Testing CP and CPT symmetries in ortho-positronium decays with J-PET detector

SA SSP2022

8th International Symposium on Symmetries in Subatomic Physics

August $30^{\text {th }} 2022$

Aleksander Gajos
on behalf of the J-PET Collaboration
Jagiellonian University

J-PET
$\underset{\text { POLAND }}{\text { NATIOL SCiENCE Centre }}$

Motivation: discrete symetry tests with o-Ps $\rightarrow 3 \gamma$ decays

- Positronium - lightest purely leptonic bound state
- Eigenstate of C and P

How can we test discrete symmetries in the positronium system?

- Searches for prohibited positronium annihilations
- SME-based searches for CPT violation proposed with positronium spectroscopy [Phys. Rev. D92 (2015) 056002]
- Searches for non-vanishing symmetry-odd correlations

Testing discrete symmetries in ortho-positronium annihilations

$$
\begin{aligned}
\langle\hat{O}\rangle & \stackrel{?}{=} 0 \quad \text { for an odd operator } \\
& \Leftrightarrow \mathcal{C P} \mathcal{T}(\hat{O})=-1 \\
& \Leftrightarrow \mathcal{T}(\hat{O})=-1
\end{aligned}
$$

$$
\left|\vec{k}_{1}\right|>\left|\vec{k}_{2}\right|>\left|\vec{k}_{3}\right|
$$

operator	C	P	T	CP	CPT
$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+
$\vec{k}_{2} \times \vec{\epsilon}_{1}$	+	-	-	-	+
$\vec{S} \cdot \vec{\epsilon}_{1}$	$+$	$+$	-	+	\square
$\vec{S} \cdot\left(\vec{k}_{2} \times \vec{\epsilon}_{1}\right)$	$+$	\square	$+$	\square	-
[W. Bernreuther et al., Z. Phys. C41 (1988) 143 [P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]					

If polarization direction of the photons (ϵ) can be estimated, a new class of operators becomes available for measurement!

- Never measured before J-PET

The Jagiellonian PET (J-PET) tomographic detector

- Conceived at the Jagiellonian University as the
$1^{\text {st }}$ Positron Emission Tomograph based on plastic scintillators
- At the same time a robust photon detector for fundamental research!
- 192 scintillator strips (50 cm long) arranged in 3 concentric layers
- Photons interact via Compton scattering
- Cascades of subsequent scatterings can be recorded
\rightarrow estimation of $\boldsymbol{\gamma}$ polarization

Ortho-positronium spin estimation for the $S\left(k_{1} \times k_{2}\right)$ measurement

Event-by-event spin estimation

- Extensive-size chamber, $\mathrm{R}=12 \mathrm{~cm}$
- Walls coated with porous silica enhancing o-Ps formation
- $10 \mathrm{MBq} \beta^{+}$emitter (${ }^{22} \mathrm{Na}$) placed in the chamber center

- o-Ps $\rightarrow 3 \gamma$ annihilation point reconstructed using trilateration
[A. Gajos et al., NIM A 819 (2016), 54-59]

J-PET vs previous measurements

Gammasphere

PRL. 91 (2003) 263401

$$
\begin{aligned}
& \mathrm{C}_{\text {СРт }}=(2.6 \pm 3.1) \times 10^{-3} \\
& \vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right) \\
& P_{e+}=\frac{v}{c} \cdot 0.686
\end{aligned}
$$

- Limiting e+ emission direction
- $1 \mathrm{Mbq} \beta^{+}$emitter activity
- 4π detector but low angular resolution

Yamazaki et al.

 PRL 104 (2010) 083401$$
\begin{gathered}
\mathrm{C}_{\mathrm{CP}}=(1.3 \pm 2.1 \pm 0.6) \times 10^{-3} \\
\quad\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)
\end{gathered}
$$

- Polarized o-Ps using external B field
- Inclusive measurement
- Only certain angular configurations

(8) J-PET

- Recording multiple geometrical configurations
- e+ spin estimated event-by-event $P_{e+} \approx \frac{v}{c} \cdot 0.91$
- Plastic scintillators = fast timing
\rightarrow using high β^{+}emitter activity (tested up to 10 Mbq)
- Recording all 3 annihilation photons
- Angular resolution at 1° level

Identification of o-Ps $\rightarrow 3 \gamma$ events in J-PET

Using total Time Over Threshold (TOT) of PMT signals from a scintillator strip \rightarrow a measure of γ deposited energy

