

Recent results on T, CP and CPT Tests with KLOE-2

Francesca Curciarello University of Calabria (CS), Italy

and INFN Laboratori Nazionali di Frascati (RM), Italy

on behalf of the KLOE-2 Collaboration

SSP2022 Vienna, August 29th - September 2nd 2022

Outline

- Da ϕ ne: the ϕ factory
- KLOE and KLOE-2
- Entangled neutral Kaons at Da ϕ ne
- Search for decoherence and CPTV in $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$
- T/CPT Tests with $\phi \to K_S K_L \to 3 \pi^0 \pi \nu e, \pi \pi \pi \nu e$
- Measurement of the $K_S \rightarrow \pi e \nu$ branching ratio
- Conclusions

Daφne: the φ factory

DAΦNE UPGRADES

New interaction region: large beam crossing angle + sextupoles for crabbed waist optics $\rightarrow 59\%$ increase in terms of peak luminosity

```
e^+e^- collider @ \sqrt{s}=M_\Phi=1.0194 GeV 2 interaction regions 2 separate rings 105+105 bunches, T_{RF}=2.7 ns Injection during data taking Crossing angle: 2\times12.5 mrad Best Performance (1999–2006): L_{\rm peak}=1.5\times10^{32} cm<sup>-2</sup> s<sup>-1</sup> Best Performance (2014–2018): L_{\rm peak}=2.4\times10^{32} cm<sup>-2</sup> s<sup>-1</sup>
```


KLOE and **KLOE-2**

KLOE + KLOE-2 data sample: 8 fb⁻¹ largest sample ever collected at the $\phi(1020)$ peak about $2.4\times10^{10}\,\phi$ mesons and $8\times10^9~K^0\bar{K}^0$ entangled pairs

The KLOE/KLOE-2 Apparatus

KLOE DC

 $\sigma_{p_{\perp}}/p_{\perp} \sim 0.4\%$ (LA tracks)

vertex resolution ∼3mm

4m diameter, 3m long

gas mixture: 90% He 10%

12,000 sense wires

Stereo geometry

 $\sigma_{xy} \sim 150 \mu \mathrm{m}$

 $\sigma_z = 2 \text{mm}$

 iC_4H_{10}

Vertical cross-section view of the KLOE detector

Multi-purpose detector

Superconducting coil B = 0.52 T

Barrel + 2 end-caps:

Pb/scintillating fiber, 4880 PM

$$\sigma_E/E = 5.7\%/\sqrt{E(GeV)}$$

$$\sigma_T = 54ps/\sqrt{E(GeV)} \oplus 140ps$$

End-caps C-shaped to minimize dead zones: 98% coverage of full solid angle

The KLOE/KLOE-2 Apparatus

INNER TRACKER:

four layers of cylindrical triple GEM better vertex reconstruction near IP higher acceptance to low $p_{\rm t}$ tracks

CCALT:

LYSO crystal + SiPM increase of angular acceptance to γ 's from IP from 21° to 10°

QCALT:

W + Scintillator tiles+ WLS/SiPM QUADS coverage for $K_{\rm L}$ decays

LET and HET:

Low and High energy tagger stations for e^+e^- coming from two-photon interaction

LET: LYSO + SiPM

HET: EJ228 plastic scinitllator hodoscope +

Xilinx Virtex-5 FPGA

Entangled neutral Kaons at Daone

 ϕ mesons are produced at Da ϕ ne nearly at rest with $\sigma_{\phi} \sim 3 \ \mu b$ and decay in $K_S K_L$ the 34% of the times

About $10^6 \text{ K}_S \text{K}_L$ per pb⁻¹ are produced as collinear couples in a pure coherent, entangled and antisymmetric quantum state $J^{PC}=1^{--}$ with $p_K=110 \text{ MeV/c}, \ \lambda_S=6 \text{ mm}$ and $\lambda_L=3.5 \text{ m}$

$$|i\rangle = \frac{1}{\sqrt{2}} \Big[|K^{0}(\vec{p})\rangle |\overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle |K^{0}(-\vec{p})\rangle \Big]$$

$$= \frac{N}{\sqrt{2}} \Big[|K_{S}(\vec{p})\rangle |K_{L}(-\vec{p})\rangle - |K_{L}(\vec{p})\rangle |K_{S}(-\vec{p})\rangle \Big]$$

$$N = \sqrt{\left(1 + \left|\varepsilon_{S}\right|^{2}\right)\left(1 + \left|\varepsilon_{L}\right|^{2}\right)} / \left(1 - \varepsilon_{S}\varepsilon_{L}\right) \approx 1$$

KAON TAGGING $(t_1 << t_2)$

Study single kaon property:

- -Branching fractions
- -Form factors
- -Lifetimes

INTERFERENCE $(t_1 \sim t_2)$

Study of Kaon system time evolution \rightarrow tests of:

