
# **Project X Cryomodule Status**

Jim Kerby (w/ thanks to the Project X team) SPL Meeting CERN 19 October 2010



Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics

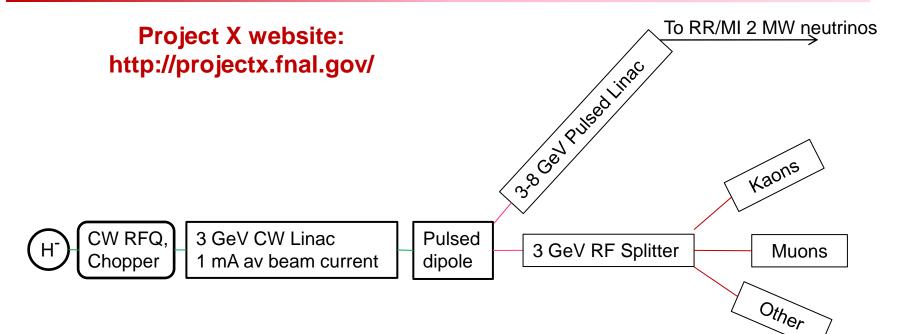
⇒ The Fermilab strategy is to mount a world-leading program at the <u>intensity frontier</u>, while using this program as a bridge to an <u>energy frontier</u> facility beyond LHC in the longer term.





# Evolution of the Fermilab Accelerator Complex

- A multi-MW Proton Source, Project X, is the linchpin of Fermilab's strategy for future development of the accelerator complex.
- Project X provides long term flexibility for achieving leadership on the intensity and energy frontiers
  - Intensity Frontier:


 $NuMI \rightarrow NOvA \rightarrow LBNE/mu2e \rightarrow Project X \rightarrow Rare \ Processes \rightarrow NuFact$ 

- Continuously evolving world leading program in neutrino and rare processes physics; opportunities for applications outside EPP
- Energy Frontier:

 $\text{Tevatron} \rightarrow \text{ILC or Muon Collider}$ 

- Technology alignment
- Fermilab as host site for ILC or Muon Collider





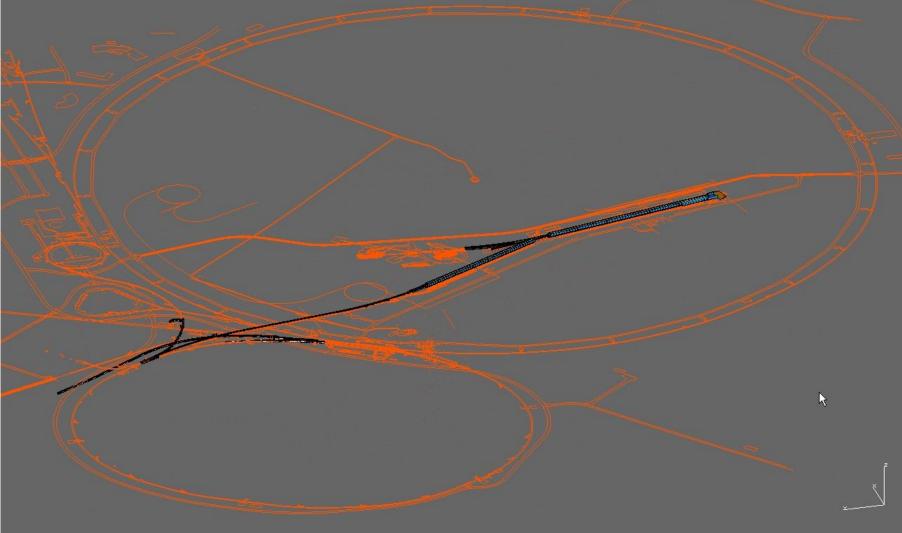
- 3 GeV CW linac provides greatly enhanced rare process program
  - ~3 MW; flexible provision for beam requirements supporting multiple users
- Preferred option for 3-8 GeV acceleration: 1.3 GHz pulsed linac
- Reference Design Report in final edit