CPT test with $S\left(k_{1} \times k_{2}\right)$: Main background sources

Secondary Compton scatterings

- Secondary Compton-scattered photons may be recorded by J-PET again
- For each pair of annihilation photon candidates i and $j(i, j=1,2,3)$ we compute:
$\delta t_{i j}=\left|d_{i j}-c \Delta t_{i j}\right|$

Evaluation of the CPT-asymmetric observable

$$
\hat{S} \cdot\left(\vec{k}_{1} \times \vec{k}_{2}\right) /\left|\vec{k}_{1} \times \vec{k}_{2}\right|=\cos \theta
$$

Standard asymmetry:

$$
A=\frac{N_{+}-N_{-}}{N_{+}+N_{-}} \quad N_{+} \Leftrightarrow \cos \theta>0
$$

is generalized by the
mean value of $\cos \theta$:

$$
\frac{\int N(\cos \theta) \cos \theta}{\int N(\cos \theta)}
$$

J-PET is sensitive to the full range of the operator

Expected effect with CPT-asymmetric simulations (exaggerated violation)
[Symmetry 12 (2020) 8, 1268]

Results of the $1^{\text {st }}$ CPT test with J-PET

Using 2×10^{6} of identified o-Ps $\rightarrow 3 \gamma$ annihilations $3 y$ image of the o-Ps production chamber

The first image of an extensive-size object

obtained with o-Ps $\rightarrow 3 \boldsymbol{\gamma}$ annihilations

$$
C_{\mathrm{CPT}}=\left\langle O_{\mathrm{CPT}}\right\rangle / P=0.00067 \pm 0.00095
$$

$$
\hat{S} \cdot\left(\vec{k}_{1} \times \vec{k}_{2}\right) /\left|\vec{k}_{1} \times \vec{k}_{2}\right|=\cos \theta
$$

Efficiency ~ 11 w.r.t present J-PET

Towards the sensitivity of 10^{-5}

- New J-PET with dense geometry \& digital SiPM readout
- Spherical annihilation chamber to enhance e+ utilization

Test of the CP symmetry using γ polarization

Experiment:

- Using a small positronium production chamber in the center of J-PET
- ${ }^{22}$ Na positron source and XAD-4 porous material

- Three primary photon interactions from o-Ps $\rightarrow 3 r$
- Observable of the test:
$\left\langle\varepsilon_{i} \cdot k_{j}\right\rangle$
- Using events where an additional secondary Compton scattering was recorded
- Polarization most probable perpendicular to scattering plane

CP test with γ polarization - data analysis

Selection of o-Ps $\boldsymbol{\rightarrow} \mathbf{3 \boldsymbol { \gamma }}+\boldsymbol{\gamma}$ ' events:

- Time-Over-Threshold (TOT) of photon interactions
- Angular event topology
- Common emission time of 3 photons
- Distance of the annihilation plane from the o-Ps source

CP test with γ polarization - preliminary result

J-PET result:

$\mathrm{C}_{\mathrm{CP}}=\left\langle\varepsilon_{\mathrm{i}} \cdot \mathrm{k}_{\mathrm{j}}\right\rangle=0.00052 \pm 0.00067_{\text {stat }}$
$1^{\text {st }}$ measurement of an angular correlation operator involving photon polarization in o-Ps annihilations!

- Using MC simulations of the entire experiment
- Probing the full spectrum of the operator values
- Result uncertainty dominated by statistical error
- Publication in preparation
- Future: more statistics already available!

Summary

- The J-PET detector, originally conceived as a tomographic scanner, has demonstrated its capability as a photon detector for studies of ortho-positronium annihilations with a high acceptance and angular resolution
- J-PET measured the $\mathrm{S}\left(\mathrm{k}_{1} \times \mathrm{k}_{2}\right)$ angular correlation o-Ps $\rightarrow 3 \gamma$ annihilations sensitive to CPT-violating effects reaching sub-permil precision
- Estimation of o-Ps spin on an event-by-event basis
- The first image of an extensive-size object otained solely with o-Ps annihilations
- Recently, J-PET performed the $1^{\text {st }}$ measurement of a CP-violation-sensitive angular correlation involving photon polarization in o-Ps $\rightarrow 3 \gamma$ annihilations

Thank you for your attention!

