Systematic uncertainties of $\chi_{c1}(3872)$ lineshape analysis

Sebastian Neubert Effective Range Workshop, Nov 12th 2021

[PRD102(2020)092005]

Inclusive analysis - Breit Wigner fit

- Mass resolution depends on di-pion momentum $p_{\pi\pi}$
- use three momentum bins per data taking period
- Momentum scale and resolution calibrated on ψ (2S)
- Momentum scale extrapolated to signal region using simulation
- Momentum scale uncertainty corresponds to a mass-shift of the observed signal relative to the $\psi(2S)$ of ~ 0.066 MeV

[PRD102(2020)092005]

Inclusive analysis - Breit Wigner fit

- Mass resolution depends on di-pion momentum $p_{\pi\pi}$
- use three momentum bins per data taking period
- \cdot Momentum scale and resolution calibrated on ψ (2S)
- Momentum scale extrapolated to signal region using simulation
- Momentum scale uncertainty corresponds to a mass-shift of the observed signal relative to the $\psi(2S)$ of $\sim 0.066 \text{ MeV}$

Flatté lineshape for the χ_{c1} (3872)

[PRD80(2009)074004]

Threshold at

 $3871.70\pm0.11\,\text{MeV}$

$$\begin{array}{ll} \mbox{Amplitude} & F(E) = -\frac{1}{2k_1} \frac{g_1 k_1}{D(E)}, \\ E_f = \hline m_0 - m_{D^0 \bar{D}^{0*}} \mbox{ DD* coupling (g1=g2) } & \mbox{symmetry} \\ \\ D(E) = \begin{cases} E - E_f - \frac{g_1 k_1}{2} - \frac{g_2 \kappa_2}{2} + i \frac{\Gamma(E)}{2}, & E < 0 \\ E - E_f - \frac{g_2 \kappa_2}{2} + i \left(\frac{g_1 k_1}{2} + \frac{\Gamma(E)}{2}\right), & 0 < E < \delta \\ E - E_f + i \left(\frac{g_1 k_1}{2} + \frac{g_2 k_2}{2} + \frac{\Gamma(E)}{2}\right), & E > \delta \end{cases} \end{array}$$

Both $D^0 \bar{D}^{0*}$ and $D^+ D^{-*}$ channels

Dynamic width $\Gamma(E) = \Gamma_{[\pi^+\pi^- J/\psi]}(E) + \Gamma_{\pi^+\pi^-\pi^0 J/\psi]}(E) + \Gamma_0,$ $k_1 = \sqrt{2\mu_1 E}, \quad \kappa_1 = \sqrt{-2\mu_1 E}, \quad k_2 = \sqrt{2\mu_2(E-\delta)}, \quad \kappa_2 = \sqrt{2\mu_2(\delta-E)}.$

Fit parameters

$$\Gamma_{\pi^+\pi^- J/\psi}(E) = f_{\rho} \int_{2m_{\pi}}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_{\rho}}{(m-m_{\rho})^2 + \Gamma_{\rho}^2/4},$$

$$\Gamma_{\pi^+\pi^-\pi^0 J/\psi}(E) = f_{\omega} \int_{3m_{\pi}}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_{\omega}}{(m-m_{\omega})^2 + \Gamma_{\omega}^2/4}$$

$$q(m) = \sqrt{\frac{(M^2 - (m + m_{J/\psi})^2)(M^2 - (m - m_{J/\psi})^2)}{4M^2}}$$

differential branching fractions:

$$\frac{dBr(B \to K\pi^+\pi^- J/\psi)}{dE} = \mathcal{B}\frac{1}{2\pi} \frac{\Gamma_{\pi^+\pi^- J/\psi}(E)}{|D(E)|^2},$$

$$\frac{dBr(B \to K\pi^+\pi^-\pi^0 J/\psi)}{dE} = \mathcal{B}\frac{1}{2\pi} \frac{\Gamma_{\pi^+\pi^-\pi^0 J/\psi}(E)}{|D(E)|^2}.$$

Fitting the Flatté model

[PRD102(2020)092005]

• Constraints on partial widths, consistent with existing data

 $\Gamma(J/\psi\rho) = \Gamma(J/\psi\omega)$ $\frac{\Gamma(J/\psi\rho)}{\Gamma(D^0D^{0^*})} = 0.11 \pm 0.03$

- Will cause shape to be different from Breit-Wigner
- 4 fit parameters: m_0, g, f_ρ, Γ_0
- Fix $m_0 = 3864.5 \, \text{MeV}$

Very shallow likelihood minimum at $E_f \approx -10$ MeV. $\Delta \rm LL$ rises back to 1 around $-270\,\rm MeV$

$$\frac{dg}{dE_f} = (-15.11 \pm 0.16) \text{GeV}^{-1}$$

offset consistent with zero

Flatté parameters and comparison to Breit-Wigner

[PRD102(2020)092005]

g	$f_{ ho} imes 10^3$	Γ_0 [MeV]	
$0.108 \pm 0.003 {}^{+0.005}_{-0.006}$	$1.8\pm0.6^{+0.7}_{-0.6}$	$1.4\pm0.4\pm0.6$	•

Shape parameters:

Mode $[MeV]$	Mean $[MeV]$	FWHM [MeV]	Fla
$3871.69 \substack{+\ 0.00\ +\ 0.05\ -\ 0.04\ -\ 0.13}$	3871.66 ^{+0.07+0.11} -0.06-0.13	$0.22 \substack{+\ 0.06 + 0.25 \\ -\ 0.08 - 0.17}$	iut

- J/ $\psi \pi \pi$ data alone cannot distinguish line shapes
- Flatté narrower than BW by
 factor 5

Systematic uncertainties on g

- Momentum scale
- Threshold mass

Small effect: Resolution+Bkg model and D^{0*} width Systematic uncertainties quoted do not include scaling!

Effect of uncertainty of E_f on g

Both the momentum scale uncertainty and the uncertainty on the threshold location act in similar way, by changing the obtained value of E_f .

- $\cdot m_0$ was kept fix
- Shifting the data downwards $\Rightarrow g$ has to compensate the shift of the peak by getting smaller.
- Shifting the data upwards \Rightarrow *g* has to compensate accordingly.
- This is what we observe.
- Systematics were only evaluated at fixed m_0 Cannot distinguish between change in slope and change in offset of $g(E_f)$

Ongoing activities: provide full uncertainties on *g*, including limits obtained from scaling.

Future: very interested in reanalysis, need to find a student. Possibility for an associate project.