## Project X Performance Goals



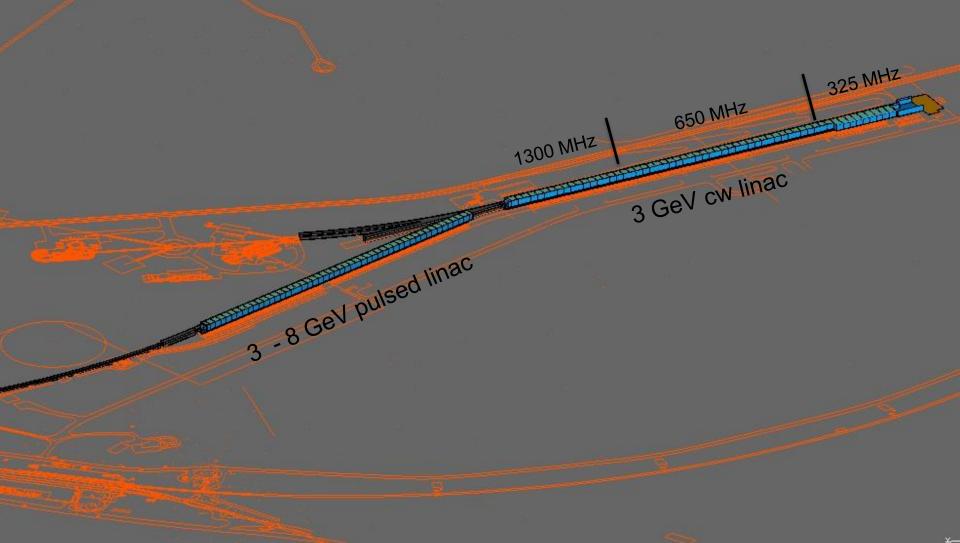
| Linac    | Requirement | Description                                                                    | Value                                       |
|----------|-------------|--------------------------------------------------------------------------------|---------------------------------------------|
|          | L1          | Delivered Beam Energy, maximum                                                 | 3 GeV (kinetic)                             |
|          | L2          | Delivered Beam Power at 3 GeV                                                  | 3 MW                                        |
|          | L3          | Average Beam Current (averaged over >1 μsec)                                   | 1 mA                                        |
|          | L4          | Maximum Beam Current (sustained<br>for <1 μsec)                                | 10 mA                                       |
|          | L5          | The 3 GeV linac must be capable of delivition linac, for acceleration to 8 GeV | vering correctly formatted beam to a pulsed |
| L6<br>L7 |             | Charge delivered to pulsed linac                                               | 26 mA-msec in < 0.75 sec                    |
|          |             | Maximum Bunch Intensity                                                        | 1.9 x 10 <sup>8</sup>                       |
|          | L8          | Minimum Bunch Spacing                                                          | 3.1 nsec (1/325 MHz)                        |
|          | L9          | Bunch Length                                                                   | <50 psec (full-width half max)              |
|          | L10         | Bunch Pattern                                                                  | Programmable                                |
|          | L11         | RF Duty Factor                                                                 | 100% (CW)                                   |
|          | L12         | RF Frequency                                                                   | 325 MHz and harmonics thereof               |
|          | L13         | 3 GeV Beam Split                                                               | Three-way                                   |


#### 3-8 GeV Pulsed Linac

| Requirement | Description                                                                                                                               | Value                      |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| P1          | Maximum beam Energy                                                                                                                       | 8 GeV                      |  |  |
| P2          | The 3-8 GeV pulsed linac must be capable of delivering correctly formatted be<br>for injection into the Recycler Ring (or Main Injector). |                            |  |  |
| Р3          | Charge to fill Main Injector/cycle                                                                                                        | 26 mA-msec in<br><0.75 sec |  |  |
| P4          | Maximum beam power delivered to 8 GeV                                                                                                     | 300 kW                     |  |  |







