

OMC activities during the beam test

T. Persson on behalf of the OMC-team

Date	Shift	Team				
10/21/2021	1					
	М	OP/RF/BI	Injection, threading, parasitic splashes			
	М	OP/RF/BI	Injection, threading, parasitic splashes			
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup			
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup			
	Ν	OP	Orbit corrector & BPM polarity			
	Ν	OP	Orbit corrector & circuit polarity			
10/22/2021	2					
	М	OP	Reference orbit with probe, energy matching to SPS			
	М	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole			
	Α	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole			
	Α	COL	Coarse setup for probes			
	Ν	OP	Kmodulation - triplet BPM offsets			
	Ν	OP	Kmodulation - triplet BPM offsets			
10/23/2021	3					
	М	OP	Splashes			
	М	OP	Splashes			
	Α	OMC	AC dipole, optics at injection			
	Α	OMC	Optics measurement & correction			
	N	OMC	spare			
	Ν	OP	FMCM tests			
10/24/2021	4					
	М	RF	Cavity phasing and ADT setup			
	М	RF	Cavity phasing and ADT setup			
	Α	ADT	ADT setup with probes, ADT excitation			
	Α	OMC	Optics measurement & correction			
	N	OMC	Optics measurement & correction			
	Ν	OMC	spare			

10/25/2021	5		
	М	COL	Collimator setup, global injection aperture
	М	COL	Collimator setup, global injection aperture
	Α	ABT	Injection and dump aperture
	Α	ABT	Injection and dump aperture
	Ν	OP	Feedback tests
	Ν		
10/26/2021	6		
	М	MPS	BLM dump trigger tests
	М	MPS	BLM dump trigger tests
	Α	ABT	Kick response line + ring, MKI2 waveform
	Α	ABT	14/15 kickers knob
	Ν		
	Ν		
10/27/2021	7		
	М	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	М	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	Α	OP	Collision setup with nominal bunches, ALICE to +/+
	Α	OP	Collision setup with nominal bunches
	Ν	OP/ABT	MKB waveform
	N		
10/28/2021	8		
	М	COL	Collimation setup nominal bunch
	М	COL	Global aperture with nominal bunch
	Α	COL	Loss maps
	Α	RF	ADT setup
	Ν	RF	ADT setup
	N		

10/29/2021	9		
	М	OP	Preparation first stable beams
	М	OP	ALICE -, Stable beams at injection
	Α	OP	Stable beams at injection
	Α	OP	Xing levelling test
	Ν	OMC	OMC tests
	Ν	OMC	OMC tests
10/30/2021	10		
	М	COL	Local aperture triplets
	М	COL	Local aperture triplets
	Α	COL	Selected local aperture checks
	Α	OP	ALICE pol +, Stable beams at injection
	Ν	OP	Stable beams at injection
	Ν		
10/31/2021	11		
	М	COL	Crystal collimation test
	М	COL	Crystal collimation test
	Α	OP	ALICE 0, Stable beams at injection
	Α	OP	Stable beams at injection
	Ν		
	Ν		

Do the essential checks of equipment and software

Note that the dates are likely to shift. Already starting day could potentially be 2 days ahead of schedule!!

- The first thing is to excite with the AC-dipole and record with the BPMs
 - In 2015 there were some issues with the phasing of the BPMs
 - New multiturn and changes to the AC-dipole potential source of issues
 - Could be 5 min but could also be days
 - ADT-AC dipole
 - K-modulation
 - MKQ, MKA (without changing setting in the tunnel)
- Important checks at injection
 - 3D-excitation

