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Neutrino mass measurement 
with KATRIN



Neutrino mass

▪ Neutrinos are massive 
particle

▪ Flavor eigenstates are linear 
combinations of mass eigenstates

𝑣𝑙 =

𝑖

𝑈𝑙𝑖𝑣𝑖

▪ Squared mass difference measurable 
with neutrino oscillations experiment

∆𝑚𝑖𝑗
2 = 𝑚𝑖

2 −𝑚𝑗
2

⇒ Absolute mass and mass hierarchy unknown
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cosmology neutrinoless ββ-decay β-decay kinematics 

Neutrino mass

2/27

Σ =

𝑖

𝑚𝑖 𝑚ββ =

𝑖

𝑈𝑒𝑖
2 ∙ 𝑚𝑖 𝑚β =

𝑖

|𝑈𝑒𝑖
2 | ∙ 𝑚𝑖

2
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Super-allowed decay

Q = 18.6 keV
T1/2 = 12.3 yr

𝑑𝑁

𝑑𝐸𝑒
≅ 𝐶 ∙ 𝐹 𝐸, 𝑍 ∙ 𝑃𝑒 ∙ (𝐸𝑒 +𝑚𝑒𝑐

2) ∙ (𝐸0 − 𝐸𝑒) (𝐸0 − 𝐸𝑒)
2−𝑚𝑣

2

ß-decay kinematics

Based on kinematics and energy conservation

➢ independent of neutrino nature

➢ independent on cosmology

𝑚𝑣
2 =

𝑖

|𝑈𝑒𝑖|
2 ∙ 𝑚𝑖

2incoherent 
neutrino mass:

⇒ spectral distortion maximal at the 
endpoint energy E0
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Experimental challenge

▪ Strong tritium source: 1011 decays/s

▪ Very low background level:  < 0.1 cps

▪ Very high energy resolution: ~1 eV

▪ Precise understanding of the spectrum shape

Super-allowed decay Only 10-13 of all decays 
in the last 1 eV

Q = 18.6 keV
T1/2 = 12.3 yr



KATRIN collaboration

Karlsruhe
Tritium
Neutrino
Experiment

• International collaboration (150 members)
• Experimental site: Karlsruhe Institute of Technology (KIT)



Working principle

Gaseous tritium source

● molecular tritium in closed loop
● 30 µg of gaseous T2

→ 1011 T2 decays/s

Transport section

● magnetic guidance
● tritium gas/ion removal

→ reduction by > 1014

Spectrometer

● MAC-E (Magnetic adiabatic 

collimation + electrostatic filter)

→ high resolution: O(1) eV

→ large acceptance angle: 0-51°

Detector section

● focal plane detector, 148 pixels 

PIN-diode

● counts electrons: rate vs potential

→ < 1 e-.s-1

Rear section

● rear wall

● high intensity e-gun

➔ precise determination of 

column density and 

energy-loss function
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Rear section
Tritium source

Transport and 
pumping

Main spectrometer

Segmented 
detector



Uret

Measurement strategy
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Background regionβ-decay spectrum

Integral spectrum measurement 

▪ ~30 scan steps with varying duration

▪ ~2 h scan duration

▪ scan interval: E0 – 40 eV , E0 + 135 eV

▪ several campaigns per year

Electrostatic high-pass filter

Usrc (r, z)

Uana (r)



Data taking overview

1st and 2nd campaigns
6.106 e- in the ROI

- published -

1st to 5th campaigns
∼30.106 e- in the ROI
- analysis in progress -
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PRL 2019 Nature physics 
2022
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Analysis strategy

Expected measured rate:
theoretical inputs (Fermi theory, molecular excitations)

Response function

Beta spectrum:

experimental data: calibration with e- - gun and 83mKr 
conversion electrons

Г 𝑞𝑈 = 𝑨න
𝑞𝑈

𝐸0

𝐷β( 𝐸,𝒎𝒗𝒆
𝟐 , 𝑬𝟎) ∙ 𝑅(𝐸, 𝑞𝑈)𝑑𝐸 + 𝑩

𝑩

𝑬𝟎

𝑨

𝒎𝒗
𝟐

Maximum likelihood fit of model
➢ free amplitude A
➢ endpoint E0
➢ background rate B
➢ squared neutrino mass mv