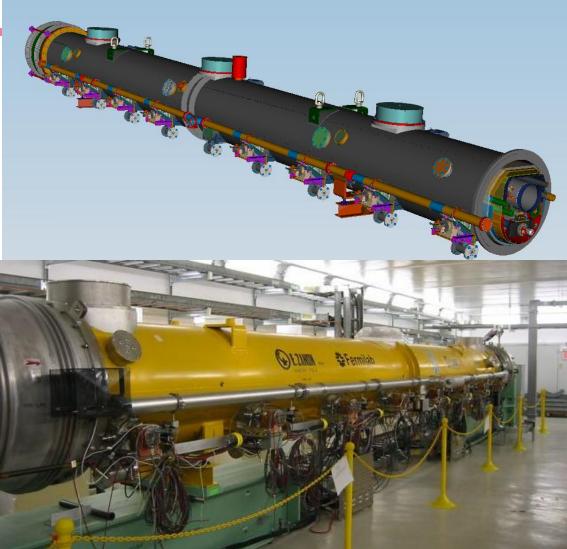








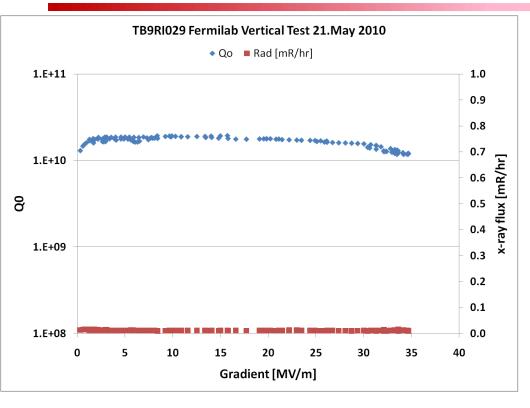




CERN 19 Oct 2010-J. Kerby



# **3-8 GeV Pulsed Linac**

\*


- ~4% duty factor, 200 1300MHz cavities operating at 25 MV/m
- 25 ILC-type (Type IV) Cryomodules
- Existing design, CM1 cooldown next week, CM2-6 following (in addition to XFEL preproduction / production expereince)
- Technical R&D into injection into Main Injector at lower energies



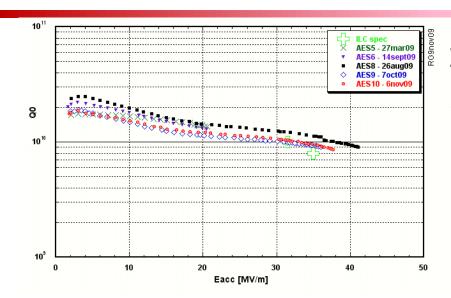


# **Recent VTS Results**

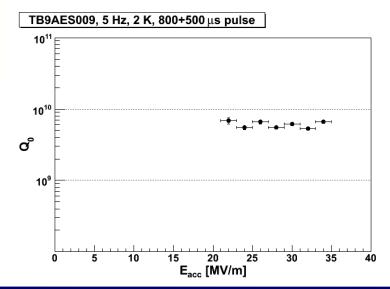




FNAL vertical test result 21.May 2010: 34.6 MV/m maximum gradient with Q0=1.2E10 (quench) No field emission measured above background


TB9RI029 is first FNAL/ANLprocessed production-style cavity to reach ~35 MV/m Bulk-EP was at RI

[AES003 after a long history was also light-EP'd recently at FNAL/ANL and reached 32.2 MV/m (some FE); TB9RI024, also with FNAL/ANL light-EP, reached 33.9 MV/m; some FE]




# **Recent HTS Results**





JLab vertical test data 7.Oct 2009: TB9AES009 maximum gradient 36.0 MV/m with Q0=9.1E9 (quench)



FNAL HTS data April/May 2010: TB9AES009 maximum gradient 35 MV/m with Q0=6.6E9 (quench)



## **3GeV cw Linac** Technology Map

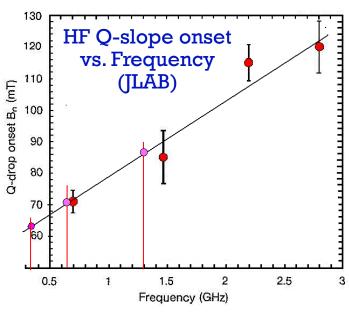


|                              | SSR0 S  | SSR1 SSR2        | β=0.6 β=0.9           | ILC                        |
|------------------------------|---------|------------------|-----------------------|----------------------------|
|                              | ·       |                  | ()                    |                            |
|                              | -       | 5 MHz<br>160 MeV | 650 MHz<br>0.16-2 GeV | 1.3 GHz<br>2-3 GeV         |
| Section                      | Freq    | Energy (Me∖      | /) Cav/Mag/CM         | Туре                       |
| SSR0 (β <sub>G</sub> =0.11)  | 325     | 5 2.5-10         | 26 /26/1              | SSR, solenoid              |
| SSR1 (β <sub>G</sub> =0.22)  | 325     | 5 10-32          | 18 /18/ 2             | SSR, solenoid              |
| SSR2 (β <sub>G</sub> =0.4)   | 325     | 32-160           | 44 /24/4              | SSR, solenoid              |
| LB 650 (β <sub>G</sub> =0.6  | 650 650 | 160-520          | 42 /21/7              | 5-cell elliptical, doublet |
| HB 650 (β <sub>G</sub> =0.   | 9) 650  | 520-2000         | 96 /12 /12            | 5-cell elliptical, doublet |
| ILC 1.3 (β <sub>G</sub> =1.0 | ) 130   | 0 2000-3000      | 64 /8 /8              | 9-cell elliptical, quad    |



