and the probability of finding |νβ > in the, initially pure, |να > beam is just

P (να → νβ) = | < νβ(x, t)|να(0, 0) > |2 (29)

= cos2θsin2θ|(eiφ2 − eiφ1)|2 (30)

(31)

We can now expand this exponential term

|(eiφ2 − eiφ1)|2 = (eiφ2 − eiφ1)(e−iφ2 − e−iφ1) (32)

= 2− (ei(φ2−φ1) + e−i(φ2−φ1)) (33)

= 2(1− (ei(φ2−φ1) + e−i(φ2−φ1))/2) (34)

= 2(1− cos(φ2 − φ1)) (35)

(36)

Hence the oscillation probability is

P (να → νβ) = 2cos2θsin2θ(1− cos(φ2 − φ1)) (37)

Now, using the trigonometric identities cosθsinθ = 1
2
sin(2θ) and 2sin2(θ) = 1− cos(2θ), we find that

P (να → νβ) = sin2(2θ)sin2(
φ2 − φ1

2
) (38)
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Back to the main argument...

We have derived the result that the probability of a neutrino generated in flavour να to be detected
as a neutrino of flavour νβ is

P (να → νβ) = sin2(2θ)sin2(
φ2 − φ1

2
) (39)

At this point we need to do something with the phase difference φ2 − φ1. Recall that

φi = Eit− pix (40)

The phase difference is, then,

φ2 − φ1 = (E2 − E1)t− (p2 − p1)x (41)

If we assume that the neutrinos are relativistic (a reasonable assumption), then t = x = L (where L
is the conventional measure of the distance between source and detector) and

pi =
√
E2
i −m2

i = Ei

√
1− m2

i

E2
i

≈ Ei(1−
m2
i

E2
i

) (42)

so

φ2 − φ1 = (
m2

1

2E1

− m2
2

2E2

)L (43)

Now we make a bit of a dodgy approximation. It is usual to assume that the mass eigenstates are
created with either the same momentum or the energy. This assumption is not necessary, but we find
that whatever assumption is made you get the the same result. The fact that we have to make such
an approximation comes from the way that we are modelling the mass eigenstates as plane waves. If
we were to do the analysis assuming that the mass states were wavepackets instead we would (i) not
need the equal momentum (equal energy) assumption and (ii) would still get the same answer. So,
let’s assume that the energies of the mass states are identical. Then

φ2 − φ1 = (
m2

1

2E1

− m2
2

2E2

)L =
∆m2L

2E
(44)

where ∆m2 = m2
1 −m2

2 and E1 = E2 = E.
Substituting back into the probability equation we get

P (νe → νµ) = sin2(2θ)sin2(
∆m2L

4Eν
) (45)

and if we agree to measure L in units of kilometres and E in units of GeV and pay attention to
all the h̄ and c we’ve left out we end up with

P (νe → νµ) = sin2(2θ)sin2(1.27∆m2 L

Eν
) (46)

This is the probability that one generates a νe but detects νµ and is called the oscillation probability.
The corresponding survival probability is the chance of generating a νe and detecting a νe : P (νe →
νe) = 1− P (νe → νµ).
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As you can see, the oscillatory behaviour comes from the difference in the energy eigenvalues of
|ν1 > and |ν2 > (E2 − E1), which we interpret as coming from different masses for each of the mass
eigenvalues.

A plot of this function is shown in Figure 7 for a particular set of parameters : ∆m2 = 3×10−3eV 2,
sin2(2θ) = 0.8 and Eν = 1GeV. At L = 0, the oscillation probability is zero and the corresponding
survival probability is one. As L increases the oscillatios begin to switch on until 1.27∆m2 L

E
= π

2

or L = 400 km. At this point the oscillation is a maximum. However, the mixing angle is just
sin2(2θ) = 0.8 so at maximal mixing, only 80% of the initial neutrinos have oscillated away. As L
increases furthur, the oscillation dies down until, around L = 820 km, the beam is entirely composed
of the initial neutrino flavour. If sin2(2θ) = 1.0, the oscillations would be referred to as maximal,
meaning that at some point on the path to the detector 100% of the neutrinos have oscillated.

Figure 7: The oscillation probability as a function of the baseline, L, for a given set of parameters :
∆m2 = 3× 10−3eV 2, sin2(2θ) = 0.8 and Eν = 1GeV.

As a side comment, the derivation of the oscillation probability depends on two assumptions : that
the neutrino flavour and mass states are mixed and that we create a coherent superposition of mass
states at the weak vertex. This coherent superposition reflects the fact that we can’t experimentally
resolve which mass state was created at the vertex. One might ask oneself what we would expect
to see if we did know which mass state was created at the vertex. If we knew that, we would know
the mass of the neutrino state that propagates to the detector. There would be no superposition, no
phase difference and no flavour oscillation. However there would be flavour change. Suppose that at
the vertex we create a lepton of flavour α and a specific mass state, |νk >. Mixing implies that we’ve
picked out the kth mass state from the α flavour state. The probability of doing this is just

| < νk|να > |2 = U2
kα (47)

This mass state then propagates to the detector, and is detected as a neutrino of flavour β with
probability | < νβ|νk > |2 = |Uβk|2. The flavour change probability is then the incoherent sum

P (να → νβ)mixing =
∑
k

| < νβ|νk > e−iφk < νk|να > |2 =
∑
k

|Uαk|2|Uβk|2 (48)

In the two-flavour approximation, we would have a νe flavour transition probability of
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P (νe → νµ) = |Ue1|2|Uµ1|2 + |Ue2|2|Uµ2|2 (49)

= 2cos2θsin2θ (50)

=
1

2
sin2(2θ) (51)

(52)

and a survival probability of P (νe → νe) = 1− 1
2
sin22θ. In conclusion, if the mass states and flavour

states are mixed then will always be a probability of flavour change. If we can resolve the mass states
at the production vertex, however, this probability will not oscillate. That is, it will be the same
where ever you put the detector. The oscillation only occurs when you don’t know what mass state
was produced (which, realistically, is true all of the time in the case of the neutrino mass states) and
is a purely quantum mechanical effect.

What you should know

• How to derive the two-flavour neutrino oscillation formula, including an understanding of the
approximations that are usually made.

0.4.1 Interpretation of the Atmospheric Neutrino Problem

Look again at Figure 6. How can we interpret this data in terms of oscillations?
Consider the left hand column first. This shows the zenith angle dependence of electron-like data

in different energy bins. This column correlates with the νe component of the cosmic ray neutrino
flux. Notice that there is very little difference between the data and the model prediction in the
absence of oscillations (red line). This suggests that, if neutrino oscillations are responsible for the
atmospheric neutrino problem, they do not involve the νe component. Hence we can assume that the
oscillations are largely νµ → ντ .

Now consider the bottom right hand plot in Figure 6. This shows the zenith angle dependence
of high energy muon-like data, which correlates with the νµ component of the cosmic ray flux. For
neutrinos coming directly from above (cosθzen = 1) there is no difference between data and the
expected distribution in the absence of oscillations. As the zenith angle increases towards and through
90 degrees, the discrepancy between data and expectation grows until, for neutrinos coming upwards
(cosθzen = −1) there is a discrepancy of about 50%. The two-flavour oscillation equation is

P (νµ → ντ ) = sin2(2θatm)sin2(1.27∆m2
atm

L

Eν
) (53)

where θatm and ∆m2
atm are the mixing angle and squared mass difference for the atmospheric neu-

trinos respectively. Let us suppose that ∆m2
atm is around 1 × 10−3eV 2. If L/E is small, then

sin2(1.27∆m2
atm

L
Eν

) is too small for the oscillations to have started. Suppose that the multi-GeV
plot has neutrino energy of about 1 GeV. The baseline for downward going neutrino is on the order
of 10 km, so

1.27∆m2
atm

L

Eν
= 1.27× 10−3 × 10(km)/1(GeV ) = 0.00127 (54)

Hence P (νµ → ντ ) = sin2(2θatm)sin2(0.00127) <= sin2(0.00127) = 1.6 × 10−6. This can explain
the downward going muon-like behaviour - the baseline isn’t long enough for the relevant oscillations
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to have started. However, as the zenith angle sweeps around from zero degrees to 180 degrees, the
distance neutrinos travel to the detector (see Figure 5) sweeps from around 10 km all the way to
around 13000 km. At a baseline of 13000 km,

1.27∆m2
atm

L

Eν
= 1.27× 10−3 × 13000(km)/1(GeV ) = 16.51 (55)

Here P (νµ → ντ ) = sin2(2θatm)sin2(16.51) <= sin2(16.51) = 0.51. This explains the upward-going
muon behaviour. About 50% have oscillated away which seems to agree with the data. In this case
the frequency of oscillation is so fast that the sin2(1.27∆m2

atm
L
Eν

) term just averages to 0.5 and so,

P (νµ → ντ ) ≈ 0.5sin(2θatm). This also seems to suggest that sin(2θatm) ≈ 1.0 or that the mixing
angle is 45 degrees.

