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 Electric dipole moments of fundamental particles are widely recognized 
as unique probes for New Physics

 A permanent EDM violates P, T and assuming CPT conservation, also CP

– Required to explain the observed baryon asymmetry in the 
Universe (under CPT conservation and symmetric initial conditions)

 Standard Model predictions for EDMs are orders of magnitude below 
current sensitivity of experiments

– Negligible background from Standard Model physics

– Observation of non-zero EDM would be a clear sign of new 
physics

Motivation for EDM searches
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 The current experimental limit on the 
muon EDM is ~10-19 e cm*

 Assuming minimum flavour violation, 
lepton flavour universality and naive 
mass scaling of the electron EDM one 
can place a 10-27 limit on the muon EDM

 Tensions in semi-leptonic B decays at 
LHCb, Belle and BaBar challenge these 
assumptions

 Combined with the long-standing muon 
(g-2) tension there are strong hints of 
New Physics involving the muon

EDM of the muon
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Sensitivity from (g-2) experiments
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The frozen spin technique*
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FNAL & JPARC Frozen spin at PSI: 
precursor: de = 10-21 e.cm
final: de = 5.10-23 e.cm
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Search for the muon EDM using the frozen 
spin technique at PSI
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Main components of the PSI experiment
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 Muons enter the uniform magnetic field
 A radial magnetic field pulse stops them within a 

weakly focusing field where they are stored
 Radial electric field ‘freezes’ the spin so that the 

precession due to the MDM is cancelled

By = 3 T

Radial kick field~100 ns duration

Bx
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 The observable of interest is the 
asymmetry between ‘upstream’ and 
‘downstream’ detectors as a function 
of time



 If the EDM ≠ 0, then there will be a vertical 
precession out of the plane of the orbit
 An asymmetry in the direction of emitted 

positrons will be observed
 If the EDM = 0, then the spin should always 

be parallel to the momentum – asymmetry 
should be zero

 Some asymmetry could still be
observed due to systematic effects

The general experimental idea

Page 8

B

E

𝑅=0.14m
𝜔⃗𝑒



 Systematic effects: all effects that lead to a real or apparent precession of the spin 
around the radial axis that are not related to the EDM 

 The work by Farley et al. used as a starting point:

 Major sources of systematic effects in the frozen spin technique:
 Early to late variation of detection efficiency of the EDM detectors (apparent)
 Coupling of the anomalous magnetic moment with the EM fields of the 

experimental setup (real)

Systematic effects
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Systematic effects related to real spin 
precession
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 Main EM fields in the experiment:

– Main solenoid

– Coaxial electric freeze field

– Weakly focusing field

– Magnetic kick (time varying)

 Rotations that could mimic the EDM:

– Radial around x

– Azimutal around z
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Coupling of the MDM to EM fields
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Oscillating and constant terms
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 Using the T-BMT equation one can describe analytically the spin precession due to 
the MDM in the EM fields of the experiment
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betatron oscillations
in weakly focusing
field

oscillations due to the projection of the
main solenoid field along the momentum

β⨯E term



 Net B-field component along the momentum Bz → non-zero if there is 
current flowing through the muon orbit

 Net radial B-field component Bx → can be non-zero due to residual fields 
from the magnetic kick

 Radial magnetic field in the reference frame of the muon due to a β⨯E term 
→ non-zero if there is E-field prependicular to the muon orbit

Average over all orbits

Page 13

 If we take the average over all muon orbits the periodic oscillations disappear 
and we are left with three terms that could lead to a false EDM signal:

xy
zBz

Bx Ey



 Limit on the average Ey field as a 
function of the muon velocity shown 
as a fraction of the radial component

 The limit is 0.5 ppm for the 
precursor experiment and 0.1 ppm 
for the final experiment 

 This effect can be largely cancelled 
if particles are injected alternatively 
CW and CCW and subtracting 
counts in the detectors

Constraints on the average horizontal E-field
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final (125 MeV)

 Using alternating injection directions 
the average muon velocities for CW 
and CCW rotations must be similar in 
order to cancel the systematic

