SSP 2022 - Vienna - 2022-09-01

The BASE Experiment

(Max Planck Institute for Nuclear Physics)

on behalf of the BASE collaboration

ETH zürich

- Introduction
 - Measurement principle
 - The BASE apparatus
- State of the Art
 - The Triple Trap Method (TTM)
 - Limitations
- Path towards 100 p.p.t. precision
 - Magnetic shimming and shielding system
 - Cooling trap

Motivation

Combining Λ -CDM and Standard Model leads to 9 orders of magnitude discrepancy between prediction and observation

	Naive Expectation	Observation
Baryon/Photon Ratio	10-18	0.6 x 10 ⁻⁹
Baryon/Antibaryon Ratio	1	10 000

The BASE experiment

Test CPT invariance by comparing the fundamental properties of protons and antiprotons in Penning traps:

1. Charge-to-mass ratio:
$$\frac{\left(\frac{q}{m}\right)_{\overline{p}}}{\left(\frac{q}{m}\right)_p} = -1.00000000003(16)$$
 [1]

[3] M.J. Borchert, Challenging the Standard Model by high precision comparisons of the fundamental properties of antiprotons and protons, 2021.

The Penning trap

$$v_c^2 = v_+^2 + v_z^2 + v_-^2$$

Measurement of the cyclotron frequency

Measure axial frequency and mod. cyclotron sidebands

Use invariance theorem to determine free cyclotron frequency

$$v_c^2 = v_+^2 + v_z^2 + v_-^2$$

$$v_+ = v_{rf} + v_l + v_r - v_z$$

Note that v_+ coupling heats the cyclotron mode

Measurement of the $p-\bar{p}$ charge-to-mass ratio

$$\omega_c = \frac{q}{m} B_z$$

$$v_c^2 = v_+^2 + v_z^2 + v_-^2$$

$$\frac{\left(\frac{q}{m}\right)_{\bar{p}}}{\left(\frac{q}{m}\right)_{\mathrm{H}^{-}}} = 1.001089218781$$

Measurement of the $p-\bar{p}$ charge-to-mass ratio

$$v_c^2 = v_+^2 + v_z^2 + v_-^2$$

$$m_{\rm H^-} = m_{\rm p} (1 + 2\frac{m_{\rm e}}{m_{\rm p}} - \frac{E_{\rm b}}{m_{\rm p}c^2} - \frac{E_{\rm a}}{m_{\rm p}c^2} + \frac{\alpha_{\rm pol,H^-} B_0^2}{m_{\rm p}c^2})$$

Effect	Magnitude	
m_e/m_pc^2	0.001 089 234 042 95 (5)	MPIK/ HHU-D
$-E_b/m_pc^2$	0.000 000 014 493 061	MPQ
$-E_a/m_pc^2$	0.000 000 000 803 81 (2)	Lykke
$\frac{\alpha_{\rm pol,H^-}B_0^2}{m_{\rm p}c^2}$	0.000 000 000 007 685 (18)	

$$\frac{\left(\frac{q}{m}\right)_{\bar{p}}}{\left(\frac{q}{m}\right)_{p}} = -1.00000000003(16)$$

Measurement of the $p-\bar{p}$ charge-to-mass ratio

$$v_c^2 = v_+^2 + v_z^2 + v_-^2$$

Preparing for beam taking in 2022

$$\overrightarrow{\mu_S} = g \frac{q}{2m} \vec{S}$$

$$\Delta E = g \frac{q\hbar}{2m} B_z$$

$$\omega_L = g \frac{q}{2m} B_z$$

$$\omega_L = g \frac{q}{2m} B_z$$

$$\omega_c = \frac{q}{m} B_z$$

$$\omega_L = g \frac{q}{2m} B_z$$

The BASE multi-trap stack

The BASE apparatus

Axial detection system

$$\operatorname{Re}(Z) = \frac{R_P}{1 + \left[\frac{Q}{\omega_0}(\omega^2 - \omega_P^2)(\omega_0^2 - \omega^2) + \gamma\omega\right]}$$