- -T/CPT in transitions
- -CPT & Lorentz Invariance
- -QM coherence

Ideal system to study fundamental discrete symmetries and quantum mechanics

Entangled neutral Kaons at Daone

The observation of a K_S in an event signals (tags) the presence of a K_L , with known p and direction, and vice-versa \rightarrow

highly pure, almost monochromatic, back-to-back, mutual-tagging K_S and K_L beams

 K_S tagged by the K_L interaction in the KLOE EMC \rightarrow unique signature $\varepsilon \sim 30\%$ (mainly geometrical)

 K_L tagged by the $K_S \rightarrow \pi\pi$ vertex at the IP, $\varepsilon \sim 70\%$ (mainly geometrical)

$$K_S/K_L \sigma_{\vartheta} \sim 1^{\circ}$$
, $K_S/K_L \sigma_{p} \sim 2 MeV$

Search for decoherence and CPTV in $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

 $\Delta t = |t_1 - t_2|$

 $\zeta_{00} > 0$

$$f_1 = f_2 = \pi^+ \pi^-$$

$$|i\rangle = \frac{1}{\sqrt{2}} \left[|K^{0}\rangle |\overline{K}^{0}\rangle - |\overline{K}^{0}\rangle |K^{0}\rangle \right]$$

CP violating process: CP violation in kaon mixing acts as amplification mechanism \rightarrow high sensitivity to ζ_{00} due to terms $\zeta_{00}/|\eta_{+-}|^2$

 $I(\Delta t)$

EPR: no simultaneous decays ($\Delta t=0$) in the same final state due to the fully destructive quantum interference

entangled system.

Most precise test of quantum coherence in an entangled system.
$$I\left(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t\right) = \frac{N}{2} \left[\left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} \right. \\ \left. \left. - \left(1 - \xi_{0\overline{0}}\right) \cdot 2\Re\left(\left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} \right) \right]$$

 ζ_{00} decoherence parameter in the $K^0\overline{K}^0$ basis ($\zeta_{00}=0\to \text{no decoherence}, \zeta_{00}=1\to \text{no decoherence}$ fully decoherence)

[or ζ_{SL} in the K_SK_L basis].

Search for decoherence and CPTV in $\phi \to K_S K_L \to \pi^+\pi^-\pi^+\pi^-$

Decoherence effects might arise in a quantum gravity picture implying CPT violation [Ellis et. al, NP B241 (1984) 381; Ellis, Mavromatos et al. PRD53 (1996)3846]:

- Relevant parameter in the modified time evolution of neutral kaons: γ parameter (at most $\gamma = O(m_K^2 / M_{planck}) \approx 2 \times 10^{-20}$ GeV).
- Initial entangled state modified adding a tiny symmetric part $\rightarrow \omega$ effect (at most $\omega = O(m_K^2 / M_{planck} / \Delta \Gamma) \sim 1 \times 10^{-3}$)

$$|i\rangle \propto \frac{1}{\sqrt{2}} \left[|\mathbf{K}^0\rangle |\bar{\mathbf{K}}^0\rangle - |\bar{\mathbf{K}}^0\rangle |\mathbf{K}^0\rangle \right] + \omega \left[|\mathbf{K}^0\rangle |\bar{\mathbf{K}}^0\rangle + |\bar{\mathbf{K}}^0\rangle |\mathbf{K}^0\rangle \right] \longrightarrow \text{[in the } K^0 \overline{K}^0 \text{ basis]}$$

[in the
$$K_S K_L$$
 basis] \leftarrow $|i\rangle \propto [|K_S\rangle|K_L\rangle - |K_L\rangle|K_S\rangle] + \omega[|K_S\rangle|K_S\rangle - |K_L\rangle|K_L\rangle]$

Previous KLOE measurement
$$L = 380 \ pb^{-1}$$
 KLOE PLB 642 (2006) 315

$$\zeta_{SL} = (1.8 \pm 4.0 \pm 0.7) \cdot 10^{-2}$$

$$\zeta_{00} = (1.0 \pm 2.1 \pm 0.4) \cdot 10^{-6}$$

$$\gamma = (1.3^{+2.8}_{-1.4} \pm 0.4) \cdot 10^{-21} \text{ GeV}$$

$$\Re(\omega) = (1.1^{+8.7}_{-5.3} \pm 0.9) \cdot 10^{-4}$$

$$\Im(\omega) = (3.4^{+4.8}_{-5.0} \pm 0.6) \cdot 10^{-4}$$

Search for decoherence and CPTV in $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Statistics: KLOE data corresponding to $L = 1.7 \text{ fb}^{-1}$

Event selection:

- 2 vertices with 2 opposite curvature tracks each
- At least one vertex in a cylindrical fiducial volume with $\rho < 10$ cm and |z| < 20 cm
- For each of the 2 vertices (i=1,2):
- $|m_i(\pi^+\pi^-) m_{\rm K}| < 5 \,{\rm MeV}$
- $-50 < E_{\rm miss}^2 |\vec{p}_{\rm miss}|^2 < 10\,{\rm MeV^2}$, $\sqrt{E_{\rm miss}^2 + |\vec{p}_{\rm miss}|^2} < 10\,{\rm MeV}$ with $\vec{p}_{\rm miss} = \vec{p}_{\phi} - \vec{p}_1 - \vec{p}_2$ and $E_{\rm miss} = E_{\phi} - E_1 - E_2$