## **3GeV cw Linac** Technology Map




| [                           | SSR0 S  | SR1 SSR2    | β=0.6 β=0.    | .9                         |
|-----------------------------|---------|-------------|---------------|----------------------------|
|                             |         |             | <b></b>       |                            |
|                             |         | 60 MeV      |               |                            |
| Section                     | Freq    | Energy (Me\ | /) Cav/mag/CM | Туре                       |
| SSR0 (β <sub>G</sub> =0.11) | 325     | 2.5-10      | 26 /26/1?     | SSR, solenoid              |
| SSR1 (β <sub>G</sub> =0.22) | 325     | 10-32       | 18 /18/ 2     | SSR, solenoid              |
| SSR2 ( $\beta_{G}$ =0.4)    | 325     | 32-160      | 44 /24/4      | SSR, solenoid              |
| LB 650 (β <sub>G</sub> =0.6 | 650 650 | 160-487     | 36 /24/4?     | 5-cell elliptical, doublet |
| HB 650 (β <sub>G</sub> =0.  | 9) 650  | 487-3000    | 160 /38 /20   | 5-cell elliptical, doublet |



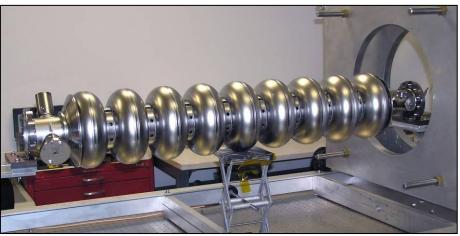


- Identify maximum achievable surface (magnetic field) on basis of observed Q-slope "knee"
- Select cavity shape to maximize gradient (subject to physical constraints)
- Establish Q goal based on realistic extrapolation from current performance
  - Goal: <25 W/cavity</li>
- Optimize within (G, Q, T) space

#### (Initial) Performance Goals



| <u>Freq (MHz)</u> | B <sub>pk</sub> (mT) | G (MV/m) | Q      | <u>@T (K)</u> |
|-------------------|----------------------|----------|--------|---------------|
| 325               | 60                   | 15       | 1.4E10 | 2             |
| 650               | 72                   | 16       | 1.7E10 | 2             |
| 1300              | 72                   | 15       | 1.5E10 | 2             |

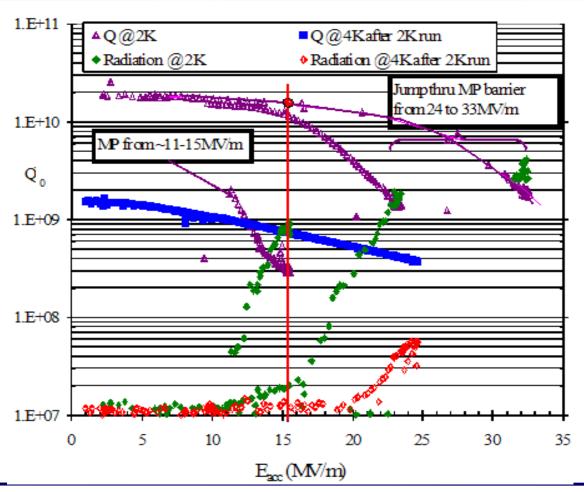



## SRF Technology Development





Elliptical Cavities \_\_\_\_\_ (650 and 1300 MHz) AES, RI, Jlab, Cornell, Niowave-Roark, RRCAT, Pavac.... Single Spoke Resonators — (325 MHz) Roark, Zanon, IUAC...