In fact, after proper analysis we find that

∆m2
atm = 3× 10−3eV2 sin2(2θatm) = 1.0 (56)

and that the oscillation is almost completely νµ → ντ .

0.4.2 Accelerator Verification

As scientists we must be able to reproduce a measurement. We use accelerator experiments to check
the atmospheric neutrino results. Why accelerators? Well, we need to find an L/E combination
which matches a ∆m2 of 0.003 eV2. Accelerator neutrinos have energies on the order of 1 GeV, so
the optimum baseline is about 400 km, which is experimentally doable.

A schematic of a long-baseline experiment is shown in Figure 8. The beam is pointed at a detector

Figure 8: A schematic of a long-baseline neutrino oscillation experiment.

a few hundred kilometers away. This detector has to be large, in order to detect a large enough
number of neutrinos to make a reasonably precise analysis. This detector is generally called the Far
Detector. A detector, called the Near Detector, is usually also built near the beam production point.
This is used to measure the neutrino beam before oscillation has happened and should be built of the
same kind of technology as the Far Detector to minimise systematic effects.

There are two types of experiments :

• Disappearance Experiments : In a disappearance experiment one observes the energy
spectrum of a beam of neutrinos at the beam source, before oscillations have started, and at the
far detector, after oscillations. The ratio of these spectra should show the oscillation pattern
as in Figure 9. This figure shows the ratio of the far detector neutrino energy spectrum to the
near detector neutrino energy spectrum. The dip is indicative of neutrinos oscillating away,
with the depth of the dip a measure of the mixing angle sin2(2θ) and the position of the dip
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Figure 9: Ratio of neutrino energy spectra before and after oscillation

on the energy axis indicative of the relevant ∆m2. The subtlety with this kind of experiment
is in understanding the beam before oscillation happens. This can be a very complicated task
(since, as we know, you never see neutrinos themselves). Getting this wrong could skew the
results badly and lead to a mismeasurements of the oscillation parameters.

• Appearance Experiments : An appearance experiment looks for the appearance of one
flavour of neutrino in a beam that was generated purely of a different flavour. The problems
with this type of experiment is understanding any backgrounds in the far detector (or the beam)
which could mimic the appearance signature.

0.4.3 The MINOS Experiment

The MINOS experiment is a long-baseline neutrino oscillation experiment designed to test the atmo-
spheric neutrino oscillation hypothesis. Based at Fermilab, the US National Accelerator Laboratory
just outside Chicago, the experiment uses the 0.2 MW NuMI (Neutrinos at the Main Injector) neu-
trino beam to generate a νµ beam with an average energy of 3.0 GeV to a detector based in a salt mine
in Soudan, Northern Minnsota, 732 km away, as shown in Figure 10. The experiment is sensitive to a
∆m2 ∼ 3× 10−3 eV2. MINOS has the usual long baseline design. A near detector, sited about 1 km
away from the beam source, monitors the beam flux and composition before oscillation has occurred.
The near detector is an iron tracking calorimeter with a mass of about 980 tons. It is constructed
from inch thick iron plates, interspersed with planes of scintillator bars. Scintillator materials emit
light when a charged particle passes through it, and MINOS detects this light using optical fibres and
photomultipliers. A picture of the MINOS near detector is shown in Figure 11. A unique aspect of
this experiment is that the near detector is magnetised so that charged current interactions of νµ can
be distinguished from interactions of νµ.

The far detector, sited in the Soudan mine, has the same design as the near detector but is, of
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Figure 10: Schematic of the MINOS experiment baseline. The neutrinos are generated at Fermilab
in Illinois and detected in a mine in Minnesota.

Figure 11: Photograph of the MINOS near detector (left) and the far detector (right). Note the
magnetic coil and veto shield installed in and around the far detector. The veto shield vetos muons
from atmospheric neutrino interactions in the rock surrounding the detector.

course, much larger. This is because the neutrino beam widens as it travels between Fermilab and
Soudan and more mass is needed to provide a large enough event rate. It is constructed from 5.4 kton
of iron, and is sited 716 metres underground. Uniquely it too is magnetised, making it the world’s
only magnetised underground detector. A picture of the MINOS far detector is shown in Figure 11.

MINOS primarily studied νµ disappearance. It’s latest results are shown in Figure 12. The left-
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handed figure shows the neutrino energy spectrum measured in the MINOS far detector. The red
line shows distribution of events that MINOS expected to see in the absence of oscillations. The
black dots shows the data that MINOS collected. There is clearly a deficit towards lower energies
and if one fits a two-flavour oscillation hypothesis to the data one gets the blue line. Further, if the
data is divided by the expected flux we see the classic disappearance dip as shown in the right hand
figure. The allowed region on the sin22θ,∆m2 plot is shown in Figure 13. The best fit point is at
(sin22θ,∆m2)best = (1.0, 2.41+0.09

−0.10 × 10−3eV2).

0.4.4 The T2K Experiment

The latest measurements of the atmospheric oscillation parameters has recently been made with the
T2K (Tokai-2-Kamioka) experiment in Japan. This is a long-baseline experiment that has been built
to measure the θ13 mixing angle (see the discussion on the θ13 measurements below), but measurements
in the 23−sector can also be made with unprecedented precision. T2K directs a 99.5% pure beam
of νµ neutrinos from the J-PARC facility in a small town on the East Coast of Japan called Tokai.
The beam is directed towards the Super-Kamiokande water Cerenkov detector in the mountains off
the West Coast of Japan, about 295 km away. The experiment is the first beam to operate off-axis,
so that the beam is directed to one side of Super-Kamiokande by about 2.5o. The neutrino energy
spectrum that would be expected at Super-Kamiokande in the absence of oscillations is shown in right
plot in Figure 14. The average neutrino energy is about 600 MeV.

The latest νµ disappearance measurements are shown in Figure 15. The figure on the left shows
the neutrino energy spectrum expected to be seen in the far detector in the absence of oscillations
(black histogram). The data is shown by the black dots. A fit to a three-flavour oscillation model is
shown by the red line. The ratio of the red line and data to the unoscillated expectation (black line)
is shown below. There is a clear disappearance of νµ at the expected energy. One can even see the
characteristic increase in the ratio at energies below the oscillation minimum. The fitted oscillaton
contour is shown on the right. The T2K result is shown by the red line, the MINOS result is shown
by the green line and the Super-Kamiokanded results by the blue and grey line. T2K now holds the
best measurement for the mixing angle and mass difference for the 23−sector. The best fit point is
at (sin22θ,∆m2)best = (1.0, 2.44± 0.31× 10−3eV2).

What you should know

• How the atmospheric neutrino data can be interpreted in the context of two-flavour neutrino
oscillations.

• What a long–baseline experiment is, and the difference between disappearance and appearance
experiments.

• What the MINOS experiment was and how it has improved the interpretation of the atmospheric
oscillation solution.

• What the T2K experiment was and its measurements of the atmospheric oscillation solution.

0.5 Interpretation of the Solar Neutrino Data

Naively one might assume that one can do the same sort of analysis as for atmospheric neutrinos.
The sun is about L = 108 km away from the earth, and the neutrino energy is on the order of 10
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Figure 12: 2010 MINOS data. The figure on the left shows the neutrino energy spectrum expected
to be seen in the far detector in the absence of oscillations (red line). The data is shown by the black
dots. A fit to a two-flavour oscillation model is shown by the blue line. If one divides the data by
the expected data without oscillations one gets the plot on the right showing the classic oscillation
disappearance dip. Also shown on the figure on the right is the sort of ratio one would expect for
other hypothesis - namely neutrino decay (red line) and neutrino decoherence (green line). Clearly
the neutrino oscillation hypothesis best fits the data.

Figure 13: The region of the (sin22θ,∆m2) plane allowed by the MINOS data. The best fit point is at
(sin22θ,∆m2)best = (1.0, 2.32+0.12

−0.08×10−3eV2). The red line denotes the 90% confidence region defined
by the MINOS νµ disappearance data. The black line delineates the 90% confidence region using data
that includes the MINOS νµ data, as well as the MINOS antineutrino data and atmospheric data.
The green line shows recent T2K data (see below). The blue lines show the results from the previous
Super-Kamiokande experiment.

