Test plan for SPL short cryomodule

O. Brunner, W. Weingarten

Objective of test

- Validation of RF power test setup with 1 MW klystron/modulator on sc cavity in pulsed mode
- Validation of cavity performance inside cryo-module and of assembling procedure: conditioning with 1 klystron of pair of cavities up to 25 MV/m
 - main coupler conditioning
 - calorimetric Q-measurement
 - X-ray generation of cryo-module
 - long run test @ max field
 - crosstalk between cavities by RF or dark currents, ...
- Validation of LLRF system
- Validation of cryo-module design
 - static losses
 - critical heat flow in super-fluid helium
 - microphonics, ...

Test object ¹

The cryomodule is equipped with

- \blacktriangleright 4 $\beta\text{=}1$ 5-cell Nb bulk cavities at 704 MHz joined with 1He tank
- ▶ 4 power couplers (2 per klystron) with ancillaries (gHe feeder lines with heater) and interlock equipment (e-current, temperature, vacuum gauge)
- 4 pickup antennas (50 Ω)
- 4 tuners (slow and piezo)
- ▶ 1 thermal shield with (possibly) magnetic shield (Cryoperm) thermally anchored to it (need of 2nd magnetic shield to be discussed)
- 2 gate valves at extremities (plus protection flanges)
- slow control & interlock system
- ...

Test object ²

- ... the cryomodule is equipped with
 - ▶ He pressure gauge
 - ▶ lHe level sensors (redundancy)
 - temperature-sensors at strategic points (bellows, magnetic shield, HOM couplers, power coupler
 - ▶ 8 HOM couplers with (broadband) feedthrus and RF cables to room temperature loads (rated 100 W) sufficiently thermally anchored
 - pressure gauges for cavity vacuum and insulation vacuum
 - ▶ 4 heaters inside He tank (among others used for measurement of Q-value)
 - ▶ RF-DC filters for e⁻-current measurement (outside cryo-module) at HOM and pick-up cables
- Radiation monitor available inside bunker
- All sensor signals remotely logged

Test object ³

RF power tests with 1/2/4 cavities per 1 MW klystron

RF test in pulsed operation without beam

Cryogenic design parameters

Updated values in red

Cf. also

https://twiki.cern.ch/twiki/bin/view/SPL/SPLparameterList

<u>Parameter</u>	<u>Unit</u>	low-beta	high-beta
		nominal/ultimate	
Cavity bath temperature	[K]	2.0	2.0
Beam loss	[W/m]	1.0	1.0
Static loss along cryo-modules at 2 K	[W/m]	?	?
Static loss at 5-280 K	[W/m]	?	?
Accelerating gradient/voltage	[MV/m]/ <mark>[MV]</mark>	19.3/ <mark>13.3</mark>	25/26.5
Quality factor Q	[10 ⁹]	6/3	10/5
R/Q value	[Ω]	290	570
Cryogenic duty cycle	[%]	4.09/8.17	4.11/8.22
Coupler loss at 2.0 K	[W]	<0.2/0.2	<0.2/0.2
HOM loss at 2.0 K in cavity	[W]	<1/<3	<1/<3
HOM coupler loss at 2.0 K (per coupler)	[W]	<0.2 /0.2	<0.2/0.2
HOM & Coupler loss 5-280 K	[g/s]	0.05	0.05
Tunnel slope	[%]	1.7	1.7
Cavities per cryostat		3	4/8
Dynamic heat load p. Cavity	[W]	4.2/16.8	5.1/20.4
Intercavity bellows hom loss (ss/copper) for 2.112 GHz[W]		?	<3/<0.1
6 SPI cryo-module meeting 19 October 2010			\\/\\/

Test sequence 1

At room temperature

- The cryo-module is installed and connected to the cryo-line but not yet to the RF power waveguide system proper (2 cavities per klystron) but instead to a waveguide-coax 50 Ω line
- Check vital components such as tuners (range), temperature sensors, low level RF system
- Measurement of fundamental mode (704 MHz) resonant frequencies of cavities and Q_{ext} for 704 MHz of power couplers, pickup probes and HOM couplers
- Calibrate directional couplers on waveguides for forward and reflected wave
- Interlock tests
- ▶ If vacuum OK (p < 10⁻⁶ mbar) start cool down
 - Sequence of cool down: thermal/magnetic shield cavity end group (beam tubes) - cavity proper

Test sequence²

- During cool down
 - Logging of temperature sensors/lHe level/vacuum

Test sequence³

▶ At 4.5 K

- Measurement of fundamental mode resonant frequencies of cavities and Q_{ext} of power couplers, pickup probes and HOM couplers (optional)
- Measure transfer-function of fundamental and prominent HOMs between adjacent cavities
- \blacktriangleright Connection with RF power waveguide system and adjustments of Q_{ext} of power coupler to nominal, if needed
- Switch on moderate RF power and check for RF leaks in waveguide system
- Activate LLRF system for tuning cavities on master frequency
- ▶ Have all interlocks and all diagnostics equipment active and actuators on REMOTE, close door of bunker

Test sequence 4

At 1.8 K

- Increase RF power slowly to nominal value under pulsed conditions and careful observation of
 - Power coupler diagnostics signals (to be specified)
 - ▶ Cavity signals (forward, reflected, transmitted power, vacuum)
 - ▶ HOM power at 704 MHz
 - ▶ X-radiation
 - ▶ e⁻-current
- Check for helium pressure oscillations without RF as well as "microphonics"
- Measure static heat load of cryo-module
- Increase acc. gradient to nominal; when at nominal gradient,
 - measure Lorentz-force detuning in pulsed mode
 - measure dynamic cavity heat dissipation by adjusting the He gas pressure with the heater power inside the He tank
 - measure critical heat removal threshold in super-fluid helium

Wish-list for accessibility for in-situ intervention

Inside cryo-module

- Tuner
 - Motor and mechanical parts
- ▶ HOM coupler
 - re-tuning of notch-filter or in situ tuning from outside, if possible
- RF vacuum transitions
 - ▶ all type N (or similar)
- Outside cryo-module
 - ▶ 3-stub tuner
 - for RF coupler re-adjustment
 - gHe pipes
 - mass flow in power coupler heat exchanger

Thank you for your attention