# **SSR1 Test Results**

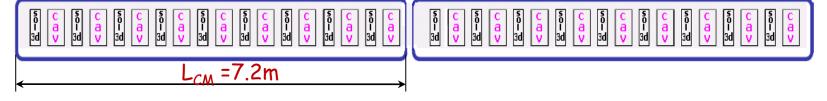


- Roark and Zanon SSR have been tested successfully
- Two in process at IUAC
- 10 more ordered from Roark
- SSR0, SSR2 designs following
- Ultimately a prototype SSR1 Cryostat will be assembled

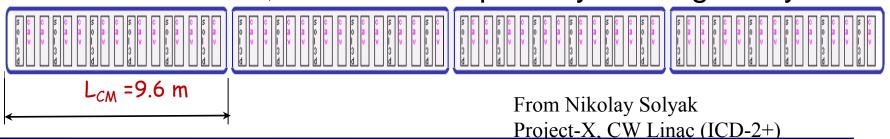




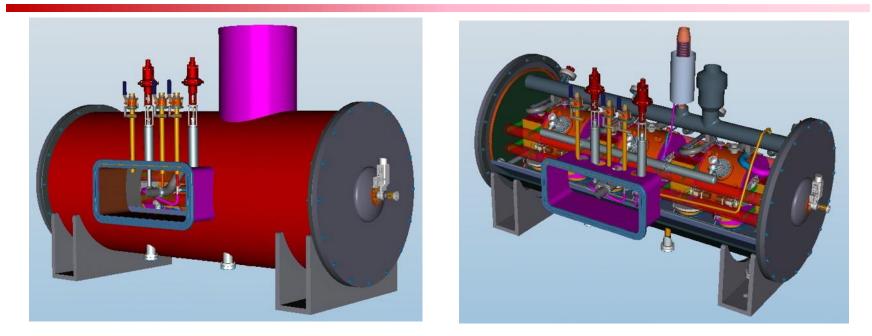
325 Cryomodule




1 CM of SSR0, 18 – 26 cavities


Solution
C
Solution
Sol

Vent pipes every 6 - 8 cavities, 40+ mm thermal contraction, assembly

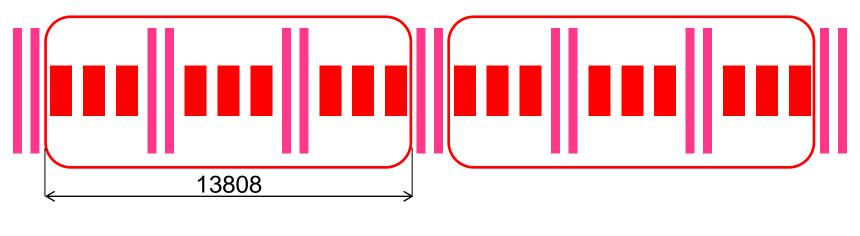

2 CM of SSR1, Minimize of the inter-cryostate drift space

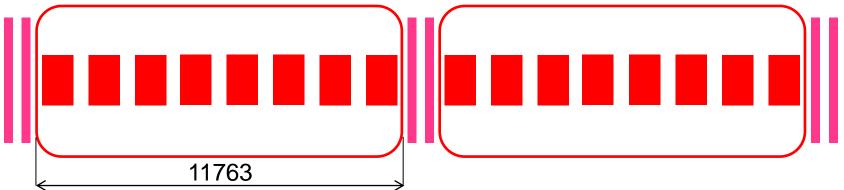


4 CM of SSR2, Provide drift space by missing cavity







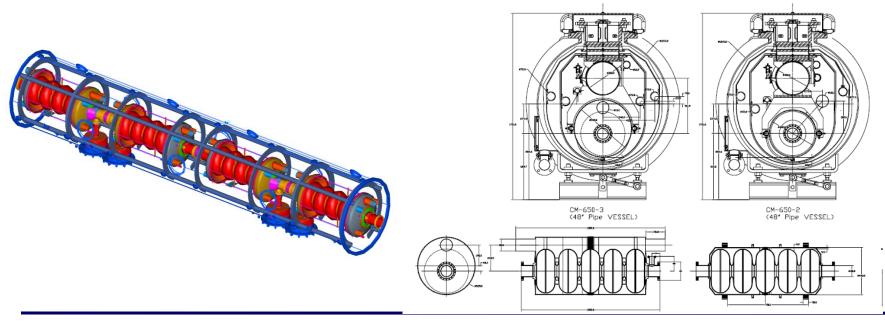


 Prototype design being developed to test 3 SSR1 and 4 solenoid magnets



# 650 Low and High Beta Optics










# 650 MHz Cryomodules



- Individually segmented, each with ~250W to 2K
- Design options range from "Spaceframe" to "TESLA" derivatives
- Discussion on the effect of vapor and liquid volumes fractions and flow rates on pressure regulation