MeV. That would seem to suggest a ∆m2
sol of about 1× 10−10 eV2. However, there is something else

going on in the sun.
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Figure 14: (Left) Baseline of the T2K experiment (Right) Neutrino energy spectrum expected to be
seen at Super-Kamiokande in the absence of neutrino oscillations. The black line shows the on-axis
spectrum. Super-Kamiokande, though, is about 2.5o off-axis and will view the much more collimated
spectrum delineated by the green line.

0.5.1 The MSW Effect (not examinable)

Neutrino oscillations occur because of a difference in phase between the wavepackets of each of the
mass eigenstates. This phase difference can occur from wavepackets which propagate with different
velocities arising from mass differences. This is what happens in the vacuum. In matter, however, the
phase difference is determined by the total energy of the mass eigenstate. If the neutrino is propagating
in a potential, V, then the total energy of a state is E+V , and if the potential is different for different
neutrino flavours (i.e. different flavours interact differently) then a phase difference can be introduced
through the interaction potential - and the neutrinos will oscillate through matter effects. Let’s see
how this might work.

Suppose a neutrino is born with momentum p. In the vacuum, the mass states with masses mi

have energies Ei =
√
p2 +m2

i ≈ p+
m2
i

2p
.

The the time dependence of the mass eigenstates has already been written in Equation 18

|νi(x, t) >= e−i(Eit−p·x)|νi(0, 0) > (57)

Differentiating this equation with respect to time, and ignoring the common phase factor eip·x, we
obtain the time development equation, in matrix form,

i
d

dt

(
ν1

ν2

)
= H

(
ν1

ν2

)
(58)

where H is the Hamiltonian operator. In a vacuum, this operator is

H =
1

2E

(
m2

1 0
0 m2

2

)
(59)
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Figure 15: 2013 T2K disappearance data. The figure on the left shows the neutrino energy spectrum
expected to be seen in the far detector in the absence of oscillations (black histogram). The data is
shown by the black dots. A fit to a three-flavour oscillation model is shown by the red line. The
ratio of the red line and data to the unoscillated expectation (black line) is shown below. There is
a clear disappearance of νµ at the expected energy. One can even see the characteristic increase in
the ratio at energies below the oscillation minimum. The fitted oscillaton contour is shown on the
right. The T2K result is shown by the red line, the MINOS result is shown by the green line and the
Super-Kamiokanded results by the blue and grey line.

Now, we can write Equation 58 in the flavour states, να and νβ, assuming the usual 2x2 mixing
matrix

U =

(
cosθ sinθ
−sinθ cosθ

)
(60)

as (
να
νβ

)
= U

(
ν1

ν2

)
(61)

Equation 58 may be expressed in the flavour basis as

i
d

dt

(
ν1

ν2

)
= U †i

d

dt

(
να
νβ

)
= H

(
ν1

ν2

)
= HU †

(
να
νβ

)
(62)

or, multiplying on the left by U

i
d

dt

(
να
νβ

)
= UHU †

(
να
νβ

)
(63)

In the vacuum, the transformed Hamiltonian is

Hf = UHU † =
(m2

1 +m2
2)

2E
1 +

∆m2

2E

(
−cos2θ sin2θ
sin2θ cos2θ

)
(64)

where 1 is the 2x2 unit matrix. For convenience, let’s label (
(m2

1+m2
2

4E
)1 as H0.

i
d

dt

(
να
νβ

)
= [H0 +

∆m2

4E

(
−cos2θ sin2θ
sin2θ cos2θ

)
]

(
να
νβ

)
(65)
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Now, let’s suppose that the neutrinos are moving in a non-zero potential. Then you have to add
a potential term to Schrodinger Equation

i
d

dt

(
να
νβ

)
= (Hf + V )

(
να
νβ

)
(66)

There is nothing to suggest that the interaction potential that να experiences is the same as that
which νβ experiences. Hence, labelling the potential that να experiences as Vα and the potential that
νβ experiences as Vβ then

i
d

dt

(
να
νβ

)
= [H0 +

(
−∆m2

4E
cos2θ + Vα

∆m2

4E
sin2θ

∆m2

4E
sin2θ ∆m2

4E
cos2θ + Vβ

)
]

(
να
νβ

)
(67)

Now, we can always add a constant to this without affecting the final result, because that constant
will eventually appear as a constant phase. When I take the modulus squared to get the probability,
that constant phase will vanish. So, I’ll add a term proportional to −Vβ so Equation 67 becomes

i
d

dt

(
να
νβ

)
= [H0 +

(
−∆m2

4E
cos2θ + (Vα − Vβ) ∆m2

4E
sin2θ

∆m2

4E
sin2θ ∆m2

4E
cos2θ

)
]

(
να
νβ

)
(68)

What does this mean? Well, compare Equation 67 and Equation 65. The addition of the interac-
tion potential difference means that we can no longer say that(

να
νβ

)
=

(
cosθ sinθ
−sinθ cosθ

)(
ν1

ν2

)
(69)

The interaction has changed the mass eigenstates. You can get a picture of what is going on by
thinking about throwing a cricket ball. In order to measure the mass of the ball, you can throw it
with a given force and measure how far it goes. If the ball is thrown with the same force in a viscous
liquid, which simulates the interaction of the neutrino with its environment through the potential, it
will travel a shorter distance. You would then imagine that it had a heavier mass than its rest mass
in vacuum - interaction with the environment gives the ball a heavier effective mass. More rigorously,
in a vacuum the neutrino mass eigenstate obeys the equation

E2 − p2 = m2
i (70)

. In a potential, V, this takes the form

(E + V )2 − p2 ≈ m2
i + 2EV (71)

. The effective mass of the neutrino is now m′i =
√
m2
i + 2EV . So we need now to express Equation

68 in terms of mass eigenstates with mass eigenvalues equivalent to the effective masses, not the
vacuum mass values.

What potential are we talking about and why is there a difference between νe and νµ. Taking
the last part of that question first, we can see that there must be a difference in how the νe behaves
in matter from how the νµ behaves in matter. Muon neutrinos produced in the solar core can only
interact via the neutral current. They don’t have enough energy to create a charged muon in the
charged current process. Electron neutrinos, however, can interact via both the charged and neutral
currents. The Feynman diagrams are shown in Figure 16. Hence the electron neutrinos can interact
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Figure 16: Interactions that the electron and muon neutrinos can have in the sun. Muon neutrinos
can only interact via the neutral current, whereas electron neutrinos can interact via both the charged
and neutral currents.

differently from the other types of neutrinos. Although it won’t be important for our argument, the
potential difference we are concerned about has the form

Vα − Vβ = 2
√

2GFENe (72)

where GF is the Fermi constant, E is the neutrino energy and Ne is the electron number density in
matter. This is sensible as (i) the cross section is a linear function of energy and (2) the more electrons
there are, the more charged current interactions the νe can have and the larger the difference between
νe and νµ.

Transforming the flavour Hamiltonian back into the vacuum mass basis using the mixing matrix,
U, we get

i
d

dt

(
ν1

ν2

)
= U †i

d

dt

(
να
νβ

)
(73)

= U †[H0 +

(
−∆m2

4E
cos2θ + (Vα − Vβ) ∆m2

4E
sin2θ

∆m2

4E
sin2θ ∆m2

4E
cos2θ

)
]

(
να
νβ

)
(74)

= (U †[H0 +

(
−∆m2

4E
cos2θ ∆m2

4E
sin2θ

∆m2

4E
sin2θ ∆m2

4E
cos2θ

)
]U + U †

(
Vα − Vβ 0

0 0

)
U ]

(
ν1

ν2

)
(75)

=
1

2E
[

(
m2

1 0
0 m2

2

)
+

(
∆V cos2θ ∆V cosθsinθ

∆V cosθsinθ ∆V sin2θ

)
]

(
ν1

ν2

)
(76)

= [
1

2E

(
m2

1 + ∆V cos2θ ∆V cosθsinθ
∆V cosθsinθ m2

2 + ∆V sin2θ

)
]

(
ν1

ν2

)
(77)

where I have defined ∆V ≡ Vα − Vβ.
Notice that the mass matrix is no longer diagonal. This means that the mass eigenstates in the

vacuum are not eigenstates of the Hamiltonian in matter. In order to get the correct eigenstates, we
need to diagonalise this matrix. When we do this we find the modified mass eigenvalues in matter,
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m1m and m2m are

m2
1m,2m =

1

2
[(m2

1 +m2
2 + ∆V )±

√
(∆V −∆m2cos2θ)2 + (∆m2)2sin22θ (78)

with a mass splitting of

∆m2
m = m2

1m −m2
2m = ∆m2

√
(∆V/∆m2 − cos2θ)2 + sin22θ (79)

We can now perform the standard oscillation analysis to find a mixing angle θm which links the
new mass eigenstates with the flavour states. To cut a long story short, we find that

sin2θm =
sin2θ√

(∆V /∆m2 − cos2θ)2 + sin22θ
(80)

The oscillation probabilities still have the same form as the standard two-flavour mixing, but are
now expressed in terms of the mass eigenstates in matter and the matter modified mixing angle :

Pm(νe → νµ) = sin2(2θm)sin2(1.27∆m2
m

L

E
) (81)

Observations

Let us consider the results for ∆m2
m and sin22θm for a moment.