New software and functionalities

2		LHC Multiturn 5.1.21		+ _ D		
File Help						
🔯 C Ihcop 🔻	BP: Simulation Mode	Optic: Simulation Mode optic IDLE				
Acquisition BEAM1 ×	Acquisition BEAM2 ×					
BEA	M1 1	xciters				
Flag status		ACDipole MKA/MKQ LHC 3D Excitation	Panel			
Beam Presence	Setup Beam					
		AC Dipole Status				
KICK Group		Kicker H	Kicker V			
(No Group Acti Se	elect Active group	NOT READY		NOT READY		
Measurement Environ	ment			-		
Feedback state		H: LOADED		V: LOADED		
Orbit feedback ON			Open Control Panel			
RadialLoop feedbac	k ON	HORIZONTAL SETTINGS	VERTICAL	SETTINGS		
Tune feedback state	,	Kick enabled	ings Kick	enabled expert settings		
B1 H	81 V	Excitation amplitude (%)	Excitat	ion amplitude (%)		
92.0		1	1			
Tunes set-up						
0.31 A	cquire QH	Tune deltas	Tune d	eltas		
0.32 A	cquire QV	start 0	start	0		
Auto rup apalvois		start nat top 0	start n	lat top		
Auto-run analysis		end nat top 0	end tra	at top		
Harpy		ena	end			
_ narpy		Start Excitation tune	Start E	xcitation tune		
Concentrator settings		0.31	0.32			
Bunches		Excitation width	Excitat	Excitation width		
1		From Meas nb of turns	Fro	m Meas nb of turns		
Turne		O Manually set nb of turns	🔾 Mar	nually set nb of turns		
lums		0		· · · · · · · · · · · · · · · · · · ·		
0000						
Acquire with ACD	pole excitation					

- New multiturn application
 - Made by LHC-OP
- New functionalities added to the AC-dipole
- New OMC-GUI
- The code to analyse the data is also re-written (OMC3)

Status: The kicker has been pulsed so looks promising

٢	Beta Beating 2021.08	B.15_2300			
🏊 🔄 🔞 <none> 🔻</none>					LHCB
BPM panel Analysis panel Optics Correction					
Active measurement group: Group not selected	File	Bunch ID	Analysis done	Kick group	No. of bad BPMs
Analysis					
Open files Analyse spectra 🗵 Run optics as we	11				
Create Average Remove Turns Split files					
Horizontal plane					
Find BPM Phase space Vertical plane					
Find BPM					
Phase space					
Console					
07:24:24 - MainWindow -> Welcome to beta-beating application					
17-24-24 - MainWindow => Welcome to beta-beating application					_

K-modulation

- New GUI developed in Python by Georges Trad in close collaboration with Michael Hofer to interface our analysis
- Enables the modulation of more magnets including Q2, Q3 and even an entire arc!

Status: Has been tested to drive magnets

ADT AC - dipole

			l tune	lill d	nroma		😤 Dia	agnostic
Coupling measurement with ADT	excitation = options							
LEADY	ack	Last:	B1 REAL proposed		81 RE	EAL Trim		
B1 Tune	B2 Tune	20:56:21	0.0003		4	0.000	*	
0.310 [-0.012]	0.310 [-0.012]	81 [C-] from excitation	B1 IMAGINARY propo		81 IM	AGINARY Trim		-
B1 Tune	82 Tune	0.0014	0.0014	→	4	0.000		
0.320 [+0.010]	0.320 [+0.010]		AD DE N AND AND A					
	0.010 [. 0.010]	B2 JC-J from excitation	B2 REAL proposed	a	82 RE	EAL Trim		-
Bibunch	B2 bunch	0.0030	-0.0025	k	4	0.000		i
476	853		B2 IMAGINARY propo		82 IMAGINARY Trim			
B1 active	B2 active		0.0017		4	0.000		
v								
ews B B B B B B B B B B B B B B B B B B B	Measure	g g sen	ver BEAM2 (11/09/17 20:3	(7:56]	millin		harmit	5
ews a B B B C Coupling History 0.005	More 228 1/09/17 20:57:56	SI SI SIN	rer BEAM2 (11/09/17 20: 0.0035 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.05	77:56]		•	linner ¹¹	8
Server BEAMI II ta Viewer Views 22 Coupling History 0.0045 0.0025 0.0025 0.0015 0.0015 0.0015 0.001 0.0015 0.001	Mare Carlos Carl	SI SI Sen 20:52 20:54 20:56	Construction of the second sec	57:56) Mumh 14 20:44	1 20:48	4 2050 2052 2	20:54 2	4 • •

- New protocol to transfer the data
- Using the new code base (OMC3) and <u>different</u> <u>compensation method</u> for the driven motion.