Kin Fit to improve resolution on Kaon decay vertices

Main improvements wrt past analysis:

- $\cos(\theta_{\pi^+\pi^-}) > -0.975$ cut to improve Δt resolution
- improved $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$ background evaluation

Search for decoherence and CPTV in $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$

Two main background sources survive above selection:

- non-resonant production of 4 π , 0.5% in the range $0 < \Delta t < 12 \tau_{\rm S}$, mainly concentrated at $\Delta t \approx 0$
- kaon regeneration on spherical beam pipe, it peaks at $\Delta t \approx 17 \tau_{\rm S}$ rejected by restricting the fit in the $0 < \Delta t < 12 \tau_{\rm S}$ range

 $e^+e^- \to \pi^+\pi^-\pi^+\pi^-$ background evaluated from 2D unbinned ML fit in bins of Δt in the bkg region and then extrapolated to sig region

Sphere: 500 μ m 62-38% Be-Al r=10 cm (~17 $\tau_{\rm S}$) Cylinder: 50 μ m Be, r=4.4 cm (~7.5 $\tau_{\rm S}$)

Residual regeneration bkg from thin pipe cylinder dominated by incoherent regeneration and evaluated through MC

Search for decoherence and CPTV in $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

KLOE-2 JHEP 04 (2022) 059

Results on decoherence parameters

$$\begin{split} \zeta_{\rm SL} &= (0.1 \pm 1.6_{\rm stat} \pm 0.7_{\rm syst}) \cdot 10^{-2} \\ \zeta_{0\bar{0}} &= (-0.05 \pm 0.80_{\rm stat} \pm 0.37_{\rm syst}) \cdot 10^{-6} \\ \gamma &= (0.13 \pm 0.94_{\rm stat} \pm 0.42_{\rm syst}) \cdot 10^{-21} \, {\rm GeV} \end{split}$$

90% CL Upper limits

$$\zeta_{\rm SL} < 0.030$$

$$\zeta_{0\bar{0}} < 1.4 \cdot 10^{-6}$$

$$\gamma < 1.8 \cdot 10^{-21} \, \mathrm{GeV}$$

Fit including Δt resolution and efficiency effects + regeneration; Statistical uncertainty reduced by half Central values consistent with zero

Search for decoherence and CPTV in $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$

ω model contour plots

KLOE-2 JHEP 04 (2022) 059

Results on decoherence parameters

$$\Re\omega = \left(-2.3^{+1.9}_{-1.5\text{stat}} \pm 0.6_{\text{syst}}\right) \cdot 10^{-4}$$

$$\Im\omega = \left(-4.1^{+2.8}_{-2.6\text{stat}} \pm 0.9_{\text{syst}}\right) \cdot 10^{-4}$$

$$|\omega| = (4.7 \pm 2.9_{\text{stat}} \pm 1.0_{\text{syst}}) \cdot 10^{-4}$$

$$\phi_{\omega} = -2.1 \pm 0.2_{\text{stat}} \pm 0.1_{\text{syst}} \text{ (rad)}$$

$$\begin{aligned} |\omega|^2 &= \frac{BR(\phi \to K_S K_S, K_L K_L)}{BR(\phi \to K_S K_L)} \\ BR(\phi \to K_S K_S, K_L K_L) &< 2.4 \cdot 10^{-7} \end{aligned}$$

Systematic sources

	$\delta\zeta_{ m SL}$	$\delta\zeta_{0ar{0}}$	$\delta\gamma$	$\delta\Re\omega$	$\delta \Im \omega$	$\delta \omega $	$\delta\phi_\omega$
	$\cdot 10^{2}$	$\cdot 10^{7}$	$\cdot 10^{21}\mathrm{GeV}$	$\cdot 10^{4}$	$\cdot 10^{4}$	$\cdot 10^{4}$	(rad)
Cut stability	0.56	2.9	0.33	0.53	0.65	0.78	0.07
4π background	0.37	1.9	0.22	0.32	0.19	0.32	0.04
Regeneration	0.17	0.9	0.10	0.06	0.63	0.58	0.05
Δt resolution	0.18	0.9	0.10	0.15	0.09	0.15	0.02
Input phys. const.	0.04	0.2	0.02	0.03	0.09	0.07	0.01
Total	0.71	3.7	0.42	0.64	0.93	1.04	0.10

T/CPT Tests with $\phi \to K_S K_L \to 3 \pi^0 \pi \nu e, \pi \pi \pi \nu e$

First such measurement with kaons Concept: J. Bernabeu et al., Nucl. Phys. B 868 (2013) 102, JHEP 1510 (2015) 139

Direct, model independent test of the T and CPT symmetry => observe a given Kaon state and its T and CPT conjugates => transitions between pure-flavor and CP-definite eigenstates