• If ∆V = 0 (i.e. when in the vacuum where there is no matter to provide a potential differ-
ence), then ∆m2

m = ∆m2 and sin22θm = sin22θ. That is, in the vacuum the matter modified
parameters reduce to the vacuum parameters. Good.

• If sin22θ = 0, then sin22θm = 0, regardless of the potential. For there to be oscillations in
matter, one must already have the possibility of vacuum mixing.

• if the matter is very dense, ∆V → ∞, then sin22θm → 0. In very dense matter, oscillations
cannot occur via matter effects or otherwise.

• if ∆V /∆m2 = cos2θ then the matter mixing angle is 1.0 - regardless of the value of the vacuum
mixing angle. This is interesting. Even if the vacuum mixing is tiny, there may still be some
value of the electron number density where the probability of oscillations is 100%. This is called
the MSW resonance.

• Notice that if ∆m2 → −∆m2 in Equation 80, the term (∆V /∆m2− cos2θ) in the denominator
will have a different value and the effective mixing angle will be different. Using matter effects
we can obtain an estimate for the sign of the mass difference. This is the only way we can do
this - it cannot be done with vacuum oscillations.

So what is going on in the sun? Well, suppose the electron neutrino is born in the solar core in
conditions of high density. According to our results, it cannot oscillate there. It starts to propagate
outwards from the core, towards the vacuum. At some point, between the core and the vacuum, it
crosses a region of the sun with electron number density that fulfills the resonance condition. In that
region it oscillates from νe to νµ. Once out of this region, the matter density is too small to support
matter oscillations, and the νµ leaves the sun to travel to earth.
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In other words, some solar neutrinos do not oscillate on their way from the edge of the sun to
earth. They have already oscillated by the time they get to the outer regions of the sun. They are
generated as νe and leave the sun as νµ.

I say “some” because the situation is furthur complicated by energy dependence. Some neutrinos
have so low an energy that they don’t oscillate in the sun, but do in the vacuum. If one plugs the solar
parameters (below) into the two-flavour oscillation formula, one finds that the survival probability
P (νe → νe) is about 57%. This explains the different fractions of νe observed by experiments with
different thresholds. At low energies, more neutrinos leave the sun without oscillating, but have a
50% change of oscillating on the journey from sun to earth. As the energy increases, the probability
of oscillation within the sun through the matter effect increases, so the survival probability decreases.
We believe, incidentally, that matter enhanced oscillation predominantly affects the 7Be flux, but
the p-p flux should be minimally affected. More experiments capable of probing the very low energy
solar flux, in order to check this, are being built and run as I write (see the Borexino experiment, for
example).

Solar Results

After analysis of all the solar data we find that it can be explained by the parameters

∆m2
sol = (7.6± 0.2)× 10−5eV2 sin2(2θsol) = 0.8± 0.1 (82)

and that the oscillation is almost completely νe → νµ. It’s interesting to note that the solar mixing
angle is not maximal - θ ≈ 32◦.

0.5.2 Verification of the solar oscillation parameters

In order to check the solar oscillation analysis we need to make an experiment which is sensitive to
∆m2 ≈ 10−5 eV2. We can’t really do this with accelerators at the moment. The sort of energies one
derives at accelerators is on the order of 1 GeV or larger, implying a baseline of L > 100000 km.
That’s about 10 times the diameter of the planet.

Instead we make use of the other artifical terrestrial neutrino source - reactors. These produce
electron anti-neutrinos with energies around 5 MeV. Using these as a source, one only requires a
baseline of about 100 km.

The experiment KamLAND is a liquid scintillator detector sited in the Kamioka mine next to
Super-Kamiokande in Japan. Japan has a thriving nuclear power industry, and at least 50 nuclear
power stations are close enough to Kamioka (see Figure 17) that KamLAND is capable of detecting
νe from them. Since the energy of the antineutrinos is very low, KamLAND has to be extremely
pure, else it will be overloaded by background from the radioactive decay of other isotopes in the
local region or in the detector itself.

KamLAND is a disappearance experiment. It has an advantage that the amount of matter be-
tween the detector and the reactors is too small to support any type of MSW effect, so KamLAND
should measure the true solar vacuum oscillation parameters. Reactors produce pure beams of νe, so
KamLAND trys to measure a deficit in the number of antineutrinos observed. Figure 18 shows the
solar oscillation parameter allowed region in the (sin2θ13,∆m

2
12) plane as measured by KamLAND

and by a compilation of the solar neutrino experiments. The best fit points for the solar oscillation
parameters are (sin22θ12,∆m

2
12)best = (0.304+0.022

−0.016, 7.65+0.23
−0.20 × 10−3 eV2). Notice, by the way, the

complementarity between KamLAND and the other solar experiments. The experiment viewing the
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Figure 17: Locations of all nuclear reactors visible from the KamLAND detector.

sun have large statistical power, but poor energy resolution, leading to the vertical elliptical error
ellipse in the allowed region. KamLAND, on the other hand, doesn’t see many events, but knows
what their energy is, so sets a more horizontal ellipse. The two constrain the allowed region to the
small red region where both experiments are consistent.

Figure 19 results shows a plot of the ratio of the observed to expected antineutrino events for an
average L/E (an average since the neutrino sources are at different baselines - KamLAND just assigns
all the events to an average L). This figure is the first actual proof that oscillations are happening - it’s
the first picture of an oscillation. KamLAND’s analysis, combined with the other solar experiments,
yielded

∆m2
sol = 7.9× 10−5eV2 sin2(2θsol) = 0.81 (83)

What you should know

• The general properties of matter effects in neutrino oscillations (note : not the mathematics).
One need only know that νe experiences interactions in matter than the other flavours do not.
This modifies the mixing angle and the mass squared difference from their vacuum values.

• How neutrino oscillations explain the solar results, and how this was confirmed using the Kam-
LAND detector.
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Figure 18: Allowed region for the solar oscillation parameters. Here the best fit values are
(sin22θ12,∆m

2
12)best = (0.304+0.022

−0.016, 7.65+0.23
−0.20 × 10−3 eV2).

0.6 Three Neutrino Oscillations

Of course, there are more than two neutrinos. There are three, and that implies that the mixing
matrix can be (i) 3x3 , (ii) complex and (iii) unitary. In this case we haveνeνµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 (84)

This is known as the Pontecorvo-Maka-Nakagawa-Sakata (PMNS) matrix and does the same job in
the neutrino sector as the CKM matrix does in the quark sector.

The fact that the matrix is unitary means that

U †U = I → U † = U−1 = (U∗)T (85)

and from this ν1

ν2

ν3

 =

U∗e1 U∗µ1 U∗τ1

U∗e2 U∗µ2 U∗τ2

U∗e3 U∗µ3 U∗τ3

νeνµ
ντ

 (86)

The unitarity of the PMNS matrix gives several useful relations:Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

U∗e1 U∗µ1 U∗τ1

U∗e2 U∗µ2 U∗τ2

U∗e3 U∗µ3 U∗τ3

 =

1 0 0
0 1 0
0 0 1

 (87)
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Figure 19: Ratio of observed to expected antineutrino rates as a function of the average L/E at
KamLAND

so

Ue1U
∗
e1 + Uµ1U

∗
µ1 + Uτ1U

∗
τ1 = 1

Ue2U
∗
e2 + Uµ2U

∗
µ2 + Uτ2U

∗
τ2 = 1

Ue3U
∗
e3 + Uµ3U

∗
µ3 + Uτ3U

∗
τ3 = 1

Ue1U
∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0

Ue1U
∗
τ1 + Ue2U

∗
τ2 + Ue3U

∗
τ3 = 0

Uµ1U
∗
τ1 + Uµ2U

∗
τ2 + Uµ3U

∗
τ3 = 0

(88)

The oscillation probability is calculated just as before. Assume that at time t=0, we create a
neutrino in a pure |να > state.

|ψ(x = 0) >= Uα1|ν1 > +Uα2|ν2 > +Uα3|ν3 > (89)