 The figures show the allowed 
difference in average momentum 
between CW and CCW injections in 
order to cancel the effect of Ey

 Limits improve to ~200 ppm for 
precursor and ~30 ppm for final 
assuming 0.5% difference between 
CW and CCW momenta

 Note: Ey is assumed to be constant between 
injections

Average velocity for CW and CCW injection
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precursor (28 MeV)



Sources of Ey field: electrode alignment
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Misalignment of the electric field

 The E field of an infinitely long coaxial 
cylinders is:

Shifting the field by r0 and rotating by α gives:

 Then average the new  field out 
over a circular orbit:

 It can be shown (numerically for now) that:

 For a circular orbit the misalignment 
of the anode or cathode cannot 
introduce a net horizontal E-field
(that was not there before)

 It also does not affect the ‘frozen spin’ 
condition



 The assumption for infinite coaxial cylinders holds if there are negligible 
fringe field in the region of interest

 ANSYS Maxwell simulations show less than 0.1 ppm horizontal component 
in ±20 cm region around ideal orbit

Sources of Ey field: fringe fields
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 Tapered cone shaped electrodes

 Smoothness of the electrodes close to the muon orbit (few centimeters)

 Generally sub-micrometer surface smoothness is possible with common 
machining and polishing techniques

 Cylindricity in the order of 50 nm is measurable even on large samples

Sources of Ey field: electrode non-uniformity
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Limits on real spin precession effects
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Parameter Expected 
value

Effect False EDM 
signal

Fraction of target 
EDM sensitivity 
(5⨯10-23 e·cm)

Tapered cone shape 
electrodes*

Anode:
ΔR < 2.5 μm
Cathode:
ΔR < 2.5 μm

10 ppm horizontal E-field 
component
CW-CCW injection 0.5% 
difference in average momenta

2⨯10-23 40%

Electrode local (cone 
shaped) smoothness*
(±2 cm around ideal orbit)

Anode:
δR < 0.25 μm
Cathode:
δR < 0.25 μm

25 ppm horizontal E-field 
component
CW-CCW injection 0.5% 
difference in average momenta

4⨯10-23 80%

Decay time of radial B 
field from magnetic kicker

< 50 ns Residual radial B-field
(spin precession around radial 
direction)

5⨯10-24 10%

Net current flowing 
through area enclosed by 
muon orbit

< 10 mA Azimuthal B-field
(spin precession around 
momentum)

3⨯10-24 6%

*assuming electrode shape does not depend on magnetic field orientation



Systematic effects related to apparent spin 
precession
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Detection efficiency asymmetry
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 The EDM will be deduced from the 
accumulation of asymmetry between 
the upstream and downstream 
detectors that increases with time

 Static differences in the detection 
efficiency of one detector compared 
to the other is not a problem

 Change of the detection efficiency 
with time is a problem as it will 
introduce time dependent asymmetry

y

py -pynL=κ LN nR=κRN

positrondetectors



 Let us assume that there is 
some effect that changes the 
total detection efficiency of 
both detectors and it is 
exponential in nature

 Detection efficiency of up and 
downstream detectors:  

 Change in measured asymmetry 
with time:

Constraints on the total detection efficiency
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 Note here that the total 
detection efficiency refers not 
only to the efficiency of 
scintillators/silicon 
detectors/etc but also includes 
the geometrical detection 
efficiency

 e.g. kicker field pushes 
positrons preferentially in 
one direction

 The effect would not be 
cancelled by alternating CW 
and CCW injection

Constraints on the total detection efficiency
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 If the electrical field is tuned to a value such as to enhance the g-2 precession 
the spin can make many rotations during the muon lifetime

 Any EDM or real spin precession systematic effects will be suppressed and the 
average spin precession will be zero

 Thus if any asymmetry is observed it will be due to the changing detection 
efficiency

Measuring the apparent systematic effects
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 Constraints on the main systematic effects due to EM fields were 
calculated using an analytical description of the spin precession in the EM 
fields of the experimental setup

