Measuring the magnetic quadrupole moment of heavy nuclei with diatomic molecules

Chris Ho, SSP 2022 29 Aug 2022

MQMs.. what the heck?

Nuclear EDM (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

MQMs.. what the heck?

Nuclear EDM Schiff moment (I ≥ 1/2)

Nuclear MQM (I ≥ 1) ¹⁷³YbF ²²⁹ThO ¹⁷⁷**HfF**+ ¹⁷³YbOH ¹³⁷BaF deformed nuclei No shielding

MQMs.. what the heck?

Electron EDM

Motivation - summary

- Nuclear MQMs are P,T-violating moments sensitive to hadronic CP-violating parameters
 - Measuring such moments can help discover or constrain new CPviolating physics in theories beyond the Standard Model
 - Only previous measurement of a nuclear MQM was in ¹³³Cs:
 - Murthy et al., PRL 63 (9), 965 (1989)
- Best measurements of these parameters set by ¹⁹⁹Hg and neutron EDM
 - Graner et al., PRL 116, 161601 (2016)
 - Abel et al., PRL **124**, 081803 (2020)
- MQMs of heavy, deformed nuclei suffer no electron shielding and have collective enhancement from single nucleon MQM
- Diatomic molecules provide further enhancement of MQM interaction due to relativistic effects and ease of full polarization
- Suitable molecules (though of different isotopes) already used in electron EDM experiments

Experimental advances with diatomic molecules

Truppe et al., J. Mod. Opt. 65, 648 (2018)

ACME Collaboration, Nature **562**, 355 (2018)

Alauze et al., Q. Sci. Technol. 6, 044005 (2021)

Cairncross et al., PRL 119, 153001 (2017)

The effective MQM Hamiltonian

The classic paper by Sushkov, Flambaum, Khriplovich (JETP 60 (5), 873 (1984)) gives

$$\mathcal{H}_{M} = -\frac{W_{M}M}{2I(2I-1)}\mathbf{S} \cdot \hat{\mathbf{T}} \cdot \mathbf{n}$$
$$T_{i,k} = I_{i}I_{k} + I_{k}I_{i} - \frac{2}{3}\delta_{i,k}I(I+1)$$

W_M: interaction parameter (relativistic enhancement)

M: nuclear MQM (collective enhancement)

n: unit vector along internuclear axis

We can rewrite this (in spherical tensor notation) as

$$\mathcal{H}_M = \frac{W_M M}{2I(2I-1)} \sqrt{\frac{20}{3}} \mathbf{T}^{(1)}(\mathbf{S}, \mathbf{T}^{(2)}(\mathbf{I}, \mathbf{I})) \cdot \mathbf{n} \equiv \mathbf{M} \cdot \mathbf{n}$$

MQM matrix elements in diatomic molecules

- Consider a diatomic molecule with electron spin S, nuclear spin I, total spin
 G = S + I and rotational angular momentum N
- MQM energy shift is given by

$$\Delta_{M} = \langle (S, I)G, M_{G}; N, M_{N} | \mathcal{H}_{M} | (S, I)G, M_{G}; N', M_{N} \rangle$$

$$= \langle (S, I)G, M_{G} | \mathbf{M} | (S, I)G, M_{G} \rangle \langle N, M_{N} | \mathbf{n} | N', M_{N} \rangle$$

$$= \langle \mathcal{H}_{M} \rangle_{\text{mol}} \mathcal{P}$$

- The measured MQM energy shift in the lab is the product of the energy shift in the molecule-fixed frame and a polarization factor
- The state where S and I are aligned (i.e. where G is largest) does not give the largest energy shift

Example I: $\langle H_M \rangle_{mol}$ for S = 1/2, I = 1

$$S = \frac{1}{2}, I = 1$$

$$\frac{3}{2} = \frac{0.17 \text{ W}_{M}M}{0.06 \text{ W}_{M}M} = \frac{-0.06 \text{ W}_{M}M}{-0.17 \text{ W}_{M}M}$$

$$= \frac{1}{2} = \frac{-0.56 \text{ W}_{M}M}{-\frac{1}{2}} = \frac{\frac{3}{2}}{\frac{1}{2}}$$

$$= \frac{M_{G}}{M_{G}}$$

Example II: $\langle H_M \rangle_{mol}$ for S = 1/2, I = 5/2 (173YbF)

$$S = \frac{1}{2}, I = \frac{5}{2}$$

$$3 - \frac{0.17 \text{ W}_M \text{M}}{0.11 \text{ W}_M \text{M}} = \frac{0.06 \text{ W}_M \text{M}}{0.06 \text{ W}_M \text{M}}$$