The wavefunction evolves as

|ψ(t) >= Uα1|ν1 > e−ip1·x + Uα2|ν2 > e−ip2·x + Uα3|ν3 > e−ip3·x (90)

where pi · x = Eit − pi · x. After travelling a distance L the wavefunction is (assuming that the
neutrino is relativistic)

|ψ(L) >= Uα1|ν1 > e−iφ1 + Uα2|ν2 > e−iφ2 + Uα3|ν3 > e−iφ3 (91)

with φi = pi · x = Eit− |pi|L ≈ (Ei − |pi|)L. As before, we can approximate Ei by

Ei ≈ pi +
m2
i

2Ei
(92)
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so

φi = (Ei − |pi|)L ≈
m2
i

2Ei
L (93)

.
Expressing the mass eigenstates in terms of the flavour eigenstates:

|ψ(L) >=Uα1e
−iφ1(U∗e1|νe > +U∗µ1|νµ > +U∗τ1|ντ >)

+ Uα2e
−iφ2(U∗e2|νe > +U∗µ2|νµ > +U∗τ2|ντ >)

+ Uα3e
−iφ3(U∗e3|νe > +U∗µ3|νµ > +U∗τ3|ντ >)

(94)

which can be arranged to give

|ψ(L) >=(Uα1U
∗
e1e
−iφ1 + Uα2U

∗
e2e
−iφ2 + Uα3U

∗
e3e
−iφ3)|νe >

+ (Uα1U
∗
µ1e
−iφ1 + Uα2U

∗
µ2e
−iφ2 + Uα3U

∗
µ3e
−iφ3)|νµ >

+ (Uα1U
∗
τ1e
−iφ1 + Uα2U

∗
τ2e
−iφ2 + Uα3U

∗
τ3e
−iφ3)|ντ >

(95)

from which we can get the oscillation probability P (να → νβ) :

P (να → νβ) =| < νβ|ψ(L) > |2

= (Uα1U
∗
β1e
−iφ1 + Uα2U

∗
β2e
−iφ2 + Uα3U

∗
β3e
−iφ3)2

(96)

The terms in this expression come from the diagrams in Figure 20. The mathematics do not really
concern us. Using the complex relationship

|z1 + z2 + z3|2 = |z1|2 + |z2|2 + |z3|2 + 2<(z1z
∗
2 + z1z

∗
3 + z2z

∗
3) (97)

we can write Equation 96 as (eventually)

P (να → νβ) =δαβ − 4
∑
i>j

Re(U∗αiUβiUαjU
∗
βj)sin

2(∆m2
ij

L

4E
)

+ 2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj)sin(∆m2

ij

L

2E
)

(98)

The PMNS matrix is usually expressed by 3 rotation matrices and a complex phase:

U =

1 0 0
0 cosθ23 sinθ23

0 −sinθ23 cosθ23

 cosθ13 0 sinθ13e
−iδCP

0 1 0
−sinθ13e

iδCP 0 cosθ13

 cosθ12 sinθ12 0
−sinθ12 cosθ12 0

0 0 1

 (99)

which, when multplied out (and purely for reference for later equations) is

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

 (100)

where cij = cosθij and sij = sinθij. The first matrix is called the ”12-sector”, the second matrix
is the ”13-sector”, and the third is the ”23-sector”. The second matrix is responsible, possibly, for
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Figure 20: The diagrams for each term in the three-neutrino oscillation probability.

CP-violation. We’ll talk about that below. For now let’s set δCP to zero. If this is the case, then the
imaginary term in Equation 98 vanishes and we are left with

P (να → νβ) = δαβ − 4
∑
i>j

(UαiUβiUαjUβj)sin
2(∆m2

ij

L

4E
) (101)

We also must remember the squared mass difference. There are 3 neutrino mass eigenstates, and
hence 2 independent mass splittings, called ∆m2

23 and ∆m2
12. The other splitting is defined by the

relationship
∆m2

12 + ∆m2
23 + ∆m2

31 = 0 (102)

We know from the solar and atmospheric neutrino problems that these splittings have values around
+8× 10−5 eV2 and 3× 10−3 eV2. To go ahead a bit, the mass splitting relating to the 23 sector is
the atmospheric neutrino mass difference : ∆m2

23 = 3× 10−3eV2 and the splitting relating to the 12
sector is the solar mass difference : ∆m2

12 = 8× 10−5eV2
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Let’s consider an appearance experiment. In this case α 6= β. Then

P (να → νβ) =− 4
∑
i>j

(UαiUβiUαjUβj)sin
2(1.27∆m2

ij

L

E
)

= −4[(Uα1Uβ1Uα2Uα2)sin2(1.27∆m2
12

L

E
)

+ (Uα1Uβ1Uα3Uα3)sin2(1.27∆m2
13

L

E
)

+ (Uα2Uβ2Uα3Uα3)sin2(1.27∆m2
23

L

E
)]

(103)

Equation 103 can be split into two cases. The first occurs for experiments where L/E is small. In
this case

sin2(1.27∆m2
12

L

E
)→ 0 (104)

and, with the reasonable approximation that ∆m2
13 ≈ ∆m2

23,

P (να → νβ) = −4[Uα1Uβ1Uα3Uβ3 + Uα2Uβ2Uα3Uβ3]sin2(1.27∆m2
23

L

E
) (105)

The other case occurs when L/E is large. Then the terms involving ∆m2
23 and ∆m2

13 are rapidly
oscillating and average to 0.5

sin2(1.27∆m2
23

L

E
)→< sin2(1.27∆m2

23

L

E
) >=

1

2
(106)

sin2(1.27∆m2
13

L

E
)→< sin2(1.27∆m2

13

L

E
) >=

1

2
(107)

and

P (να → νβ) =− 4[(Uα1Uβ1Uα2Uβ2)sin2(1.27∆m2
12

L

E
)

+
1

2
(Uα1Uβ1Uα3Uβ3 + Uα2Uβ2Uα3Uβ3)]

(108)

Replacing the elements Uij with the mixing angle terms from the PMNS matrix, and remembering
that δCP = 0, we can use the unitarity relations in Equation set 88 to get (after a while) for the small
L/E case

P (νµ → ντ ) = cos2(θ13)sin2(2θ23)sin2(1.27∆m2
23

L

E
) (109)

P (νe → νµ) = sin2(2θ13)sin2(θ23)sin2(1.27∆m2
23

L

E
) (110)

P (νe → ντ ) = sin2(2θ13)cos2(θ23)sin2(1.27∆m2
23

L

E
) (111)

and for the large L/E case

P (νe → νµ,τ ) = cos2(θ13)sin2(2θ12) sin2(1.27∆m2
12

L

E
) +

1

2
sin2(2θ13) (112)

Now, if θ13 = 0 then these equations reduce to:
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• Small L/E :

P (νµ → ντ ) = sin2(2θ23)sin2(1.27∆m2
23

L

E
)

P (νe → νµ) = 0

P (νe → ντ ) = 0

• Large L/E :

P (νe → νµ,τ ) = sin2(2θ12) sin2(1.27∆m2
12

L

E
) (113)

These are the same equations we used for the atmospheric and solar oscillations. We therefore
identify the 23-sector with atmospheric neutrinos with a ∆m2

23 ≈ 3 × 10−3 eV2, and the 12-sector
with solar neutrinos with a ∆m2

12 ≈ 8× 10−5 eV2.
We have some information about the atmospheric and solar oscillation sectors. We also know that

P (νµ → νe) is small for atmospheric neutrinos. This suggests that θ13 is small too. Can we do better?

0.6.1 The Measurement of θ13

We would like to be able to determine θ13 without having to include the other mixing angles. This is
because, although measured, they have large errors, and inclusion will just make the θ13 measurement
more imprecise. We can do this by looking at the survival probability P (νe → νe). Going back to
Equation 103, we can write

P (νe → νe) = 1− 4[U2
e1U

2
e2sin

2(1.27∆m2
12

L

E
)

+ U2
e1U

2
e3sin

2(1.27∆m2
13

L

E
)

+ U2
e2U

2
e3sin

2(1.27∆m2
23

L

E
)]

(114)

Since ∆m2
13 ≈ ∆m2

23 and, from the unitarity conditions, U2
e1 + U2

e2 + U2
e3 = 1

P (νe → νe) = 1− 4[U2
e1U

2
e2sin

2(1.27∆m2
12

L

E
) + U2

e3(1− U2
e3)sin2(1.27∆m2

23

L

E
)]

= 1− 4[(cosθ12cosθ13)2(sinθ12cosθ13)2sin2(1.27∆m2
12

L

E
)

+ sin2(θ13)(1− sin2(θ13))sin2(1.27∆m2
23

L

E
)]

= 1− cos4(θ13)(2sinθ12cosθ12)2sin2(1.27∆m2
12

L

E
)

− (2cosθ13sinθ13)2sin2(1.27∆m2
23

L

E
)

= 1− cos4θ13sin
2(2θ12)sin2(1.27∆m2

12

L

E
)− sin2(2θ13)sin2(1.27∆m2

23

L

E
)

(115)

The first term has a contribution from the solar oscillation wavelength

λsol =
E

2.54∆m2
12

(116)
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, and the second term provides a contribution from the atmospheric oscillation wavelength

λatm =
E

2.54∆m2
23

(117)

. For a 1 MeV neutrino, λsol = 30.0km and λatm = 0.8km. If we have a baseline of about 1 km, then,
the survival probability is

P (νe → νe) ≈ 1− sin2(2θ13)sin2(1.27∆m2
23

L

E
) (118)

which eliminates all the other mixing angles. So all we need to do is find a νe beam with energy
around a few MeV and put a detector a kilometre away from the source.