A. Calia, et al "Online coupling measurements and correction throughout the LHC cycle"

Status: Has been deployed and tested with fake data. The ADT class is not yet tested.

3D – kicks

- The RF phase is modulated at the same time as the AC dipole excites the beam
 - Can enable measurement of dispersion and chromatic functions during the ramp
 - This is implemented in the Multiturn application

L. Malina

Status: Is implemented but still needs to be tested

Close collaboration with OP

- The new applications are developed and maintained mainly by LHC OP
 - When it comes to access hardware devices, RBAC etc, this is much more efficient since they have more experience in these area.
 - We still need to collaborate closely since we are the expert on what to expect for many of the applications.
 - A very fruitful collaboration!
- A personal reflection is that the OMC-OP Workshop was very beneficial to increase our understanding of the common challenges
 - In the next slide I will mention one of them

Target and Correction

- One of the difficulties with re-create the state of the machine at a given time has been that it is not known from the logging why a setting was change.
 - E.g., The tune knob is changed in LSA: Was this a change of working point or was this simply a correction of the tune back to the nominal?
 - In the OMC-OP workshop different possibilities were discussed but, in the end, the main was to use the two different properties in LSA: Target and Correction.
 - E.g., Target when you want to change the working point and correction when you want to correct the tune back to nominal
 - This is now adopted in the accelerator cockpit application and the idea is to use this principle throughout the run

Back to the beam test

Date	Shift	Team					
10/21/2021	1						
	М	OP/RF/BI	Injection, threading, parasitic splashes				
	М	OP/RF/BI	Injection, threading, parasitic splashes				
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup				
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup				
	Ν	OP	Orbit corrector & BPM polarity				
	Ν	OP	Orbit corrector & circuit polarity				
10/22/2021	2						
	М	OP	Reference orbit with probe, energy matching to SPS				
	М	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole				
	Α	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole				
	Α	COL	Coarse setup for probes				
	Ν	OP	Kmodulation - triplet BPM offsets				
	N	OP	Kmodulation - triplet BPM offsets				
10/23/2021	3						
	М	OP	Splashes				
	М	OP	Splashes				
	Α	OMC	AC dipole, optics at injection				
	Α	OMC	Optics measurement & correction				
	N	OMC	spare				
	N	OP	FMCM tests				
10/24/2021	4						
	М	RF	Cavity phasing and ADT seture				
	М	RF	Cavity phasing and ADT setup				
	Α	ADT	ADT setup with probes, ADT excitation				
	Α	OMC	Optics measurement & correction				
	N	OMC	Optics measurement & correction				
	N	OMC	spare				

10/25/2021	5		
	Μ	COL	Collimator setup, global injection aperture
	Μ	COL	Collimator setup, global injection aperture
	Α	ABT	Injection and dump aperture
	Α	ABT	Injection and dump aperture
	Ν	OP	Feedback tests
	Ν		
10/26/2021	6		
	Μ	MPS	BLM dump trigger tests
	Μ	MPS	BLM dump trigger tests
	Α	ABT	Kick response line + ring, MKI2 waveform
	Α	ABT	14/15 kickers knob
	Ν		
	Ν		
10/27/2021	7		
	М	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	Μ	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	Α	OP	Collision setup with nominal bunches, ALICE to +/+
	Α	OP	Collision setup with nominal bunches
	Ν	OP/ABT	MKB waveform
	Ν		
10/28/2021	8		
	М	COL	Collimation setup nominal bunch
	М	COL	Global aperture with nominal bunch
	Α	COL	Loss maps
	Α	RF	ADT setup
	N	RF	ADT setup
	N		