 $\overline{K}^0 \to K_-$ transition-entanglement used to identify initial state

CP states

Flavor states

 $\overline{\mathrm{K}}^0 \to \pi^+ e^- \overline{\nu}_e$

 $K^0 \to \pi^- e^+ \nu_e$

$$K_- \to 3\pi^0$$

$$K_+ \rightarrow \pi^+\pi^-$$

$$|\mathsf{K}_{+}\rangle = \frac{1}{\sqrt{2}} \left[|\mathsf{K}^{0}\rangle + |\bar{\mathsf{K}^{0}}\rangle \right]$$

$$|\mathsf{K}_{-}\rangle = \frac{1}{\sqrt{2}} \left[|\mathsf{K}^{0}\rangle - |\bar{\mathsf{K}^{0}}\rangle \right]$$

Transition probabilities

Experimental observables

$$R_2^T(\Delta t) = \frac{P[\mathbf{K}^0(0) \to \mathbf{K}_-(\Delta t)]}{P[\mathbf{K}_-(0) \to \mathbf{K}^0(\Delta t)]} \sim \frac{\mathbf{I}(\pi^+ e^- \overline{\nu}, 3\pi^0; \Delta t)}{\mathbf{I}(\pi^+ \pi^-, \pi^- e^+ \nu; \Delta t)}$$

$$R_4^T(\Delta t) = \frac{P[\overline{\mathbf{K}}^0(0) \to \mathbf{K}_-(\Delta t)]}{P[\mathbf{K}_-(0) \to \overline{\mathbf{K}}^0(\Delta t)]} \sim \frac{\mathbf{I}(\pi^- e^+ \nu, 3\pi^0; \Delta t)}{\mathbf{I}(\pi^+ \pi^-, \pi^+ e^- \overline{\nu}; \Delta t)}$$

$$R_2^T(\Delta t \gg \tau_S) \simeq 1 - 4\operatorname{Re}\epsilon \quad R_4^T(\Delta t \gg \tau_S) \simeq 1 + 4\operatorname{Re}\epsilon$$

Re $\epsilon \neq 0$ implies TV

We focus on the asymptotic region $\Delta t \gg \tau_s$:

T/CPT Tests with $\phi \to K_s K_I \to 3 \pi^0 \pi v e, \pi \pi \pi v e$

In general, four independent T, CP and CPT tests are possible:

Reference	T-conjug.	CP-conjug.	CPT-conjug.
•			$K_+ \to \bar{K}^0$
$K^0 o K$	$K \to K^0$	$ar K^0 o K$	$K o ar K^0$
$K_+ \to \bar{K}^0$	$\bar K^0 o K_+$	$K_+ \to K^0$	$K^0 o K_+$
$K o ar K^0$	$ar K^0 o K$	$K o K^0$	$K^0 o K$

Each process is experimentally identified by a time-ordered pair of kaon decays into the corresponding final states

T-violation sensitive

CPT-violation sensitive

$$R_{2}^{T}(\Delta t) = \frac{P[\mathbf{K}^{0}(0) \to \mathbf{K}_{-}(\Delta t)]}{P[\mathbf{K}_{-}(0) \to \mathbf{K}^{0}(\Delta t)]} = \frac{\mathbf{I}(\pi^{+}e^{-}\overline{\nu}, 3\pi^{0}; \Delta t)}{\mathbf{I}(\pi^{+}\pi^{-}, \pi^{-}e^{+}\nu; \Delta t)} \times \frac{1}{D} \qquad R_{2}^{CPT}(\Delta t) = \frac{P[\mathbf{K}^{0}(0) \to \mathbf{K}_{-}(\Delta t)]}{P[\mathbf{K}_{-}(0) \to \overline{\mathbf{K}^{0}}(\Delta t)]} = \frac{\mathbf{I}(\pi^{+}e^{-}\overline{\nu}, 3\pi^{0}; \Delta t)}{\mathbf{I}(\pi^{+}\pi^{-}, \pi^{+}e^{-}\overline{\nu}; \Delta t)} \times \frac{1}{D}$$

$$R_{4}^{T}(\Delta t) = \frac{P[\overline{\mathbf{K}^{0}(0) \to \mathbf{K}_{-}(\Delta t)}]}{P[\mathbf{K}_{-}(0) \to \overline{\mathbf{K}^{0}}(\Delta t)]} = \frac{\mathbf{I}(\pi^{-}e^{+}\nu, 3\pi^{0}; \Delta t)}{\mathbf{I}(\pi^{+}\pi^{-}, \pi^{+}e^{-}\overline{\nu}; \Delta t)} \times \frac{1}{D} \qquad R_{4}^{CPT}(\Delta t) = \frac{P[\overline{\mathbf{K}^{0}(0) \to \mathbf{K}_{-}(\Delta t)}]}{P[\mathbf{K}_{-}(0) \to \mathbf{K}^{0}(\Delta t)]} = \frac{\mathbf{I}(\pi^{-}e^{+}\nu, 3\pi^{0}; \Delta t)}{\mathbf{I}(\pi^{+}\pi^{-}, \pi^{+}e^{-}\overline{\nu}; \Delta t)} \times \frac{1}{D}$$

$$D = \frac{\text{BR}(K_L \to 3\pi^0)\tau_S}{\text{BR}(K_S \to \pi\pi)\tau_I} = 0.5076(59) \times 10^{-3} \quad \to \text{from past KLOE measurements}$$