This is a bit difficult, however, as there are no known terrestrial νe sources which obey these
conditions. However, there are nuclear reactors which produce bucket-loads of νe. Can we relate
P (νe → νe) with P (νe → νe)?

C,P and T violation

Recall that there are three discrete symmetries used in particle physics:

• Charge conjugation Ĉ : C changes particles to antiparticles

• Parity P̂ : P reverses the spatial components of wavefunctions

• Time T̂ : T reverses the interaction by running time backwards

The weak interaction violates P̂ . It also violates Ĉ. Consider the decay in Figure 21. The decay is

Figure 21: Ĉ and P̂ violation in pion weak decay. The blue arrows are the particle, and the red
arrows show the spin vectors of each particle.

π− → µ− + νµ. Parity flips the direction of the particles, but not the spin, resulting in a left-handed
antineutrino, which is not allowed. Charge conjugation changes particles to antiparticles, resulting
in the decay π+ → µ+ + νµ, which would be fine, except that the neutrino is right-handed. This,

again, is not allowed. However, the application of ĈP̂ changes left-handed particles into right-handed
anti-particles and the resulting decay can happen. ĈP̂ invariance implies that the probability of a
particular interaction happening is identical to the probability of the ĈP̂ transformed interaction
occurring. Actually we know that ĈP̂ is violated at a low level in weak decay. We believe that ĈP̂ T̂
has to apply.

How do these symmetries affect neutrino oscillations?
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• Time Reversal : This flips the time direction of the oscillation:

(να → νβ)→ (νβ → να) (119)

. Invariance under time reversal implies that

P (να → νβ) = P (νβ → να) (120)

• CP : This flips the signs of the neutrinos and direction of oscillation

(να → νβ)→ (να → νβ) (121)

. Invariance under CP implies that

P (να → νβ) = P (να → νβ) (122)

• CPT : This flips the signs and directions of the neutrinos and changes the direction of time

(να → νβ)→ (νβ → να) (123)

Invariance under CPT implies that

P (να → νβ) = P (νβ → να) (124)

From the point of view of the νe experiment we were talking about above, CPT invariance implies
that P (νe → νe) = P (νe → νe). Hence, the survival probability should be the same for electron
antineutrinos from reactors as for electron neutrinos of the same energies :

P (νe → νe) = 1− sin2(2θ13)sin2(1.27∆m2
23

L

E
) = P (νe → νe) (125)

0.6.2 The measurement of θ13

A good way, then, of measuring θ13 is to look at the disappearance of νe in a flux of neutrinos from
a reactor. The detector should be placed about 1 km away so there is no interference from the solar
oscillation term. This was finally done in 2012 by three reactor experiments : Daya Bay in China,
Double CHOOZ in France and RENO in South Korea. Of interest to this story is Daya Bay - a
reactor experiment with the largest reach in measuring θ13. Daya Bay is in Southern China, near
Hong Kong. It comprises 6 nuclear reactor cores, providing a hugh flux of electron anti-neutrinos.
The cores are viewed by six 20 ton liquid scintillator detectors at baselines of 360 m, 500 m and
1700 m from the reactors as shown in Figure 22 The addition of these medium baseline detectors are
valuable in measuring the L/E behaviour of any oscillation observed.

In 2012 Daya Bay reported a positive measurement of sin2(2θ13). This is shown on the right of
Figure 22. The histogram shows the measured energy spectrum of νe from the reactors in the absence
of oscillations. The data points show the measurements. There is a clear deficit in the observed data
at the peak. Futhermore, the deficit is baseline-dependent. If interpreted as arising from neutrino
oscillations, this deficit can be used to measure θ13. The result is sin2(2θ13) = 0.089 ± 0.010. This
gives a mixing angle of θ13 ≈ 8.6◦. This result was quickly validated by measurements from RENO
and Double CHOOZ who reported mixing angle measurements of sin2(2θ13) = 0.113 ± 0.02 and
sin2(2θ13) = 0.107± 0.05. It seems that θ13 is actually quite large.
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Figure 22: (left) A schematic of the Daya Bay experiment, showing the six reactor cores used to
generate the νe flux and the location of the 6 detectors at different baselines (right) Daya Bay’s
reported results. The histogram shows the energy spectrum of νe expected in the absence of oscillations
(black histogram) and the measured energy spectrum (black dots).

T2K Returns

T2K was mentioned above in the context of the measurement of ∆m2
23 and sin2(2θ23) using νµ disap-

pearance. However, it was designed and built primarily to measure θ13 by looking for νe appearance
in a νµ beam. The oscillation probability has been calculated above and is, in the two-flavour approx-
imation,

P (νµ → νe) = sin2(2θ13)sin2(θ23)sin2(1.27∆m2
23

L

E
) (126)

The T2K beam is almost pure νµ so the idea is to look for the appearance of electron-type neutrinos
in the far detector, Super-Kamiokande. T2K uses the electron identification properties of the Super-
Kamiokande detector. The performance of T2K for νe appearance is shown in left-hand plot of Figure
23. T2K expects to be able to push the limit on sin2(2θ13 lower than the CHOOZ bound by an order
of magnitude after 5 years of running. The limits of the allowed region are expected to be smaller
on ∆m2 by about a factor of 2 - mainly due to the off-axis nature of the beam and hence the better
knowledge of the neutrino energy. The limits on the mixing angle are lessened by a factor of 5, mainly
due to the fact that T2K uses a more intense beam than MINOS and can therefore collect more
events.

T2K switched on in mid-2010. In March 2011 it was hit by the Japanese earthquake and only
started to taking data again a year later, in March 2012. However it had built up a dataset before
the earthquake which has been analysed with interesting results. In the electron neutrino apeearance
search, the far detector recorded 11 electron neutrino interactions associated with the T2K beam. It
expected to see 3.2 events from known background sources. The large discrepancy suggests a large
value of sin2(2θ13). In fact, once the analysis is done, T2K results suggest that sin2(2θ13) is in the
range
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Figure 23: Predicted sensitivity of the T2K experiment to νe appearance. The yellow region represents
the current state of play with the CHOOZ results. After 5 years operation T2K is expected to be
able to push the appearance limit down by an order of magnitude (or measure θ13 if it’s above about
3o.

sin2(2θ13) = 0.140+0.038
−0.032 (127)

which is consistent with the results from the reactor experiments.

0.7 Summary of Current Knowledge

We can now summarise our current level of knowledge of neutrino oscillations and neutrino mass from
oscillation experiments.

We now know that there are 3 light neutrinos. The neutrino mass states are different from the
flavour states. There are two mass splittings

∆m2
12 = 8× 10−5eV2 (128)

and
|∆m2

23| = 2.3× 10−3eV2 (129)

We know the sign of ∆m2
12 but not ∆m2

23. This is shown in Figure 24. The mixing angles have now
all been determined, to various levels of precision, and are shown in Table 2

Parameter Measurement Angle
sin2(2θ23) > 0.92 (45.0± 2.4)◦

sin2(2θ12) 0.85± 0.1 (32.5± 2.4)◦

sin2(2θ13) 0.089± 0.01 (8.9± 0.3)◦

Table 2: Current results of measurements of all mixing angles in the PMNS matrix.
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Figure 24: Current knowledge of neutrino mass eigenstate splitting (assuming θ13 is zero).

0.8 Future Measurements of the mixing angles

With the determination of the θ13 we have filled in the parameters of the PMNS matrix. However,
the goal of neutrino physics is a measurement of δCP and this is much harder. To begin with we need
to determine the mixing angles with much better precision, as uncertainties in these can mask effects
that arise from non-zero δCP . The next few years will be a consolidation of our knowledge of the
PMNS matrix with several new or operating experiments.