	М	OP	Preparation first stable beams
	М	OP	ALICE -, Stable beams at injection
	Α	OP	Stable beams at injection
	Α	OP	Xing levelling test
	Ν	OMC	OMC tests
	N	OMC	OMC tests
0/30/2021	10		
	М	COL	Local aperture triplets
	М	COL	Local aperture triplets
	Α	COL	Selected local aperture checks
	Α	OP	ALICE pol +, Stable beams at injection
	N	OP	Stable beams at injection
	Ν		
0/31/2021	11		
	М	COL	Crystal collimation test
	М	COL	Crystal collimation test
	Α	OP	ALICE 0, Stable beams at injection
	Α	OP	Stable beams at injection
	N		

10/29/2021 9

Do the essential checks of equipment and software

Calculate the corrections: Local coupling and global beta-beat

corrected

20000

25000

β -beating at injection

- The β -beat at injection has stayed relatively similar between Run 1 and Run 2
- If we measure and correct during beam test we can most probably use the same corrections in 2022

Local coupling

- The local coupling corrections did not change so much from end Run 1 to Run 2
 - Two data points are not much statistics! Rotations might have changed this time..
 - A rough correction at injection can be made
- Before local correction and arc-by-arc corrections (when needed) are applied the BBQ coupling measurement is less reliable

	Circuit	$\Delta k \ (10^{-4} { m m}^{-2})$				
		2012	2015	2016-2018		
IR1	RQSX3.L1	8.0	8.7	11.0		
	RQSX3.R1	8.0	8.7	7.0		
IR2	RQSX3.L2	-9.0	-16	-14.0		
	RQSX3.R2	-9.0	-16	-14.0		
IR5	RQSX3.L5	6.0	7.0	7.0		
	RQSX3.R5	6.0	7.0	7.0		
IR8	RQSX3.L8	-7.0	-5.0	-5.0		
	RQSX3.R8	-7.0	-5.0	-5.0		

Before and after local coupling correction. Note that the global knobs also have been readjusted.

If we don't correct the local coupling

- In 2010 (3.5 TeV) the strength of the arc skew quadrupoles were almost maxed out before the local coupling corrections were implemented
 - Local corrections needed for the first ramp and squeeze

How do we prepare for this?

Testing in the CCC

• Two purposes:

- Finding issues and bugs
- Train new people and remind the rest of us how to use the applications and calculate the corrections
- We already had one session but split into 3 different time slots.
 - We are now in the middle of a second iteration.

Beta-beat.src and OMC3

- Beta-beat.src was used extensively used in Run 1 and Run 2 so well tested
- OMC3 more flexible but still needs so more testing and still missing some functionalities
 - Will use the beam test to continue testing the OMC while using the betabeat.src as the reference