Double ratios (independent from the D factor)

$$\frac{R_2^T}{R_4^T}(\Delta t) = \frac{I(3\pi^0, e^-)}{I(3\pi^0, e^+)} \frac{I(\pi^+\pi^-, e^-)}{I(\pi^+\pi^-, e^+)} \qquad \qquad \frac{R_2^{CPT}}{R_4^{CPT}}(\Delta t) = \frac{I(3\pi^0, e^-)}{I(3\pi^0, e^+)} \frac{I(\pi^+\pi^-, e^+)}{I(\pi^+\pi^-, e^-)}$$

T/CPT Tests with $\phi \to K_S K_L \to 3 \pi^0 \pi \nu e, \pi \pi \pi \nu e$

Sample Statistics: 1.7 fb⁻¹ of KLOE data, two classes of events, four processes

Scheme of the two classes of events in a cross-sec view of KLOE

Pre-selection:

- vtx with 2 tracks close to IP (cutting close to IP to reject $K_S \rightarrow \pi\pi \rightarrow \pi\mu$)
- 6 neutral clusters' set
- Reconstructing $K_L \rightarrow 3\pi^0$
- Reconstruction of kaon decay times and Δt

Analysis:

- $K_S \rightarrow \pi ev$ selection cuts
- TCA requirement for 2 tracks
- Time of flight analysis and cuts
- Cut on R/(T*c) for neutral clusters to reject $K_S \rightarrow \pi^0 \pi^0$
- Kinematic fit
- ANN-based classification of e/π and e/μ EMC clusters and tracks

 $S/B \sim 20$

 $K_SK_L \to \pi^+\pi^-\pi^{\pm}e^{\mp}\nu$ event

Pre-selection:

- vtx with 2 tracks close to IP
- $M(\pi\pi)$ and |p| cuts for 2 tracks
- Exactly 1 other vtx with 2 tracks passing a missing mass cut
- Reconstruction of kaon decay times and Δt

Analysis:

- TCA requirement for 2 tracks from K_L decay vertex
- Time of flight analysis and cuts

 $S/B \sim 70$

T/CPT Tests with $\phi \rightarrow K_S K_L \rightarrow 3 \pi^0 \pi \nu e, \pi \pi \pi \nu e$

200

100

Measured double kaon decay intensities Efficiency 0.12 Events / 12 τ_s 001 0.10 80.0 80.0 60.0 $- \pi^+ e^- v 3 \pi^0$ π+e⁻ν 3π⁰ 0.04 50 $- \pi^{-} e^{+} v 3 \pi^{0}$ $\pi^{-}e^{+}v 3\pi^{0}$ 0.00 50 100 150 200 250 300 100 150 200 250 300 $\Delta t [\tau_c]$ $\Delta t [\tau_c]$ 0.20 Efficiency 0.10 Events / 12 2 600 600 400 300 π+π π+e ν $\pi^+\pi^-\pi^+e^-\nu$

0.05

0.00

 $\pi^+\pi^-\pi^-e^+\nu$

100

150

200

250

 $\Delta t [\tau_c]$

50

 $K_L \rightarrow 3\pi^0$ identification: reconstructing K_L decay point for all 6-cluster candidate sets (trilateration method to find K_I decay point and time) and choosing the most likely candidate set

Residual background subtraction for $\pi e^{\pm} v 3\pi^0$ channel MC selection efficiencies corrected from data with 4 independent control samples

 $\pi^+\pi^-\,\pi^-e^+\nu$

100

150

 $\Delta t [\tau_s]$

200

250

T/CPT Tests with $\phi \rightarrow K_S K_L \rightarrow 3 \pi^0 \pi \nu e, \pi \pi \pi \nu e$

Horizontal dashed lines denote expected values:

CPT invariance and TV extrapolated from observed CPV (PDG)

KLOE-2 result (2022)

Paper in preparation

$$\begin{split} R_2^T = & 0.991 & \pm 0.017_{stat} \pm 0.014_{syst} \pm 0.012_D, \\ R_4^T = & 1.015 & \pm 0.018_{stat} \pm 0.015_{syst} \pm 0.012_D, \\ R_2^{CPT} = & 1.004 & \pm 0.017_{stat} \pm 0.014_{syst} \pm 0.012_D, \\ R_4^{CPT} = & 1.002 & \pm 0.017_{stat} \pm 0.015_{syst} \pm 0.012_D, \\ R_2^{CP} = & 0.992 & \pm 0.028_{stat} \pm 0.019_{syst}, \\ R_4^{CP} = & 1.00665 & \pm 0.00093_{stat} \pm 0.00089_{syst}, \\ R_2^T/R_4^T = & 0.979 & \pm 0.028_{stat} \pm 0.019_{syst}, \\ R_2^{CPT}/R_4^{CPT} = & 1.005 & \pm 0.029_{stat} \pm 0.019_{syst}. \end{split}$$