The first, of course, is T2K, which is still running. This experiment has only collected about 3%
of it’s final data set and will therefore be able to do much better at constraining the mixing angles as
the size of the data set increases. The reactor experiments continue to take data and will continue to
present more precise measurements of θ13. One new experiment that is about to come online is the
NOVA experiment in the USA. This experiment uses an upgraded NuMI beam, and directs a νµ beam
to a detector in Ash River, Northern Minnesota, about 810 km away. Also an off-axis experiment, it
has an average energy of 2.3 GeV. It intends to perform the same measurements as T2K, but has an
added capability. Since the far detector is further away than it is in T2K, NOVA is sensitive to effects
from the matter in the earth between source and detector, just like the solar experiments. Hence,
NOVA can also potentially measure the mass hierarchy in the 23-sector (remember that we know
|∆m2

23| but not the absolute value). Construction of the NOVA experiment began in 2006 and was
finished in October 2014.

0.9 Open Questions

What do we want to know? There are a number of questions left open:

• We need to obtain better estimates of sin2(2θ23),∆m2
23, sin

2(2θ12) and ∆m2
12.

• Is θ13 > 0, and if so, what is it’s value?

• Is θ23 = 45 degrees or not?

• What is the sign of ∆m2
23?

• Are the neutrinos and antineutrinos identical? This cannot be answered by an oscillation ex-
periment.

• What is the absolute neutrino mass? This cannot be measured by an oscillation experiments.
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• Why is the MNSP matrix so different in form to the CKM matrix?

• What is the value of δCP ?

The final question is the ultimate measurement we wish to make in neutrino physics and informs
the future 20-25 years of the field.

What you should know

• The identify of each sub–matrix of the PMNS matrix. What do each of the correspond to, in
terms of oscillations and what are the measured values of each of the mixing angles.

• How current experiments are trying to measure θ13. What is the current measurement, how was
it determined and what is future of θ13 measurements?

• What are the current open questions in neutrino physics?

0.10 A Spanner In The Works?

To date we have built up a nice coherent theory of 3-flavour neutrino oscillations that seems to be
supported by the available data. I am now going to throw a spanner in the works. That spanner is
an experiment called LSND.

0.10.1 LSND

The LSND detector (Liquid Scintillator Neutrino Detector) was the first oscillation experiment to
report a positive result. It was an experiment designed to search for νµ → νe oscillations through the
appearance of a νe in the single near detector.

The beam used the Los Alamos Meson Physics Facility (LAMPF). LAMPF produced π+ in a
water target which came to rest within the target itself. The pions then decayed to produce νµ via
the decay chain

π+ → µ+ + νµ

µ+ → e+ + νe + νµ

The maximum energy of the νµ produced by this chain was 52.8 MeV and the experiment looked for
νe appearance in the νµ beam. The detector was located 30m from the neutrino source, making it
sensitive to a ∆m2 ≈ 1.0 eV2.

The LSND detector was a tank filled with 167 tonnes of mineral oil doped with a scintillating
compound. The mineral oil acted as a Cerenkov-emitter, so the internal volume of the tank was
viewed by an array of 1220 photomultipler tubes. The scintillator emitted light isotropically but was
used to tag the existance of charged particles below the Cerenkov threshold. The experiment looked
for νe interactions using inverse beta decay : νe + p → e+ + n with the final state neutron being
captured by the mineral oil to generate a 2.2 MeV photon. This coincidence between the prompt e+

signal and the delayed photon signal distinguished such events form other backgrounds.
In 1996, LSND reported the observation of an excess of νe above that expected in the absence of

neutrino oscillations. The first data, shown in Figure 25, measured 22 events with 4.6±0.6 background
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Figure 25: (Left) Excess of νe observed in the LSND experiment. The dashed line is the expected
background. The solid line shows what is expected including neutrino oscillations. The dots are the
data. (Right) Allowed region from the LSND appearance analysis.

events. If this excess is interpreted as νµ oscillation to νe, then the best fit oscillation points is at
(sin2(2θ),∆m2

23) = (0.003, 1.2eV2) with an allowed region as shown in Figure 25
Although quite exciting at the time, the LSND result has become something of a pain. The reason

is the value of ∆m2 that LSND found. We know from the solar and atmospheric experiments that
there are are mass scales : ∆m2

12 = 8 × 10−5eV2 and |∆m2
23| = 2.3 × 10−3eV2. We also know that,

given N active neutrinos with a mass below half the Z0 boson mass, there must be N−1 independent
mass splittings. Taking 3 neutrino as an example

(m2
1 −m2

2) + (m2
2 −m2

3) + (m2
3 −m2

1) = 0

and so one of the mass splittings is defined by the other two.
Taking the LSND result at face value means that there are now 3 independent mass splittings :

∆m2
12 = 8 × 10−5eV2, |∆m2

23| = 2.3 × 10−3eV2 and |∆m2
LSND| = 1.2eV2, implying at least 4 active

neutrinos. However the LEP results conclusively showed that there were only 3 neutrino flavours with
masses below half the Z0 boson mass. That means that the other neutrino must be sterile i.e. it
can’t couple to the weak interaction. This new neutrino only couples to gravity, and only appears,
fleetingly, during the oscillation process.

Combining with other experiments

The LSND result presents even more difficulties when one tries to combine it with other experiments.
A number of different experiments (Bugey, CCFR, CDHS, CHOOZ, KARMEN and NOMAD) have
studied oscillations with a ∆m2 ∼ 1 eV2, albeit mostly looking at νµ disappearance rather than νe
appearance. Under the assumption of CPT invariance and in the two-flavour scheme,

P (νµ → νµ) = 1− P (νµ → νe) = 1− P (νµ → νe)
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So, we should be able to compare previous short-baseline neutrino experiments with the LSND result.
This has been done (see Phys.Rev. D70 (2004) 073004) and the results are somewhat discouraging.
If one restricts oneself to a single sterile neutrino - the so-called (3+1) scenario - in which the mass
patterns look like those in the left pattern of Figure 26 and analyses the world data we find that
we can fit the world data into a consistent framework, but the minute we introduce the atmospheric
results into the mix we find the results to be highly incompatible. Hence the (3+1) scenario is now
disfavoured.

Figure 26: Mass patterns for the (Left) (3+1) scenario and (Right) for (3+2) Scenario. Neutrino
masses increase from bottom to top. The νe fractions in the mass states are indicated by the right-
leaning hatches, the νµ content by the left-leaning hatches and the ντ content by the crossed hatching.
Sterile components are represented by no hatches. Note that the new neutrino states are mostly sterile
with a very small mixture of active states.

However, we could just increase the number of sterile states (why not?) and think about a (3+2)
scenario (with the mass pattern shown on the right of Figure 26). In this case we find that all our
experiments tend to be more compatible and we can fit the world data into a coherent, if not exactly
pretty, picture.

The miniBooNE Experiment

An important part of the scientific method is verification. A controversial result must be able to be
verified by an independent experiment. The role of verification of the LSND appearance result fell to
the miniBooNE experiment which ran at Fermilab from 2003 to the present. The detector operated
in the Fermilab Booster νµ beam and looked for νe appearance in this beam.

The Booster beam is a standard accelerator-based neutrino beam, generating neutrinos from the
decay of pions in flight. It generates νµ with energies of approximately 1.0 GeV in a beam which is
99.7% pure. The other 0.3% consists of νe which is generated from muon decay in the beam. The
miniBooNE detector is a spherical tank containing 800 tons of mineral oil with scintillator doping,
just like LSND. The mineral oil is viewed by 1280 photomultiplers. A photograph of part of the inner
section of miniBooNE is shown in Figure 27.

Positioned 500 m away from the beam, miniBooNE was capable of observing the same mass
difference as LSND, but with different systematic effects and in a different, and better understood,
neutrino energy regime. The detector looked for νe appearance by observing νe charged current
interactions in the oil.
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Figure 27: Photograph of an internal section of the miniBooNE tank showing some of the photomul-
tiplers mounted to the walls to view the interactions in the mineral oil.

MiniBooNE released its latest results in 2012. The appearance excess is shown in Figure 28 in
neutrino and anti-neutrino running. Although the experiment found no excess of events in the region
of the experiment where LSND predicts an excess, it did observe a lower energy excess of events. This
new source of excess cannot arise from the LSND parameters - it is too low in energy. Noone is too
sure what is causing it at the moment. However, brushing it under the carpet for a moment, if we
use the absence of an excess in the LSND region to compute an exclusion region (see Figure 29) we
find that miniBooNE rules out a large fraction of the LSND allowed region, but not, unfortunately,
all of it.

Figure 28: Excess of (left) νe and (right) νe events observed in the miniBooNE experiment. The dots
show the data. The coloured histograms show the expected background from a number of different
background sources. Both neutrino and antineutrino data show an excess of events at low energy.
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Figure 29: The region of the parameter space excluded by the miniBooNE results. The LSND region
is only partially ruled out.