2



Latest 𝑣 − mass results 

First campaign:

Second campaign:

Combined result: 𝒎
𝑣
< 𝟎. 𝟖 eV (90% CL)

▪ Total statistic: 2 million events

▪ Best fit:   𝐦
𝑣
𝟐 = −𝟏. 𝟎−𝟏,𝟏

+𝟎.𝟗 eV2

▪ Limit:        𝐦
𝑣
< 𝟏. 𝟏 𝐞𝐕 (90% CL)

▪ Total statistic: 4.3 million events

▪ Best fit:   𝐦
𝑣
𝟐 = 𝟎. 𝟐𝟔−𝟎,𝟑𝟒

+𝟎.𝟑𝟒 eV2

▪ Limit:        𝐦
𝑣
< 𝟎. 𝟗 𝐞𝐕 (90% CL)

[Aker et al., PRL 123 (2019) 22, 221802]

[Aker et al., Nature Phys. 18 (2022) 2, 160-166]
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Systematic breakdown

➢ Total uncertainty dominated by statistical 
uncertainty

➢ Significant systematics
▪ dominated by background-related 

uncertainties
▪ significant source plasma uncertainty
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𝑣 − mass outlook

Final target (2025)
▪ ∼70.106 e- in ROI 
▪ 𝐦

𝑣
< 0.2 - 0.3 eV (90% CL)

1st and 2nd campaigns combined
▪ 6.106 e- in ROI
▪ m

𝑣
< 0.8 eV (90% CL) – statistic dominated

▪ first direct neutrino-mass experiment to reach 
sub-eV sensitivity and limit

First five campaigns (work in progress)
▪ ∼30.106 e- in ROI 
▪ m

𝑣
< 0.5 eV (90% CL) 

▪ data unblinded during the summer
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KATRIN final 
target



Beyond the neutrino mass:
sterile neutrino search with KATRIN



Beyound neutrino mass in KATRIN 
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Sterile neutrino search
Constrain local overdensity of cosmic 
relic neutrinos

β spectrum with high statistics 
and low systematics

Search for exotic weak 
interactions

▪ eV-scale sterile neutrinos
▪ keV-scale sterile neutrinos

⇒ 𝑝𝑒𝑎𝑘 𝑠𝑒𝑎𝑟𝑐ℎ
⇒ 𝑠ℎ𝑎𝑝𝑒 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛

⇒ 𝑠ℎ𝑎𝑝𝑒 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛

⇒ 𝑠𝑖𝑑𝑒𝑟𝑎𝑙
𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛

differential 

spectrum

Search for Lorentz invariance 
violation

∆𝑚41
2

~
𝑒𝑉… 𝑘𝑒𝑉?

[Phys. Rev. Lett. 129, 011806]

[arXiv:2112.13803]



eV-scale sterile search motivation 

[Phys. Rev. D 83, 073006 (2011)]

Reactor antineutrino anomaly (RAA) Gallium anomaly

Systematic deficit of the reactor ҧ𝑣𝑒 flux measurements with 
respect to the predictions of ~20 experiments

ഥ𝑹 = 𝟎. 𝟗𝟒𝟑 ± 𝟎. 𝟎𝟐𝟑

[Phys. Rev. C 83, 065504 (2011)]

Systematic deficit of ҧ𝑣𝑒 from very short 
baseline measurements with Gallium

ഥ𝑹 = 𝟎. 𝟖𝟒
±𝟎. 𝟎𝟓

𝑅
=
𝑁
𝑒
𝑥
𝑝
/𝑁

𝑐
𝑎
𝑙

0
.7

0
.8

0
.9

1
.0

1
.1

⇒ Hint for the existence of light sterile neutrino?