Date	Shift	Team					
10/21/2021	1			10/25/2021	5		
	М	OP/RF/BI	Injection, threading, parasitic splashes		М	COL	Collimator setup, global injection aperture
	М	OP/RF/BI	Injection, threading, parasitic splashes		М	COL	Collimator setup, global injection aperture
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup		Α	ABT	Injection and dump aperture
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup		Α	ABT	Injection and dump aperture
	Ν	OP	Orbit corrector & BPM polarity		Ν	OP	Feedback tests
	Ν	OP	Orbit corrector & circuit polarity		Ν		
10/22/2021	2			10/26/2021	6		
	М	OP	Reference orbit with probe, energy matching to SPS		М	MPS	BLM dump trigger tests
	М	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole		М	MPS	BLM dump trigger tests
	Α	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole		Α	ABT	Kick response line + ring, MKI2 waveform
	Α	COL	Coarse setup for probes		Α	ABT	14/15 kickers knob
	Ν	OP	Kmodulation - triplet BPM offsets		Ν		
	Ν	OP	Kmodulation - triplet BPM offsets		Ν		
10/23/2021	3			10/27/2021	7		
	М	OP	Splashes		М	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	М	OP	Splashes	_	М	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	Α	OMC	AC dipole, optics at injection		Α	OP	Collision setup with nominal bunches, ALICE to +/+
	Α	OMC	Optics measurement & correction		Α	OP	Collision setup with nominal bunches
	Ν	OMC	spare		Ν	OP/ABT	MKB waveform
	Ν	OP	FMCM tests		Ν		
10/24/2021	4			10/28/2021	8		
	М	RF	Cavity phasing and ADT setup		М	COL	Collimation setup nominal bunch
	м	RF	Cavity phasing and ADT setup		М	COL	Global aperture with nominal bunch
	Α	ADT	ADT setup with probes, ADT excitation		Α	COL	Loss maps
	Α	OMC	Optics measurement & correction		Α	RF	ADT setup
	N	OMC	Optics measurement & correction		N	RF	ADT setup
	N	OMC	spare		N		

10/29/2021	9		
	М	OP	Preparation first stable beams
	М	OP	ALICE -, Stable beams at injection
	Α	OP	Stable beams at injection
	Α	OP	Xing levelling test
	Ν	OMC	OMC tests
	Ν	OMC	OMC tests
10/30/2021	10		
	М	COL	Local aperture triplets
	М	COL	Local aperture triplets
	Α	COL	Selected local aperture checks
	Α	OP	ALICE pol +, Stable beams at injection
	Ν	OP	Stable beams at injection
	Ν		
10/31/2021	11		
	М	COL	Crystal collimation test
	М	COL	Crystal collimation test
	Α	OP	ALICE 0, Stable beams at injection
	Α	OP	Stable beams at injection
	Ν		
	N		

Do the essential checks of equipment and software

Calculate the corrections: local coupling and global beta-beat

MCS, Q" and potentially a re-validation of the corrections if needed

Counteract the coupling drift at injection

- We change the setting of each of the MCS arc-by-arc
 - Measure the change to C-
 - Stayed constant between 6 months in Run 2.
- Based on this measurement we could potentially have an uneven dynamic b3-compensation

Measuring Q" and Q""

0.310

0.305 -0.003

-0.002

-0.001

0.000

dp/p

(b) Vertical chromaticity

0.001

0.002

0.003

- Interesting to compare to previous years
 - Help to constrain a beam-based corrections

Exotic K-modulation

- K-modulation sector-by-sector (4h)
 - Will give an independent measurement of the average beta-function
 - Also try the functionality to trim the Q2 for example

Date	Shift	Team	
10/21/2021	1		
	М	OP/RF/BI	Injection, threading, parasitic splashes
	М	OP/RF/BI	Injection, threading, parasitic splashes
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup
	Ν	OP	Orbit corrector & BPM polarity
	Ν	OP	Orbit corrector & circuit polarity
10/22/2021	2		
	М	OP	Reference orbit with probe, energy matching to SPS
	М	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole
	Α	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole
	Α	COL	Coarse setup for probes
	Ν	OP	Kmodulation - triplet BPM offsets
	Ν	OP	Kmodulation - triplet BPM offsets
10/23/2021	3		
	М	OP	Splashes
	М	OP	Splashes
	Α	OMC	AC dipole, optics at injection
	Α	OMC	Optics measurement & correction
	Ν	OMC	spare
	Ν	OP	FMCM tests
10/24/2021	4		
	М	RF	Cavity phasing and ADT setup
	М	RF	Cavity phasing and ADT setup
	Α	ADT	ADT setup with probes, ADT excitation
	Α	OMC	Optics measurement & correction
	Ν	OMC	Optics measurement & correction
	N	OMC	spare