First T and CPT test in kaon transitions

|V_{us}| CKM matrix element is best measured from Kaon meson semi-leptonic decays

$$\Gamma_{K\ell 3} = \frac{G_F^2 M_K^5}{192\pi^3} S_{EW} (1 + \delta_K^{\ell} + \delta_{SU2}) C^2 |V_{us}| f_+^2(0) I_K^{\ell}$$

BR($K_s \rightarrow \pi e \nu$) less precise than K_L and K^+/K^- BR($K_s \rightarrow \pi e \nu$)=(7.046 ± 0.078 stat ± 0.049 syst)×10⁻⁴ [PLB 636 (2006) 173] Measured by KLOE with 0.4 fb⁻¹ 1.4% uncertainties level, 1.1 % stat ± 0.7 % syst

Goal: improve $BR(K_s \to \pi e \nu)$ measurement to have a $|V_{us}|$ evaluation from $K_s \to \pi e \nu$ decay comparable with others contribution

What we measure:

Average: $|V_{us}| f_{+}(0) = 0.21635(38)$ $\chi^2/ndf = 2.14/5 (83\%)$

- Analyzed L=1.63 fb⁻¹
- 1 vtx close to IP + K_L interaction in the calorimeter (KL crash)
- $K_S \rightarrow \pi + \pi^-$ as normalization sample
- K_S semi-leptonic signal selection:
 - boosted decision tree (BDT) with kinematic variables to reject main background from $K_S \rightarrow \pi^+\pi^-$ and $\phi \rightarrow K^+K^-$
 - PID with Time of Flight comparing two hypothesis: if $|\delta t_{1,\pi} \delta t_{2,e}| < |\delta t_{1,e} \delta t_{2,\pi}| =>$ track-1 assigned to π and track-2 to e, otherwise the opposite mass assignment is chosen.

A cut on the time difference $\delta t_e = \min[|\delta t_{\pi e}|, |\delta t_{e\pi}|]$ is applied: $|\delta t_e| < 1$ ns

BDT

 $\delta t(e\pi)$ vs $\delta t(\pi e)$

- Signal count from fit to $M^2(e)$ distribution
- $49647 \pm 316 \, \text{K}_{\text{Se}3}$ events
- Selection efficiency from $K_S \to \pi^+\pi^- K_L \to \pi e \nu$ close to IP data control sample
- Study of systematic uncertainties from: BDT and TOF selection cuts, fit range, trigger, on-line filter, event classification, T0 determination, K_L -crash and β^* selection, K_S identification

Including systematic uncertainty, factors involved in the BR extraction are:

$$\epsilon_{\pi^+\pi^-} = (96.657 \pm 0.088)\%$$

$$\epsilon_{\pi e \nu} = (19.38 \pm 0.10)\%$$

$$R_{\epsilon} = 1.1882 \pm 0.0059$$

$$BR(K_S \to \pi e \nu) = (7.211 \pm 0.046_{stat} \pm 0.052_{syst}) \times 10^{-4}$$

• KLOE previous result:

 $BR(K_{Se3})=(7.046 \pm 0.078 \pm 0.049) \times 10^{-4} [KLOE PLB636 (2006)]$ (independent control sample L=0.41 fb⁻¹)

Combined BR

$$BR(K_S \to \pi e \nu) = (7.153 \pm 0.037_{stat} \pm 0.043_{syst}) \times 10^{-4}$$

• From

$$\mathcal{B}(K_S \to \pi \ell \nu) = \frac{G^2(f_+(0)|V_{us}|)^2}{192\pi^3} \tau_S m_K^5 I_K^{\ell} S_{\text{EW}} (1 + \delta_{\text{EM}}^{K\ell})$$

Using the values $S_{EW} = 1.0232 \pm 0.0003$ [Marciano, Sirlin PRL 71 (1993) 3629] and $I_K^e = 0.15470 \pm 0.00015$ and $\delta_{EM}^{Ke} = (1.16 \pm 0.03) \times 10^{-2}$ [Seng, Galviz, Marciano, Meissner, PRD 105, (2022) 013005] we derive:

 $f_{+}(0) |V_{us}| = 0.2170 \pm 0.0009$

KLOE-2 result (2022)

Paper submitted to JHEP

Conclusions

- KLOE+KLOE-2 data sample, about 8fb⁻¹, represents the largest sample ever collected at the $\phi(1020)$ peak
- Entangled neutral Kaons copiously produced at DA ϕ NE are ideal to investigate fundamental discrete symmetries and QM
- KLOE data have been used to test various models which predicts QM decoherence and CPTV exploiting the $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$ channel and reaching unprecedented precision on measured quantum decoherence parameters (JHEP 04 (2022) 059)
- The first direct test of T and CPT symmetries with $\phi \to K_S K_L \to 3 \pi^0 \pi \nu e$, $\pi \pi \pi \nu e$ has also been performed using KLOE data, the paper is in preparation
- Moreover, a new combined measurement of the $K_S \rightarrow \pi e \nu$ branching ratio, obtained from KLOE data improving precision of a factor of two, has been just submitted to JHEP