~3𝜎 deficit of reactor and Gallium flux measurement to prediction

14/27



Imprint of sterile 𝑣 on β-decay spectrum
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▪ 4th mass state will appear as a kink in the spectral shape
▪ Kink close to the endpoint: excellent energy resolution required

𝑑Г

𝑑𝐸
= (1 − |𝑈𝑒4|

2)
𝑑Г

𝑑𝐸
(𝑚𝛽

2) + |𝑈𝑒4|
2 𝑑Г

𝑑𝐸
(𝑚4

2)

⇒ Accessible in current data sets
analysis published for the first 2 campaigns of KATRIN combined

Kink



Sterile neutrino fit

[Phys Rev D 105 072004]

Maximum likelihood fit of model for 3𝑣 + 1

➢ free amplitude A
➢ squared neutrino mass mβ

2

➢ endpoint E0
➢ background B

➢ 4th neutrino mass and mixing: |𝑼𝒆𝟒|
𝟐, 𝒎𝟒

𝟐

Г 𝑞𝑈 = 𝑨න
𝑞𝑈

𝐸0

𝐷β( 𝐸,𝒎𝒗𝒆
𝟐 , 𝑬𝟎, |𝑼𝒆𝟒|

𝟐,𝒎𝟒
𝟐) ∙ 𝑅(𝐸, 𝑞𝑈)𝑑𝐸 + 𝑩
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No significant sterile-neutrino signal is 
observed in KATRIN ⇒ sensitivity
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Sterile neutrino systematic breakdown

▪ Uncertainty budget dominated 
by the statistic for all masses

▪ Dominant systematics:
- background 
- source plasma potential 

𝝈𝒔𝒚𝒔𝒕 𝑼𝒆𝟒
𝟐 = 𝝈𝒔𝒕𝒂𝒕+𝒔𝒚𝒔𝒕

𝟐 − 𝝈𝒔𝒕𝒂𝒕
𝟐

[Phys Rev D 105 072004]

Statistic

Combined systematic

Individual systematic
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Overview of sterile experiment results

95% C.L. exclusion contours

▪ Exclude large ∆𝑚41
2 solutions from the reactor 

antineutrino and gallium anomaly



95% C.L. exclusion contours
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Overview of sterile experiment results

Neutrino-4

⇒ KATRIN provide a complementary 
probe of sterile neutrino

▪ Exclude large ∆𝑚41
2 solutions from the reactor 

antineutrino and gallium anomaly

▪ Improve the exclusion bounds set by short-baseline 
oscillation experiments for ∆𝑚41

2 ≳ 10 eV2

▪ KATRIN will probe the positive result claimed by 
Neutrino-4
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keV-scale sterile neutrino search motivation

▪ Right-handed neutrinos: natural extension of SM and
straightforward way to introduce neutrino mass

▪ Excellent candidate for warm dark matter

Unexpected x-ray emission line around 3.5 keV observed in nearby galaxy
 Hint of sterile neutrinos with a mass around 7 keV? 

… or anything else? [Dessert et al., Science 367, 1465–1467 (2020)]

doi: 10.1103/PhysRevLett.113.251301

⇒ Need of model independent measurements across a
wide range of mass
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keV sterile neutrino search with KATRIN

⇒ New detector required for high 
rate β-spectroscopy

Experimental challenge

TRISTAN project: “Tritium Beta Decay to Search for 
Sterile Neutrinos” 
→ Future upgrade of KATRIN detector using 

silicon drift detector (SDD) technology
→ goal: ppm level on 𝑠𝑖𝑛2θ

▪ Handling of high data rates: 108 e-.s-1

▪ Good energy resolution: < 300 eV
▪ Low energy threshold: Ethr < 2 keV

TRISTAN detector 
module with 166 

pixels

Full TRISTAN detector
▪ 21 identical modules
▪ ~3500 pixels

S. Mertens et al JCAP02(2015)020
Mertens et al, J. Phys. G46 (2019)
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Prototypes: 7, 47, 166 px
▪ design definition and optimization
▪ performance characterization with X-rays, electrons and laser sources

 energy resolution, linearity, timing, boundary effects ….

