Final results of the neutrinoless double-beta decay search with GERDA

Mario Schwarz for the GERDA collaboration mario.schwarz@tum.de

SSP 2022, August 29 – September 02, Vienna

(Neutrinoless) double beta decay

Required for observation: purely double beta (**ββ**) decaying isotope ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe, ...

2vββ allowed in SM Among the rarest radioactive processes ever observed

Observation of $\mathbf{O}\mathbf{V}\mathbf{\beta}\mathbf{\beta}$:

... → Lepton number non-conservation

¬ Majorana nature of V

... \rightarrow Majorana nature of \mathbf{v}

 $... \rightarrow$ Effective Majorana mass

$$m_{\beta\beta} = |\sum_i U_{ei}^2 m_i|$$

... exciting challenge in contemporary physics!

The GERDA Collaboration

GERDA meeting LNGS June 2022

The GERDA Collaboration

Experimental approach

Key concept: use of **HPGe** (High-Purity Germanium) detectors enriched in ⁷⁶**Ge** (~ 87%)

- → Source = detector → High detection efficiency
- → No intrinsic backgrounds [Astropart.Phys. 91 (2017) 15-21]
- → Application of Pulse-Shape Discrimination (PSD)

germanium detector ...

germanium detector ...

germanium detector array ...

GERDA Phase II setup [Eur.Phys.J. C78 (2018) no.5, 388]

Data taking in Phase II

Phase II data taking from December 2015 to November 2019

Final energy spectrum of Phase II

Before high-level cuts → quality cuts, muon anti-coincidence and detector anti-coincidence applied

Final energy spectrum of Phase II

- Synergy between PSD and LAr veto around region of interest
 - → background gets reduced to single counts in ROI

Final GERDA result on Ovββ

[Phys.Rev.Lett. 125 (2020) 25, 252502]

- Lowest background index in the field: 5.2^{+1.6}_{-1.3} · 10⁻⁴ cts/(keV kg yr) < 10⁻³ cts/(keV kg yr)
- No signal observed in total exposure of **103.7 kg yr**
- Frequentist: $T_{1/2} > 1.8 \cdot 10^{26} \, yr$ at 90% C.L. (same median sensitivity)
- $m_{\beta\beta} < 79 ... 180 \text{ meV}$

Mass observables

 10^{-3}

 10^{-3}

three flavour scenario (Esteban et al., JHEP 09 (2020) 178]

| Image: Property of the property

Planck + BAO (ΛCDM)

[Aghanin et al, Astron.Astrophys. 641 (2020) A6]

 $\Sigma = \Sigma_i m_i [eV]$

• Given standard assumptions, $0v\beta\beta$ constrains neutrino mass

 $m_{light} = \min(m_i) [eV]$

 10^{-1}

• Complementarity to cosmology and direct mass measurements

 10^{-2}

proj.

 10^{-1}

[Aker et al., Nature Phys. 18 (2022) 2]

Concluding GERDA's search for $Ov\beta\beta$

- T_{1/2} sensitivity scales linear to exposure due to quasi background-free regime
- GERDA is the first experiment to reach sensitivity beyond 10²⁶ yr
- LEGEND will continue the search for $0v\beta\beta$ staying on the quasi background-free track

2vββ decay study with GERDA Phase II

2vββ decay half life

- Half-life of $2\mathbf{v}\beta\beta \rightarrow$ input for nuclear structure calculations $[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} |\mathcal{M}_{eff}^{2\nu}|^2$
- GERDA Phase I: $T_{1/2}^{2v} = (1.926 \pm 0.094) \ 10^{21} \ yr_{\text{[Eur. Phys. J. C (2015)]}}$ Uncertainty dominated by active volume, background model and MC simulation
- Improve in Phase II: low background after LAr veto & enhanced active volume determination of BEGes
- Total uncertainty is now 2.0 %
 → most precise determination of ⁷⁶Ge half-life
- Final result for Phase II: T_{1/2}^{2v} = (2.022 ± 0.041) 10²¹ yr
- Convert to nuclear matrix element: $|\mathcal{M}_{eff}^{2\nu}| = 0.101(1)$

[Phase space from Phys. Rev. C 85, 034316 (2012)]

Publication coming soon!