One of the main criticisms of the miniBooNE experiment has always been that it is searching for
νµ → νe oscillations whereas LSND was measuring νµ → νe oscillations. Although CPT symmetries
state that the two should have the same probabilities, this sort of loop-hole worries experimentalists.
In 2009, the Booster neutrino beam switched to running antineutrinos so that a direct comparison
between miniBooNE and LSND could be made. The results are shown in Figure 28. As with the
neutrino data, an excess at lower energies is observed (making it more likely to be a result of some
unknown background source than oscillations in my humble opinion).

So where are we left with the LSND problem? Unfortunately not much further. We still have an
excess in the LSND data, but there is now also a different excess in the miniBoone data. None of
this is easy to interpret so the only conclusion we can really make is that we need more data to work
out what is going on. The best model that even vaguely fits the data is a (3+2) sterile scenario with
large CP violation, but this is all beyond-Standard Model physics.

What you should know

• What LSND was, what its main result was and what that would imply about neutrinos.

• What the miniBooNE experiment found.

I won’t ask for specifics but you should know why the LSND and miniBooNE results are controversial.
Now let’s brush the whole LSND/miniBooNE issue under a very large carpet and talk about
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0.11 The Future

The measurement of θ13 has been a decision point in what neutrino physics does in the future. Since
θ13 is quite large and accessible, we now want to make precision measurements of the mixing angles.
We are left with two parameters to measure : the mass heirarchy and δCP . We expect the mass
heirarchy can be measured in next generation experiments within the next decade or so. The CP
violating parameter is a harder measurements and will take a little longer.

0.11.1 Second generation Long Baseline Experiments

The path the field goes down in the near future will be toward the second generation long baseline
experiments. Such experiments require more intense beams and detectors with larger masses to make
better and more precise measurements of the mixing angles, mass splittings and (possibly) mass
heirarchy.. In the case of T2K, for example, the beam intensity will be increased by about a factor
of 5 and, perhaps, a new far detector massing about a megatonne will need to be built. The major
engineering challenge in this instance is the beam. The primary stage of standard accelerator neutrino
beams is the proton beam. A new type of primary stage called the proton driver will be required
to generate the 4-5 MW proton beams needed for the second generation experiment. Such a driver
could be something like a superconducting linac or a proton synchrotron. Designing a target that
can withstand the thermal shock and heat load is also a challenge. The instantaneous temperature
change of about 1000 degrees in under 50 µs rules out most solid materials from consideration as
targets - they will all be destroyed by the thermal stress. At the moment liquid metal targets, such
as mercury jets, are favoured - although these too have problems.

A Super-beam experiment with a 4 MW proton beam, generating a neutrino beam pointed at a
400 kton target is expected to be able to probe θ13 down to about 2 degrees (current limit is about
8 degrees). The 23-sector parameters could be determined with a relative error of less than 0.1%
compared to the current error of around 4%. Such an experiment would just be able to distinguish a
maximal CP violating phase (δCP = 180o) from a zero CP violating phase.

These experiments, though challenging and expensive, are feasible. Their construction methods
are understood and issues which aren’t understood soon will be. We could build one tomorrow if
someone else came up with the money.

0.11.2 Beta beams

In order to extend the sensitivity of experiments further to explore CP violation we need a high
intensity neutrino source, ideally with precisely known flavour content, improved background rejection
and well-understood neutrino energy spectrum. One option which could be exploited with non-
magnetic (see the section below for the reason why this is important) detectors is the beta beam.

The beta beam produces a pure, collimated νe or νe beam by accelerating high energy radioactive
ions which undergo β-decay. Such a beam

• is comprised of a single neutrino flavour, which has no beam-related background.

• has a well known neutrino energy spectrum since β-decay is well understood

• can be strongly forward collimated, to mitigate the problem that the flux falls as 1/L2.
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This signal in such a beam would be νµ appearance in a νe beam. We therefore need a detector which
can distinguish νµ events with high purity and efficiency. Luckily we have one - a water Cerenkov
detector will do the job nicely. There is no νµ contamination in the beam, and the major background
at the detector would be production of pions in neutral current events which would mimic the muon
signature in the detector. It is possible to deal with this by restricting the energy range of the beam.

Such a facility would be able to probe θ13 down to 1 degree, and a 5% measurement of the solar
oscillation parameters (currently known to 3% for ∆m2

12 and 13% for sin22θsol). It would also be able
to measure δCP to about 25%. The main problem with the β beam is that it is relatively expensive,
requires further R&D and performs only marginally better than the super-beam.

0.11.3 Neutrino Factories

Whereas a standard accelerator derives its neutrinos from the the decay of mesons generated in a
proton-nucleon collision, the idea of the neutrino factory is to derive the neutrinos from the muons
that come from the pion decays. The neutrino factory is the first step towards a muon collider but is
of great interest to the neutrino field.

Muons decay leptonically via the decay chain

µ− → e− + νe + νµ

The beam is a mix of electron antineutrino and muon neutrino with each flavour comprising 50% of
the beam. The energy spectrum of such a beam is absolutely predictable as the leptonic decay of
the muon is precisely calculable. Suppose that the beam consists of νe. An oscillation of νe → νµ
will produce muon antineutrinos at the detector. These events will be detected using charged current
interactions : νµ +X → µ+ +X ′. The νµ originally beam will produce muons of the opposite charge.
This implies no intrinsic beam-related background as long as the detector can distinguish µ− leptons
from µ+ leptons. In order to do this it is necessary to magnetise the detector and this is one of
the main engineering challenges in the detector design. The detector will probably have to be a
few thousand kilometres from the beam and consequently needs to large and massive, at least 50
kton. Building such a large detector is by no means easy. The simplest and cheapest sort of detector
for this measurement would be a magnetised iron tracking calorimeter like MINOS. These detectors
would be able to detect the muons generated in the charged current interactions, but would have
problems detecting electrons from νe interactions, due to their coarse-grained tracking. Other ideas
being considered are more sophisticated such liquid argon time projection chambers. These sort of
detectors are very fine-grained but also very difficult (and expensive) to magnetise and to scale up to
the size needed.

An important point to note is that an oscillation experiment at a neutrino factory has access
to high-intensity high flux beams of νe and νµ. Hence it can simultaneously measure νµ → νe and
νµ → νe oscillations, which can access all parameters of the 3D mixing matrix.

A schematic of the neutrino factory design is shown in Figure 30. After the target system the pion
beam is focussed along the target using a magnetic horn, just like a standard accelerator beam. These
pions decay to the muons which are spread over several meters longitudinally. Their distribution also
contains a very large momentum spread similar to that of the parent pions, correlated with position:
fast muons in front, slow muons in back. A system of radiofrequency cavities then attempts to reduce
the momentum spread by accelerating the late particles and decelerating the early particles, a process
called phase rotation. This only affects the longitudinal momentum component. The transverse
momentum is then reduced using a process called ionisation cooling, in which muons traverse a low-Z

47



Figure 30: Schematic of the design of a neutrino factory.

medium such as helium and lose energy through scattering, followed by RF acceleration, to restore
longitudinal momentum. This cooling scheme is the most challenging aspect of the machine and is the
innovation that makes intense cold muon sources feasible. It is currently being tested by the MICE
cooling demonstrator at the Rutherford Laboratory in Harwell, Oxfordshire.

Next, the muons enter a series of acceleration stages. Various designs for these accelerators exist,
but at the end the high energy muons are injected into large storage rings. As shown in the figure,
these storage rings consist of two several-hundred-metre long straight section connected by two arcs.
The muons decay in the storage ring yielding a collimated neutrino beam tangential to the straight
sections of the ring. The storage rings are the least technically risky part of the accelerator. Two rings
are shown in the diagram as the physics case requires two different detectors at different baselines.
Other designs for the rings exist which would minimise the cost.

A neutrino factory outperforms all other options by at least an order of magnitude. It would
be able to push the θ13 boundary down a further order of magnitude to probe an angle of less
than 0.1 degrees and will be able to measure δCP to about 10-15%. In addition, the event rate at
any near detector dwarfs any previous facility and can be used to study neutrino interactions with
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unprecedented precision. This is the facility that most neutrino physicists want to see. However it
will be very expensive - noone has really costed it as yet, and in the most optimistic case won’t be
generating physics until at least 2025-2030.

It should be noted that these more expensive and complex machines were being actively considered
whilst we assumed that θ13 was small. Now that we know θ13 is large, the urgency has been taken
out of the debate somewhat and the likelihood of building a neutrino factory or a beta beam in the
next 10 years has diminished.

What you should know

• The major points for and against the Superbeams, the beta beam and the Neutrino factory.
I won’t require you to memorise performance numbers, but you should understand the main
design elements in each option.

49