SPARE SLIDES

KLOE-2 Physics

KLOE-2 coll. EPJC (2010) 68, 619 http://agenda.infn.it/event/kloe2ws procs. EPJ WoC 166 (2018)

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test: K_S ->3 π^0 direct measurement of Im(ϵ '/ ϵ) (lattice calc. improved)
- CKM Vus:
 K_S semileptonic decays and A_S
 (also CP and CPT test)
 Kμ3 form factors, Kl3 radiative corrections
- $\chi pT : K_S \rightarrow \gamma \gamma$
- Search for rare K_S decays

Hadronic cross section

- ISR studies with 3π , 4π final states
- F_p with increased statistics
- Measurement of a_{μ}^{HLO} in the space-like region using Bhabha process

Dark forces:

- Improve limits on: $U\gamma$ associate production $e^+e^- \rightarrow U\gamma$, $U \rightarrow \mu\mu$, $\pi\pi$, ee
- Higgstrahlung $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss.$ energy
- Leptophobic B boson search $\phi \rightarrow \eta B, B \rightarrow \pi^0 \gamma, \eta \rightarrow \gamma \gamma$ $\eta \rightarrow B \gamma, B \rightarrow \pi^0 \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays
- Transition Form Factors
- C,P,CP violation: improve limits on $\eta \to \gamma \ \gamma \ \gamma, \pi^+\pi^-, \pi^0\pi^0, \pi^0\pi^0 \gamma$
- improve $\eta \to \pi^+\pi^-e^+e^-$
- $\chi pT : \eta \to \pi^0 \gamma \gamma$
- Light scalar mesons: $f_0(500)$ in $\Phi \rightarrow K_S K_S \gamma$
- $\gamma \gamma$ Physics: $\gamma \gamma \rightarrow \pi^0$ and π^0 TFF
- Search for axion-like particles

Search for decoherence and CPTV in $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Data/MC corrected using independent control samples of high-purity $K_SK_L \rightarrow \pi^+\pi^-\pi\mu\nu$ with p distribution overlapping signal

Small correction obtained as ratio of data/MC Δt distributions of $K_S K_L \rightarrow \pi^+ \pi^- \pi \mu \nu$ events

Only dependence on Δt is crucial not ϵ_{tot} absolute global value

 $\epsilon_{tot} \sim 25\%$ in average, small reduction at $\Delta t \approx 0$ due to:

- lower reconstruction probability due to longer extrapolation length of both tracks to IP
- possible swap of tracks associated to different kaon decay vertices for vertices close in time

T/CPT Tests with $\phi \to K_S K_L \to 3 \pi^0 \pi \nu e, \pi \pi \pi \nu e$

Trilateration-based method to identify K_L decay point and time

(a) Schematic presentation of a $K_L \to 3\pi^0 \to 6\gamma$ decay in the transverse view of KLOE EMC (gray band) which records at maximum 6 photon interaction points (labeled with dots of different colors).

(b) For each of the points of γ interaction in the detector, a set of possible creation points of this γ quantum is a sphere (dashed line) centered at the known location of the EMC cluster and with a radius parametrized by an unknown time t of K_L decay.

(c) The $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay vertex is found as an analytically-calculated intersection of the possible origin spheres of at least 4 recorded photons.

(d) If 5 or 6 photons were registered, the additional reference points can be used to find the intersection numerically, minimizing effects if uncertainties on determination of EMC cluster locations and times.

T/CPT Tests with $\phi \to K_S K_L \to 3 \pi^0 \pi \nu e, \pi \pi \pi \nu e$

CP-asymmetric ratios independent of D parameter:

$$R_{2}^{CP}(\Delta t) = \frac{P[K^{0}(0) \to K_{-}(\Delta t)]}{P[\overline{K}^{0}(0) \to K_{-}(\Delta t)]} = \frac{I(\pi^{+}e^{-}\overline{\nu}, 3\pi^{0}; \Delta t)}{I(\pi^{-}e^{+}\nu, 3\pi^{0}; \Delta t)}$$

$$R_{4}^{CP}(\Delta t) = \frac{P[K_{-}(0) \to K^{0}(\Delta t)]}{P[K_{-}(0) \to \overline{K}^{0}(\Delta t)]} = \frac{I(\pi^{+}\pi^{-}, \pi^{-}e^{+}\nu; \Delta t)}{I(\pi^{+}\pi^{-}, \pi^{+}e^{-}\overline{\nu}; \Delta t)}$$

CP tests are performed along with T and CPT ones as cross-check and control of systematic effects