 30.08.2022A. Gajos, SSP 2022

Backup Slides

Evaluation of the experiment's sensitivity

- MC-simulating same statistics as experimental data
- Artificially inducing different levels of CPT violation
- Applying identical analysis as used on data
- Testing observed level of violation ($\mathrm{C}_{\text {CPT }}$)

Different colors denote independent simulations

Testing discrete symmetries with ortho-positronium

If polarization direction of the photons (ϵ) can be estimated, a new class of operators becomes available for measurement!

[W. Bernreuther et al., Z. Phys. C41 (1988) 143]
[P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]

J-PET can determine the scattering plane in events with secondary Compton scatterings!

$$
\left|\vec{k}_{1}\right|>\left|\vec{k}_{2}\right|>\left|\vec{k}_{3}\right|
$$

[^0]
The J-PET Detector

- Constructed at the Jagiellonian University
- Fist PET device using strips of plastic scintillators
- At the same time:
a robust photon detector for fundamental research!

The J-PET Detector

- Constructed at the Jagiellonian University
- Fist PET device using strips of plastic scintillators
- At the same time:
a robust photon detector for fundamental research!

O-Ps creation and decay

[1] P. Kubica and A. T. Stewart, Phys. Rev. Lett. 34 (1975) 852 [2] M. Harpen Med.Phys. 31 (2004) 57-61
[3] J Cal-Gonzalez et al, Phys. Med. Biol. 58 (2013) 5127-5152

Distinguishing o-Ps $\rightarrow 3 \gamma$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2 \gamma$

Figure 9. (Left) Simulated distributions of differences between detectors ID ($\Delta \mathrm{ID}$) and differences of hittimes (Δt) for events with three hits registered from the annihilation e+e- $\rightarrow 2 \gamma$ (gold colours) and o-Ps $\rightarrow 3 \gamma$ (green colours). (Middle) Disribution of relative angles between reconstructed directions of gamma quanta. The numbering of quanta was assinged such that $\theta_{12}<\theta_{23}<\theta_{31}$. Shown distributions were obtained requiring three hits each with energy deposition larger than $E t h=50 \mathrm{keV}$. Gold colour scale shows results for simulations of $\mathrm{e}+\mathrm{e}-\rightarrow 2 \gamma$ and green scale corresponds to o-Ps $\rightarrow 3 \gamma$. Typical topology of o-Ps $\rightarrow 3 \gamma$ and two kinds of background events is indicated. (Right) Detection efficiency of the J-PET detector for registration of one, two and three gamma quanta from o-Ps $\rightarrow 3 \gamma$ decay. The efficiency is shown as a function of threshold energy applied in the analysis to each gamma quantum.

Time-Over-Threshold as a measure of deposited γ energy

Using total Time Over Threshold (TOT) of PMT signals from a scintillator strip

The relation between TOT and energy deposited by a photon in Comton scattering
is under an extensive study right now.

Angular topology of the 3γ events

Signal \& background events

(a) Signal (o-Ps $\rightarrow 3 \gamma$) event.

(b) 2γ annihilation with secondary Compton scattering.

Detector improvements

Expected sensitivity

No.	Operator	C	P	T	CP	CPT
1	$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
2	$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
3	$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+

Control of detector asymmetries

$$
\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)
$$

- Insensitive to CPT violation in absence of o-Ps tensor polarization
- No B field used in the current experiment => we expect <0> unless spurious asymmetries originate from detector/chamber geometry

$o-P s \rightarrow 3 \gamma$ operators involving spin

Presently studied with J-PET:

$$
\begin{gathered}
\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right) \quad \text { T\&CPT-violation sensitive } \\
\vec{S} \cdot \overrightarrow{k_{1}} \quad \text { CP-violation sensitive }
\end{gathered}
$$

$$
\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)
$$

T \& CP-violation sensitive but requires o-Ps tensor polarization
\rightarrow not available with the current
J-PET approach

Effective polarization depends on o- $\mathrm{Ps} \rightarrow 3 \gamma$ vertex resolution

Reconstruction of o-Ps $\rightarrow 3 \gamma$ decays in J-PET

1. Find the decay plane containing the 3 hits in the J-PET barrel
2. For each of the recorded γ hits, define a circle of possible origin points of the incident γ assuming o-Ps decay at time t

[^0]: Angle between ϵ and the scattering plane