 Stringent limits on the horizontal component of the electric field were 
identified

– The systematics due to the electric field would be largely cancelled 
by clockwise and counter-clockwise muon injection

– Limits on the CW and CCW average muon momentum are shown

 Constraints on the radial and azimuthal B-fields were placed

 Limits on the early-to-late detection efficiency of the EDM detectors were 
calculated and a method for the study of the systematic is discussed

Conclusions
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Thank you for the attention!

muonEDM 
collaboration kick-off 
meeting May 2022 
(Pisa, Italy) → 



 Non-zero average Bz field if there is 
electric current flowing through the area 
enclosed by the muon orbit

 Write net current!

 From Biot-Savart’s law we can give a limit 
on the systematics due to such current

 Assuming non-insulated wire at the 
center of the orbit:

– Precursor: I < 250 mA

– Final experiment: I < 40 mA

Limit on the B-field parallel to the momentum
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 Limit on the kicker field decay time 
with relation to the injection angle

 Assumptions:

– half-sine kicker field intensity

– end of the kick is considered to be
at the 10% from maximum livel

– exponential decay of the ringing
signal with time constant τB

– the limit is such that the influence 
of the residual field is less than a given de at ~400 ns time

Note: the constraint is lower for later times and stronger for earlier times

Limit on the radial B-field
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 Simulated short current pulse for the two 
anti-Helmholtz coils

 The solid black line shows the limiting 
decay time for an exponentially decaying 
pulse that goes below the limit at 400 ns 
(overshoot or undershoot)

 The influence of the simulated kicker field 
to the observed spin precession is 
negligible after 200 ns  

Limit on the radial B-field
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 Surface smoothness at the submicron level seems 
achieavable by a lot of methods
https://www.a-i-t.com/cnc-machining-services/surface-fin
ish-comparison-chart

Surface smoothness
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https://www.a-i-t.com/cnc-machining-services/surface-finish-comparison-chart
https://www.a-i-t.com/cnc-machining-services/surface-finish-comparison-chart


 A non-zero average Ey field can be 
generated if the orbit of the muons is 
eliptical and at the same time it is not 
perpendicular to the axis of the anode.

– the average field will be zero if the 
center of the orbit lies on the x axis

– it is positive if it lies on the z axis 
above zero and negative if below zero

 In the general case the orbit will be 
eccentric due to the inward radial Lorentz 
force from the freeze field 

Non-circular muon orbit
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 The effect was observed also in the Geant4 
simulations and is consisten with the 
analytical estimate

 Calculations with the analytical equations 
show that for α = 0.1° and orbit 
displacements up to 5 mm the eccentricity of 
the orbit should be kept below 0.1

 The eccentricity caused by the freeze field is 
significantly lower and does not pose a 
problem

 This effect could constrain the magnetic field 
uniformity (analysis pending)

Non-circular muon orbit
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 The total is the sum of all contributions:  

Finally...
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Initial spin direction:

 The equations describe a reletively general case with a weakly 
focusing field and imperfect ‹freeze field›. The muon starts at 
position (ρ, y0) and spin with direction (ɸ0, Θ0) and there is 
non-zero Ey field. 
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 Compared the analytical equations 
with a Geant4 simulation with the 
same parameters (weakly focusing coil 
current, radius; inital spin vector;  
etc…)

 In both attempts the frozen spin 
condition is not perfectly met (for 
illustration)

 Top: Ey = 0; Bottom: Ey = Efreeze/106

 Note: bottom trend is similar to 
EDM of 10-21 e.cm

Comparison with G4
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 Note that the oscillation frequency is 
not perfect as the fields are described 
by first order approximation

 Nevertheless, the equations describe 
the spin precession well in a very 
general scenario

Comparison with G4
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 Assuming a 100 ns wide half-
sine pulse the figure shows the 
time between injection and 
start of the magnetic kick

 The fraction of lost muons is 
shown on the right y axis

 Perhaps injection angles 
between 1 and 5 degrees would 
be favourable

Constraints on the injection angle
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