Example III: $<H_M>_{mol}$ for S = 1, I = 5/2 (229ThO)

$$S=1, \ \ | = \frac{5}{2}$$

$$\frac{7}{2} = \frac{0.33 \text{ W}_{M}\text{M}}{0.33 \text{ W}_{M}\text{M}} = \frac{0.24 \text{ W}_{M}\text{M}}{0.14 \text{ W}_{M}\text{M}} = \frac{0.05 \text{ W}_{M}\text{M}}{0.05 \text{ W}_{M}\text{M}} = \frac{-0.14 \text{ W}_{M}\text{M}}{-0.14 \text{ W}_{M}\text{M}} = \frac{-0.24 \text{ W}_{M}\text{M}}{0.06 \text{ W}_{M}\text{M}} = \frac{-0.14 \text{ W}_{M}\text{M}}{0.06 \text{ W}_{M}\text{M}} = \frac{-0.14 \text{ W}_{M}\text{M}}{0.18 \text{ W}_{M}\text{M}} = \frac{-0.33 \text{ W}_{M}\text{M}}{0.18 \text{ W}_{M}\text{M}} = \frac{0.18 \text{ W}_{M}\text{M}}{0.18 \text{ W}_{M}\text{M}} = \frac{0.18 \text{ W}_{M}\text{M}}{0.18 \text{ W}_{M}\text{M}} = \frac{0.19 \text{ W}_{M}\text{M}}{0.19 \text{ W}_{M}\text{M}} = \frac{0.56 \text{ W}_{M}\text{M}}{0.19 \text{ W}_{M}\text{M}} = \frac{1}{2} = \frac{1}{$$

How to measure the MQM energy shift?

Use a spin interferometer – just like measuring the electron EDM

states gain relative phase

$$2\phi = (\Delta_M + \Delta_B)T$$

convert phase difference into population difference

$$\cos\phi |G, M_G = +G\rangle + \sin\phi |G, M_G = -G\rangle$$

Preparation of stretched state superposition

 The maximum sensitivity to the MQM energy shift is obtained when the stretched superposition state is prepared:

$$\frac{1}{\sqrt{2}}\left(|G, M_G = +G\rangle - |G, M_G = -G\rangle\right)$$

 Not trivial for states with angular momentum greater than 1 as the state can't be prepared as a pure M state in another Cartesian basis, e.g.

$$|M=0\rangle_x = \frac{1}{\sqrt{2}} \left(|M=1\rangle_z - |M=-1\rangle_z \right)$$

$$|M=-\frac{1}{2}\rangle_x = \frac{1}{\sqrt{2}} \left(|M=\frac{1}{2}\rangle_z + |M=-\frac{1}{2}\rangle_z \right)$$

Possibly can use a series of coherent rf pulses to drive successive transitions,
 e.g. starting from M=0, but does not work for half-integer M

Preparation of stretched state superposition

• A general method: apply a magnetic field perpendicular to a strong static electric field (which generates a tensor Stark shift Δ)

- The same Hamiltonian one gets from a Raman transition with zero twophoton detuning in the rotating frame
- So long as $|\Delta|\gg |\mu B_x|$, we can adiabatically eliminate the intermediate state to get an effective two-level Hamiltonian: $\mathcal{H}_{\mathrm{eff}}=-rac{|\mu B_x|^2}{2\Delta}inom{1}{1}rac{1}{1}$
- This allows driving of Rabi oscillations between the M=±1 states at the effective Rabi frequency $\Omega_{\rm eff}=|\mu B_x|^2/\Delta$

Preparation of stretched state superposition

This can be generalized to larger stretched states

$$\mathcal{H}_{\text{eff}} = \begin{pmatrix} -\frac{|\mu_1 B_x|^2}{2\Delta_1} & \frac{|\mu_1 B_x|^2 |\mu_2 B_x|^2 \mu_3 B_x}{4\sqrt{2}\Delta_1^2 \Delta_2^2} \\ \frac{|\mu_1 B_x|^2 |\mu_2 B_x|^2 \mu_3 B_x}{4\sqrt{2}\Delta_1^2 \Delta_2^2} & -\frac{|\mu_1 B_x|^2}{2\Delta_1} \end{pmatrix}$$