3D focal plane design with 
166 pixels

7 and 47 pixels prototypes

55Fe X-ray 
source

⇒ Good performance 
demonstrated
match TRISTAN requirement

[j.nima.2021.166102] 

Staged approached

Characterization

Prototype bench test
(7, 47, 166 px) 

Phase 0

One module in monitor 
spectrometer (166 px)

Phase 1    |   Phase 2

9 modules (1500 px) 21 modules (3500 px)

detector in KATRIN beamline

Energy resolution 
@ 5.9 keV
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⇒ Integration and first electron in september 2022!

Monitor spectrometer (MoS): 

▪ refurbished MAC-E filter from Mainz experiment reassembled in KIT
▪ similar energy resolution as KATRIN main spectrometer

➢ environment close to the final setup – realistic condition
➢ largest SDD array ever operated

Staged approached

Characterization Phase 0

One module in monitor 
spectrometer (166 px)

Phase 1    |   Phase 2

9 modules (1500 px) 21 modules (3500 px)

detector in KATRIN beamlinePrototype bench test
(7, 47, 166 px) 
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Phase 1 → start in 2025

▪ 9 modules 
▪ 1500 pixels

Phase 1

▪ Almost final module design
▪ SSD production started: final detectors in 2023

SSD wafer prototype

Characterization Phase 0

One module in monitor 
spectrometer (166 px)

Phase 1    |   Phase 2

9 modules (1500 px)

Staged approached

⇒ First keV sterile neutrino search with KATRIN

21 modules (3500 px)

detector in KATRIN beamline

Phase 2
▪ 21 modules
▪ 3500 pixels

Phase 2

▪ Optimal experimental setup → reduced systematics
▪ 3 years of data taking → improved statistics

Prototype bench test
(7, 47, 166 px) 
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Spectrum modeling 

Rear wall
➢ Backscattering
➢ Surface activity

Source
➢ Scattering
➢ Magnetic traps
➢ Stability

Transport
➢ Magnetic mirror
➢ Magnetic collimation
➢ Synchrotron radiation
➢ Post-acceleration

Spectrometer
➢ Retarding potential
➢ HV stability
➢ Adiabatic transport

Detector
➢ SDD response: backscattering,

dead layer, charge sharing, noise
➢ Backscattering &  backreflection

DAQ 
➢ Threshold
➢ Electronics noise 
➢ Pileup, non-linearity,

crosstalk

Differential spectrum
expected at the
detector

Preliminary

Full tritium 
model

Theoritical β spectrum

Experimental effects

Model:

▪ Analytical calculations + simulations
▪ Non trivial effects: 

- backscattered e- at the rear wall
- backscattered and backreflected e-

at the detector

⇒ Systematic effects smear the 
sterile signature
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Scenario hypothesis: 

Preliminary

➢ Current KATRIN Bfield / rear wall configuration

KATRIN sensitivity on keV sterile neutrino – Phase 1

▪ Statistical sensitivity at 1.10-6 reachable in ~1 month

▪ Systematic effects reduce the sensitivity by (at least) one 
order of magnitude 

- rear wall dominate
- important contribution of Bfields and detector effects

▪ Work in progress
- model refinement
- missing systematics
- experimental setup optimization
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KATRIN target sensitivity on keV sterile neutrino

Preliminary

➢ Several order of magnitude improvement of 
current laboratory limits expected

➢ Competitive and complementary to other keV 
sterile experiment

➢ Work in progress to evaluate impact of systematic
uncertainties

KATRIN stat hypothesis:

➢ 3 years of data taking: 1018 e- collected

data from [PhysRevD.100.115035], [JCAP 06, 051 (2017)]
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Conclusion and outlook

➢ First direct sub-eV neutrino mass limit

m𝑣 < 0.8 eV (90% CL)

➢ Targeted sensitivity with increased statistics and improved systematics

m𝑣 < 0.2-0.3 eV by 2025

➢ search for eV-sterile neutrinos with current setup, complementary results to short baseline experiments probe

➢ search for keV-sterile neutrinos with novel TRISTAN detectors after 2025

➢ But also… relic neutrino overdensity, Lorentz invariance violation in current KATRIN data

Thank you for your attention!