10/25/2021	5		
	М	COL	Collimator setup, global injection aperture
	М	COL	Collimator setup, global injection aperture
	Α	ABT	Injection and dump aperture
	Α	ABT	Injection and dump aperture
	Ν	OP	Feedback tests
	Ν		
10/26/2021	6		
	М	MPS	BLM dump trigger tests
	М	MPS	BLM dump trigger tests
	Α	ABT	Kick response line + ring, MKI2 waveform
	Α	ABT	14/15 kickers knob
	Ν		
	Ν		
10/27/2021	7		
	М	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	М	OP/RF/BI	Nominal bunch injection, BI, RF tuning
	Α	OP	Collision setup with nominal bunches, ALICE to +/+
	Α	OP	Collision setup with nominal bunches
	Ν	OP/ABT	MKB waveform
	Ν		
10/28/2021	8		
	М	COL	Collimation setup nominal bunch
	М	COL	Global aperture with nominal bunch
	Α	COL	Loss maps
	Α	RF	ADT setup
	Ν	RF	ADT setup

10/29/2021	9						
	М	OP	Preparation first stable beams				
	М	OP	ALICE -, Stable beams at injection				
	Α	OP	Stable beams at injection				
	Α	OP	Xing levelling test				
	N	OMC	OMC tests				
	Ν	OMC	OMC tests				
10/30/2021	10						
	М	COL	Local aperture triplets				
	М	COL	Local aperture triplets				
	Α	COL	Selected local aperture checks				
	Α	OP	ALICE pol +, Stable beams at injection				
	Ν	OP	Stable bearns at injection				
	Ν						
10/31/2021	11						
	М	COL	Crystal collimation test				
	М	COL	Crystal collimation test				
	Α	OP	ALICE 0, Stable beams at injection				
	Α	OP	Stable bearns at injection				
	N						
	N						
			↓				

Potentially the 60 deg phase advance (4 people needed + collimation experts)

Do the essential checks of equipment and software

Calculate the corrections: local coupling and global beta-beat

MCS, Q" and potentially a re-validation of the corrections if needed

60 deg phase advance optics

- Try the 60 deg phase advance optics (8h)
 - Designed for a higher energy LHC (replace every third dipole to 11 T) but would also probe the errors differently and would help to constrain the corrections further
 - Significant different so will also help understand orbit errors
 - Could bring insight into BPM calibration errors as well

60 deg phase advance optics

- Would be a different optics with different settings
 - Help identifying underlying alignment and magnetic errors
 - In particular the momentum compaction factor is different

Parameter [Unit]	60°LHC	90°LHC
β _{min} /β _{max} [m]	63/182	32/177
η _{min} /η _{max} [m]	2.5/4.1	1.1/2.2
Momentum Compaction [10 ⁻⁴]	6.9	3.5
Transition Energy [GeV]	40.0	53.6
Natural Chromaticity at 450 GeV	- 60	- 83
Corrected Chromaticity at 450 GeV	2	2
Sextupole Strength at 450 GeV [Tm ⁻²]	56	142
Tune at Injection Optics (H,V)	45.28/44.31	62.28/60.31

Mom. Comp. Factor Measurements

- Fit of relative energy (momentum) offset over frequency
- Problem: no device in LHC to measure energy \rightarrow Use TbT measurements