T/CPT Tests with $\phi \rightarrow K_S K_L \rightarrow 3 \pi^0 \pi v e, \pi \pi \pi v e$

Systematics

		, ,						
Effect	R_2^T	R_4^T	R_2^{CPT}	R_4^{CPT}	R_{2}^{T}/R_{4}^{T}	R_2^{CPT}/R_4^{CPT}	R_2^{CP}	R_4^{CP}
Residual background model	0.002738	0.004615	0.002789	0.004429	0.004432	0.004414	0.004369	_
Smoothing of efficiencies from MC	0.002460	0.005310	0.002430	0.005260	0.006700	0.006830	0.006760	0.000165
Δt bin width	0.008000	0.005000	0.007500	0.005500	0.009000	0.009000	0.008900	0.000030
Fit range position	0.007250	0.007280	0.007270	0.007260	0.005140	0.005270	0.005200	0.000205
Fit range width	0.001110	0.005080	0.000858	0.005050	0.006070	0.005480	0.005780	0.000359
Effects of cuts in the $\pi e \nu 3\pi^0$ select	ion							
K_S vertex ρ	0.000411	0.002300	0.000417	0.002260	0.002240	0.002290	0.002270	_
K_S vertex z	0.000397	0.000242	0.000405	0.000239	0.000736	0.000760	0.000748	_
$\mathrm{M}(\pi,\pi)$	0.002480	0.001340	0.002520	0.001310	0.001560	0.001630	0.001600	_
1 st TOF cut	0.001600	0.002220	0.001620	0.002190	0.003830	0.003950	0.003890	_
2 nd TOF cut parameter A	0.000671	0.000581	0.000684	0.000569	0.000878	0.000899	0.000889	_
2 nd TOF cut parameter B	0.000369	0.000433	0.000375	0.000426	0.000076	0.000077	0.000076	_
2 nd TOF cut parameter C	0.000152	0.000399	0.000154	0.000393	0.000278	0.000283	0.000281	_
2 nd TOF cut parameter D	0.001420	0.000850	0.001450	0.000836	0.002050	0.002110	0.002080	_
3 rd TOF cut circle R	0.005140	0.004470	0.005230	0.004390	0.003560	0.003640	0.003600	_
3 rd TOF cut ellipse A	0.002280	0.001020	0.002320	0.001000	0.002760	0.002850	0.002800	_
3 rd TOF cut ellipse B	0.000412	0.000993	0.000420	0.000973	0.000956	0.000975	0.000965	_
$e/\pi/\mu$ classification	0.004000	0.004330	0.004070	0.004250	0.009100	0.009340	0.009220	-
Classifier training with data/MC	0.002620	0.000800	0.002630	0.000810	0.002050	0.002170	0.002110	_
Effects of cuts in the $\pi^+\pi^-\pi e\nu$ sele	ection							
K_S vertex ρ	0.000002	0.000002	0.000002	0.000002	0.000000	0.000000	_	0.000000
K_S vertex z	0.000007	0.000003	0.000003	0.000007	0.000004	0.000004	_	0.000005
$\mathrm{M}(\pi,\pi)$	0.002220	0.002280	0.002240	0.002260	0.000024	0.000024	_	0.000027
$ ec{p}_{tot} $	0.000152	0.000181	0.000178	0.000154	0.000021	0.000021	_	0.000022
$m_+^2 + m^2$	0.001480	0.001320	0.001310	0.001490	0.000202	0.000208	_	0.000210
1^{st} TOF cut parameter A	0.000021	0.000385	0.000389	0.000020	0.000392	0.000405	_	0.000426
1 st TOF cut parameter B	0.001450	0.001080	0.001070	0.001470	0.000407	0.000417	_	0.000417
2^{nd} TOF cut parameter R_1	0.000171	0.000256	0.000262	0.000175	0.000126	0.000130	_	0.000140
2^{nd} TOF cut parameter R_2	0.001570	0.001200	0.001190	0.001590	0.000399	0.000410	_	0.000414
Total systematic uncertainty	0.014	0.015	0.014	0.015	0.019	0.019	0.019	0.00089
Uncertainty on the D factor	0.012	0.012	0.012	0.012				
Including the D factor	0.018	0.019	0.019	0.019				
-								

Selection	$R_{\epsilon} = (\epsilon_{\pi\pi}/\epsilon_{\pi e \nu})_{\rm com}$
Trigger	1.0297 ± 0.0003
On-line filter	1.0054 ± 0.0001
Event classification	1.0635 ± 0.0004
T0 time	1.0063 ± 0.0001
K_L -crash	1.0295 ± 0.0010
K_S vertex reconstr.	1.0418 ± 0.0009
R_{ϵ}	1.1882 ± 0.0012

Selection	Efficiency
Preselection (from MC)	0.9961 ± 0.0002
Kin. variables selection	0.9720 ± 0.0007
BDT selection	0.6534 ± 0.0013
TCA selection	0.4639 ± 0.0009
TOF selection	0.6605 ± 0.0012
Total	0.1938 ± 0.0006

