

SPL cryomodule specification:

Goals of the meeting

V.Parma, TE-MSC

Goal of today's meeting

- Identify and address still outstanding cryomodule design specification issues
- Address the specific requirements related to the test program of the short cryomodule at CERN (for ex.: windows for in-situ intervention, need for diagnostics instrumentation, etc.).
- Converge towards a technical specification to allow the continuation of the engineering of the short cryomodule, or identify road-maps to settle outstanding issues.

Chairperson: Vittorio Parma (CERN, TE/MSC)

Scientific secretary: Arnaud Vande Craen (CERN, TE-MSC)

Agenda

Tuesday 19 October 2010

09:00 - 09:10	Welcome 10' Speaker: Roland Garoby (CERN)
00-40 00-00	
09:10 - 09:30	Goals of the meeting 20'
	Speaker: Vittorio Parma (CERN)
09:30 - 10:00	Open questions from IN2P3/CNRS 30'
	Speaker: Patxi DUTHIL (IPNO - IN2P3 - CNRS)
10:00 - 10:15	Coffee break (Cafeteria Bldg 30 7th floor)
10:15 - 10:45	Cavities and related equipment (tuner, HOM, magnetic shields) 30'
	Speaker: Wolfgang Weingarten (CERN)
10:45 - 11:15	RF system (powering, distribution, coupling, control) 30'
	Speaker: Olivier Brunner (CERN)
11:15 - 11:45	Cryogenic requirements and test plansCryogenic requirements and test plans 30'
71.10	Speaker: Udo Wagner
11:4E 12:00	
11:45 - 12:00	Cryogenic test infrastructure in SM18 Cryogenic test infrastructure in SM18 15' Speaker: TBD
	•
12:00 - 14:00	Lunch break ()
14:00 - 14:30	Cryomodule development for Project X 30'
	Speaker: Jim Kerby (Fermi National Accelerator Laboratory (FNAL))
14:30 - 16:00	Wrapping-up session 1h30'
16:00 - 16:15	Coffee break (Cafeteria bldg 30 7th floor)
16:15 - 16:45	Conclusions 30'
	Speaker: Vittorio Parma (CERN)

Background information

Short cryo-module: Goal & Motivation

Goal:

• Design and construct a $\frac{1}{2}$ -lenght cryo-module for 4 β =1 cavities (as close as possible to a machine-type cryomodule)

Motivation:

- Test-bench for RF testing on a multi-cavity assembly driven by a single or multiple RF source(s)
- Enable RF testing of cavities in horizontal position, housed in machine-type configuration (helium tanks with tuners, and powered by machine-type RF couplers)
- Validate by testing critical components like RF couplers, tuners,
 HOM couplers in their real operating environment

Cryostat-related goals:

- Learning of the critical assembly phases:
 - From clean room assembly of cavities to a cryomodule
 - Alignment/assembly in the cryostat;
- Proof of concept of "2-in-I" RF coupler/cavity supporting:
 - Fully integrated RF coupler: assembly constraints
 - Active cooling effect on cavity alignment
- Operation issues:
 - Cool-down/warm-up transients
 - Thermo-mechanics and alignment, vibrations
 - Heat loads

Instrumentation: cryostat-specific needs

- Alignment: Wire Position Monitor (WPM) type system
 - On-line monitoring movements and vibrations of the Cold Mass (CM)
 during cool down and steady state operation
 - Requires WPM supports of helium vessel
 - Routing of coax cables through cryostat (4 per measurement point)
- Calorimetric measurments
 - T gauges in helium bath (I per cavity)
 - 25 W electrical heaters in helium bath (I per cavity)

β=1 cryo-module in SPL layout

Moving from 8 to a 4-cavity design

Cryo-module Design Strategy:

- Cryo design for an 8-cavity machine cryomodule:
 - Cryogenics (p,T, heat loads, mass flows...)
 - Inner cryo lines for a fully segmented machine layout:
 - Individual cryo feeding, He vapours pumping, cryo control
 - Pipe IDs, pressure drops, T margins,
 - Control equipment (valves and instrumentation)
 - Design for 1.7% tunnel slope (test 0%-2%)
- Design for Manufacture for a small-to-medium number of cryomodule (typically ~50 units)
 - Mechanical design, construction and assembly
 - Alignment goals for machine-type cryomodules

"Dressed" Cavity (CERN mods to CEA's design)

Includes specific features for cryo-module integration (inter-cavity supports, cryogenic feeds, magnetic shielding ...)

Cavity Supporting System: alignment

Transversal position specification

BUDGET OF TOLERANCE						
Step	Sub-step	Tolerances (3σ)	Total envelopes			
	Cavity and He vessel assembly	± 0.1 mm	Positioning of the			
Cryo-module assembly	Supporting system assembly	± 0.2 mm	cavity w.r.t. beam axis			
	Vacuum vessel construction ± 0.2 mm		± 0.5 mm			
Transport and handling (± 0.5 g any direction)	N.A.	± 0.1 mm	Stability of the cavity w.r.t. beam axis ± 0.3 mm			
	Vacuum pumping					
	Cool-down					
Testing/operation	RF tests	± 0.2 mm				
	Warm-up					
	Thermal cycles					

onstruction precisior

ng-term stabil

Heat Loads (per $\beta=1$ cavity)

Operating condition	Value (nominal/"ultimate")
cryo duty cycle	4.11%/8.22%
quality factor	10/5 x 10 ⁹
accelerating field	25 MV/m

Source of Heat Load	Heat Load @ 2K (nominal/"ultimate")
dynamic heat load per cavity	5.1/20.4 W
static losses	<1 W (tbc)
power coupler loss at 2 K	<0.2/<0.2 W
HOM loss in cavity at 2 K	<1/<3 W
HOM coupler loss at 2 K (per coupl.)	<0.2/<0.2 W
beam loss	1 W
Total @ 2 K	8.5/25.8 W

Cryogenic scheme (latest version)

Pipe sizes and T, p operating conditions

Line	Description	Pipe Size (ID,mm)	Normal operating pressure [MPa]	Normal operating temperature [T]	Cool- down/w arm-up pressure [MPa]	Cool- down/warm- up temperature [K]	T range [K]	Maximum operating pressure [MPa]	Design pressure [MPa]	Test pressure [MPa]	Comment
L	Cavity helium enclosure	400	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.15 @ 293K 0.2 @ 2K	TBD	TBD	
X	Bi-phase pipe	100	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.15 @ 293K 0.2 @ 2K	TBD	TBD	
Y	Cavity top connection	80	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.15 @ 293K 0.2 @ 2K	TBD	TBD	
XB	Pumping line	100	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.15 @ 293K 0.2 @ 2K	TBD	TBD	
E	Thermal shield supply	40 (TBD)	2.0	50-75 (20-40 on test stand?)	2.0	293-50	50-293	2.0	2.0		Heat intercept
E'	Thermal shield return	15 (TBD)	2.0	50-75 (20-40 on test stand?)	2.0	293-50	50-293				Return only
W	Cryostat vacuum vessel	1000 (TBD)	vacuum	293	vacuum	293	237-293	O.P. 0.1	I.P. 0.15	N.A.	
C1	Cavity filling	4	0.1	4.5	0.1	293-4.5	4.5-293				Liquid supply
C2	Coupler cooling	15 (TBD)	0.1	4.5-293	0.1	293-4.5	4.5-293				Gaseous supply
C3	Cavity top supply	6	0.1	2	0.1	293-4.5	2-293				Liquid supply

Short cryomodule: layout sketch

RF coupler, bottom left side

1.7% Slope (adjustable 0-2%)