- The optics design of the 2-3 GeV portion of the Project X CW Linac is under review.
- The dynamic heat load per cavity, and per cryomodule, has individually segmented cryomodules under serious consideration for the CW linac
- Initial alignment tolerances are 0.5mm rms, with a 1mm limit. The use of multiple correction elements and BPMs is motivating the numbers
- 650 Beta = 0.9 optics are more settled than Beta = 0.61 optics on a 'cryomodule' basis
- Warm and cold magnet options are under consideration.
- Inclusion of heat exchangers and cryogenic bayonets in the interconnect or directly from the vacuum vessel in discussion



#### **SRF Plan**



| U.S. Fiscal Year                  | 2008             | FY09     | FY10                           | FY11                                           | FY12                       | FY13                         | FY14                                            | FY15 |
|-----------------------------------|------------------|----------|--------------------------------|------------------------------------------------|----------------------------|------------------------------|-------------------------------------------------|------|
| 1.3 GHz                           |                  |          |                                |                                                |                            |                              |                                                 |      |
| CM1 (Type III+)                   |                  | CM Ass'y | Install<br>CM                  | CM1 Test                                       |                            |                              |                                                 |      |
| CM2 (Type III+)                   | Omnibus<br>Delay | Proces   | ss & VTS/Dress/HTS             | CM Ass'y swap?                                 |                            |                              | Operate<br>Complete RF                          |      |
| CM3 (Type IV)                     |                  | Design O | rder Cav & CM Parts            |                                                | 2CM<br>?                   | RF unit at                   | Unit @ Design<br>Parameters                     |      |
| CM4 (Type IV)                     |                  |          |                                |                                                |                            | swap? low rep<br>rate?       |                                                 |      |
| CM5 (Type IV)                     |                  |          |                                |                                                |                            | swap?                        |                                                 |      |
| CM6 (Type IV+) CW Design          |                  |          |                                | Design CM ?<br>1.3 GHz CW                      |                            |                              | Install in<br>CMTF                              |      |
| NML Extension Building            |                  | Desig    | jn Constructio                 | n                                              |                            |                              |                                                 |      |
| NML Beam                          |                  |          |                                | Move injector/insta<br>beam components         |                            |                              | test except during ins<br>n cryogenic load/capa |      |
| CMTF Building                     |                  |          | Design                         | Construction                                   |                            |                              |                                                 |      |
| 650 MHz                           |                  |          |                                |                                                |                            |                              |                                                 |      |
| Single Cell Design & Prototype    |                  |          |                                |                                                |                            |                              |                                                 |      |
| Five Cell Design & Prototype      |                  |          |                                |                                                |                            |                              |                                                 |      |
| CM650_1                           |                  |          |                                | Design Or                                      | rder 650 Cav & CM<br>Parts | Process &<br>VTS/Dress/HTS   | 650 CM<br>Ass'y                                 |      |
| 325 MHz                           |                  |          |                                |                                                |                            |                              |                                                 |      |
| SSR0/SSR2 Design & Prototype      |                  |          | Sp                             | Mechanical) all varieties of<br>ooke Reonators | Prototype<br>(as required) | Process & Te<br>(as required |                                                 |      |
| SSR1 Cavities in Fabrication (14) |                  |          | Procuremer<br>(already in prog | Procees &                                      | VTS/Dress/STF              |                              |                                                 |      |
| CM325_SSR1_proto CM               |                  |          |                                | Design                                         | Procure 325 CM Pa          | arts 325 CM<br>Ass'y         |                                                 |      |

|                  | Design    | Procure | Process &   | Assemble | Install | Commission |         |
|------------------|-----------|---------|-------------|----------|---------|------------|---------|
|                  |           |         | VTS         |          |         | & Operate  |         |
| CERN 19 Oct 2010 | -J. Kerby |         | Dress & HTS |          |         |            | Page 21 |







- Project X is central to Fermilab's strategy for development of the accelerator complex over the coming decade
  - World leading programs in neutrinos and rare processes
  - Aligned with ILC and Muon Accelerators technology development;
  - Potential applications beyond elementary particle physics
- The machine design is converging, though iterations of the optics are underway (and expected) at this conceptual stage
- At a minimum with respect to SPL cryogenics, alignment, and component thermal performance all appear to be areas of useful cross-calibration if not collaboration
  - Fermilab Director and CERN DG signed a letter of intent on future cooperation last friday