Beam Position Monitor Errors

Measured closed orbit used for momentum offset calculation

26

Beam Stay Clear at 450 GeV

At the moment we are only interested in a single pilot bunch

Date	Shift	Team						10/20/2024	0		
10/21/2021	1			10/25/2021	5			10/29/2021	9	0.0	Development of fact stable because
	М	OP/RF/BI	Injection, threading, parasitic splashes		М	COL	Collimator setup, global injection aperture		IVI NA	0P	ALLOE Stable beams at injection
	М	OP/RF/BI	Injection, threading, parasitic splashes		М	COL	Collimator setup, global injection aperture		NI A	0P	ALICE -, Stable beams at injection
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup		Α	ABT	Injection and dump aperture		A	00	Stable beams at injection
	Α	OP/RF/BI	Closed orbit and RF capture, tune, Q' ,coupling, BI setup		Α	ABT	Injection and dump aperture		A	00	Xing levelling test
	Ν	OP	Orbit corrector & BPM polarity		Ν	OP	Feedback tests		N	OMC	OMC tests
	Ν	OP	Orbit corrector & circuit polarity		Ν				N	OMC	OMC tests
10/22/2021	2			10/26/2021	6			10/30/2021	10		
	М	OP	Reference orbit with probe, energy matching to SPS		М	MPS	BLM dump trigger tests		М	COL	Local aperture triplets
	М	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole		М	MPS	BLM dump trigger tests		М	COL	Local aperture triplets
	Α	OP/BI	Orbit & tune FB commissioning, BI setup, AC dipole		Α	ABT	Kick response line + ring, MKI2 waveform		Α	COL	Selected local aperture checks
	Α	COL	Coarse setup for probes		Α	ABT	14/15 kickers knob		Α	OP	ALICE pol +, Stable beams at injection
	Ν	OP	Kmodulation - triplet BPM offsets		Ν				N	OP	Stable bearns at injection
	Ν	OP	Kmodulation - triplet BPM offsets		N				N		
10/23/2021	3			10/27/2021	7			10/31/2021	11		
	М	OP	Splashes		М	OP/RF/BI	Nominal bunch injection, BI, RF tuning		М	COL	Crystal collimation test
	М	OP	Splashes		м	OP/RF/BI	Nominal bunch injection, BI, RF tuning		М	COL	Crystal collimation test
	Α	OMC	AC dipole, optics at injection		Α	OP	Collision setup with nominal bunches, ALICE to +/+		Α	OP	ALICE 0, Stable beams at injection
	Α	OMC	Optics measurement & correction		Α	OP	Collision setup with nominal bunches		Α	OP	Stable bearns at injection
	Ν	OMC	spare		N	OP/ABT	MKB waveform		Ν		
	Ν	OP	FMCM tests		Ν				N		
10/24/2021	4			10/28/2021	8						
	М	RF	Cavity phasing and ADT setup		М	COL	Collimation setup nominal bunch	II			•
	М	RF	Cavity phasing and ADT setup		М	COL	Global aperture with nominal bunch	Dotonti	ally +	ho 60	dog phaso advanco (4
	Α	ADT	ADT setup with probes, ADT excitation		А	COL	Loss maps	Fotenti	Folentially the oblieg phase advance (4		ueg pliase auvalice (4
	Α	OMC	Optics measurement & correction		Α	RF	ADT setup	people needed + collimation experts)			ollimation experts)
	Ν	OMC	Optics measurement & correction		N	RF	ADT setup	Leepie			
	Ν	OMC	spare		N						

Do the essential checks of equipment and software

If there is interest, we could also try the aperture measurements with the AC-dipole -> Amplitude detuning for free MCS, Q" and potentially a re-validation of the corrections if needed

Conclusion

- An extensive program ahead of us!
- A lot of modifications have been done during the shutdown
 - The beam test provides a great opportunity to test modifications to system and software
 - Challenging also in the view of our own detraining (not only magnets can detrain)
- The outcome will also depend on the availability of the machines and experts
 - If everything goes well, we could still hope to test the 60 deg phase advance but we need your help for that!

- Most of the change is in the beginning of the ramp before the squeeze
 - -> Effect is coming from the arcs
 - |C-| change up to **0.02**
 - Small changes in the later part even with the squeeze
 - -> The local coupling corrections worked well

Without local coupling corrections

- No measurements of the coupling as a function of β^* in Run 2 but can use the local coupling corrections to estimate the situation
 - Correct with knobs to |C-| = 0.001 at injection
 - After squeezing to 7m we would have expected a $|C-| \sim 0.01$