Exotic double beta decay modes

- Two **v** or exotic particles emitted along both e⁻
- Energy distribution of e⁻ continuous between 0 .. Q_{ββ}
- Some Beyond Standard Model (BSM) physics manifest as distortions of $2\nu\beta\beta$ distribution
- Signal for new physics O(≤ 100) events
- Use 32.8 kg yr BEGe data from before upgrade
 → minimize statistical & shape systematic uncertainty
- LAr veto \rightarrow "pure" $2v\beta\beta$ spectrum remains
- Publication in preparation

Standard Model 2νββ decay

Sterile neutrino emission, $m_N=600 \text{ keV}$

Search for Majoron-involving decays

- $(A, Z) \rightarrow (A, Z+2) + 2e^{-} + J(2J)$
- Searched for $\beta\beta$ with emission of 1 or 2 Majorons \rightarrow 4 models with spectral indices n = 1, 2, 3, 7
- No evidence for signal → set 90% C.L. limits
- Compute limits on half-life from limits on number of events
- Relate to neutrino-Majoron coupling constant g_j:

$$[T_{1/2}]^{-1} = g_J^{2m} | g_A^2 \mathcal{M}_\alpha | G^\alpha$$

- Improvement by factor ~2 compared to GERDA Phase I result
- Results comparable with limits from other ββ decay isotopes

			Preliminary
Decay mode	de $T_{1/2}$ (yr)		Observed g_J
	Sensitivity	Observed limit	
Jββ (n = 1)	$3.5 \cdot 10^{23}$	> 6.4·10 ²³	$< (1.9 - 4.4) \cdot 10^{-5}$
$J\beta\beta$ ($n=2$)	$2.5 \cdot 10^{23}$	$> 2.9 \cdot 10^{23}$	_
$J\beta\beta$ ($n=3$)	$1.3 \cdot 10^{23}$	$> 1.2 \cdot 10^{23}$	< 0.017
$JJ\beta\beta$ ($n=3$)	$1.3 \cdot 10^{23}$	$> 1.2 \cdot 10^{23}$	< 1.2
$JJ\beta\beta$ ($n=7$)	$5.8 \cdot 10^{22}$	$> 1.0 \cdot 10^{23}$	< 1.1

Phase space from [Phys. Rev. C 91 (2015), p. 64310], NMEs from [Phys. Rev. C 103 (2021), arXiv:2202.01787]

Results on the search for Lorentz violation

- $(A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2\overline{v}_{LV}$
- Counter-shaded operators of Lorentz- and CPT-violating Standard Model Extensions a_{of} (3) undetectable via **v** oscillation or time-of-flight
- Energy distribution of 2**vββ** affected by isotropic component $\mathring{a}_{of}^{(3)}$
 - \rightarrow introducing additional decay rate \propto å_{of} (3)
- No evidence of deviation from SM distribution
 - \rightarrow set positive and negative limits on å_{of} (3)

	Preliminary	
Sensitivity	Observed Limit	
$\frac{1}{(-3.8 < a_{of}^{(3)} < 4.9)}$ 10 ⁻⁶ GeV	$(-2.7 < a_{of}^{(3)} < 6.2)$ 10 ⁻⁶ GeV	

Phase space ratio to combine SM distribution and LV perturbation from [Phys. Rev. D 103, L031701]

- First constraints with ⁷⁶Ge
- Comparable with limits from other $\beta\beta$ isotopes
- 30% impact on limit due to systematics estimated

Search for light exotic fermions

- Sterile Neutrinos (N): $(A, Z) \rightarrow (A, Z+2) + 2e^{-} + \overline{v} + N$
- Z_2 -odd fermions (χ): (A, Z) \rightarrow (A, Z+2) + 2e⁻ + 2 χ

[Phys.Rev.D 103 (2021) 5, 055019, Phys. Lett. B 815 (2021)]

- Emission of exotic fermions in ββ decay with masses < Q_{ββ}
 → Endpoint of distribution shifted by particle mass
- Searched for masses between 100 and 900 keV
 - → No evidence for signal; set limits at 90% C.L.
- First experimental constraints on light exotic fermions in $2v\beta\beta$ decay
- Though single- β constraints more stringent, pair production of exotic fermions only testable in $\beta\beta$ decay

Wrapping up the search for exotic physics in GERDA

- No indication for deviation from SM $2v\beta\beta$ decay found
- Limits at 90% C.L.:

Conclusions

- GERDA searched for $0v\beta\beta$ in quasi background-free regime
- Data taking finished in November 2019, all design goals surpassed
- No 0**v\beta\beta** found \rightarrow Limit at $T_{1/2} > 1.8 \cdot 10^{26}$ yr at 90% C.L. set
- Demonstrated quasi background-free operation with HPGe technology in LAr → paved the way for next generation 0vββ search in LEGEND

No indication for exotic physics
 → set limits on Majoron-involving decays, Lorentz violation and light exotic fermions
 PUBLICATION COMING SOON!