- which is valid for $|\Delta_1|\gg |\mu_1B_x|, |\mu_2B_x|, |\Delta_2|\gg |\mu_2B_x|, |\mu_3B_x|$
- This still works for the weaker condition $|\Delta_1|\gg |\mu_1B_x|$, just with a different Ω_{eff}

0.0

20

40

Time (µs)

60

80

Preparation of stretched state superposition

Numerical example: ¹⁷³YbF, N=0, G=2 manifold at E=20kV/cm

100

Systematics?

- A small B_y would cause an effective interferometer phase of $\phi = B_y/B_x$
- The part of B_y which correlates with E-field direction, $B_{y,E}$, leads to a phase that correlates with E, $\phi_E = B_{y,E}/B_x$, i.e. a systematic error
- Phase sensitivity given by $\sigma_{\phi} = rac{1}{2\mathcal{C}\sqrt{N}}$
- Given $\mathcal{C}=0.9$, N = 2.6 × 10¹⁰ molecules detected over 100 days of measurement¹, we have $\sigma_{\phi}=350$ nrad
- Since $B_x = 13$ mT, we need to be able to limit $B_{y,E} < 0.5$ nT

Prospects for nuclear MQM measurements

- Can convert phase sensitivity into a frequency: $\sigma_f = \sigma_\phi/(2\pi T)$
- At Imperial (electron EDM experiments)
 - Supersonic beam of YbF, $\sigma_f = 1$ mHz/day proof-of-principle
 - Buffer-gas-cooled beam of YbF, projected σ_f = 20 μ Hz/day measurement?
 - Future: optical lattice of YbF, projected σ_f = 90 nHz/day measurement in the (far) future?
- Assuming 100 days of measurement, with buffer-gas-cooled beam, can get to statistical sensitivity of 2 μ Hz

Prospects for nuclear MQM measurements

Species	¹⁹⁹ Hg (expt.)	²⁰⁵ TIF (proj.)	¹⁷³ YbF (proj.)
Nuclear moment	Schiff moment	Schiff moment	MQM
1 σ -sensitivity	10 pHz	45 nHz	2 μHz
QCD θ -term constraint*	6.2×10^{-11}	0.33×10^{-11}	3.0×10^{-11}
Proton EDM constraint	5.1 × 10 ⁻²⁵ e cm	$0.23 \times 10^{-25} e cm$	$0.77 \times 10^{-25} \text{ e cm}$
Neutron EDM constraint*	5.1 × 10 ⁻²⁶ e cm	_	$4.3 \times 10^{-26} \text{ e cm}$
₫ ₀ constraint	1.0×10^{-12}	0.05×10^{-12}	0.8×10^{-12}
g	3.3×10^{-12}	1.7 × 10 ⁻¹²	0.15×10^{-12}
ḡ ₂ constraint	8.1×10^{-13}	0.24×10^{-13}	4.0×10^{-13}

^{*}Direct neutron EDM measurement: $|d_n| < 2.2 \times 10^{-26}$ e cm, $\theta < 18 \times 10^{-11}$

Conclusions

- Nuclear MQM measurements in diatomic molecules are promising low-energy precision searches for new CPV physics in the hadronic sector
- Current electron EDM experiments can be converted into nuclear MQM measurements
- The required sensitivity of experiments with diatomic molecules is much lower than atomic/direct neutron experiments
- State which gives maximal sensitivity to MQM is not the state where nuclear and electron spins are aligned
- Higher-order couplings required to create superposition of stretched states,
 e.g. using a perpendicular B field

References

 "Measuring the nuclear magnetic quadrupole moment with diatomic molecules", in preparation

MQM effective Hamiltonian

Sushkov, Flambaum & Khriplovich, JETP 60 (5), 873 (1984)

Collective enhancement of MQMs in heavy deformed nuclei

- Flambaum, DeMille & Kozlov, PRL 113, 103003 (2014)
- Lackenby & Flambaum, PRD 98, 115019 (2018)

Calculation of W_M for YbF

Denis et al., J. Chem. Phys. 152, 084303 (2020)

Acknowledgements

- Mike Tarbutt, Ben Sauer, Jongseok Lim
- Funding from STFC