SE Spin state detection

2. Determination of ω_{l}

Couple spinstate to axial frequency by superimposing a magnetic bottle $(B_2 \approx 300\ 000\ T\ m^{-2})$

$$\Delta\omega_{z} = \frac{\hbar \,\omega_{+}}{m \,\omega_{z}} \frac{B_{2}}{B_{0}} \left(\left(n_{+} + \frac{1}{2} \right) + \frac{\omega_{-}}{\omega_{+}} \left(n_{-} + \frac{1}{2} \right) + m_{s} \frac{g}{2} \right)$$

$$\Delta v_{+} \approx 62 \ mHz$$
 $\Delta v_{-} \approx 0.04 \ mHz$
 $\Delta v_{S} \approx 172 \ mHz$

Spin state detection

Couple spinstate to axial frequency by superimposing a magnetic bottle $(B_2 \approx 300\ 000\ T\ m^{-2})$

$$\Delta\omega_{z} = \frac{\hbar \,\omega_{+}}{m \,\omega_{z}} \frac{B_{2}}{B_{0}} \left(\left(n_{+} + \frac{1}{2} \right) + \frac{\omega_{-}}{\omega_{+}} \left(n_{-} + \frac{1}{2} \right) + m_{s} \frac{g}{2} \right)$$

$$\Delta v_{+} \approx 62 \ mHz$$
 $\Delta v_{-} \approx 0.04 \ mHz$
 $\Delta v_{S} \approx 172 \ mHz$

Axial Position (a. u.)

SMORRA, Christian, et al. Base—the baryon antibaryon symmetry experiment. *The European Physical Journal Special Topics*, 2015, 224. Jg., Nr. 16, S. 3055-3108.

Spin state detection

Couple spinstate to axial frequency by superimposing a magnetic bottle $(B_2 \approx 300\ 000\ T\ m^{-2})$

$$\Delta\omega_{z} = \frac{\hbar\,\omega_{+}}{m\,\omega_{z}} \frac{B_{2}}{B_{0}} \left(\left(n_{+} + \frac{1}{2} \right) + \frac{\omega_{-}}{\omega_{+}} \left(n_{-} + \frac{1}{2} \right) + m_{s} \frac{g}{2} \right)$$

Probe spinflip probability as function of drive frequency ω_{RF}

SMORRA, Christian, et al. Observation of individual spin quantum transitions of a single antiproton. Physics Letters B, 2017, 769. Jg., S. 1-6.

Cyclotron heating rate increases with cyclotron temperature

$$\zeta_{+} = n_{+} \frac{q^{2}}{2\hbar m \,\omega_{+}} S_{E}(\omega_{+})$$

Measurement requires cold particle→ Cooling

cold particle (50mK)

hot particle (1K)

Subthermal cooling

200 mK temperature acceptance \rightarrow 15 h preparation time

SMORRA, C., et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature, 2017, 550. Jg., Nr. 7676, S. 371.

SMORRA, C., et al. A parts-per-billion measurement of the antiproton magnetic moment. *Nature*, 2017, 550. Jg., Nr. 7676, S. 371.

SMORRA, C., et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature, 2017, 550. Jg., Nr. 7676, S. 371.

B SE Limitations

Effect	Correction (p.p.b.)	Uncertainty (p.p.b.)
Image-charge shift	0.05	0.001
Relativistic shift	0.03	0.003
Magnetic gradient	0.22	0.020
Magnetic bottle	0.12	0.009
Trap potential	-0.01	0.001
Voltage drift	0.04	0.020
Contaminants	0.00	0.280
Drive temperature	0.00	0.970
Spin-state analysis	0.00	0.130
Total systematic shift	0.44	1.020

BSE Limitations

1. Contaminants

- → Compare charge-to-mass ratio for both particles [1]
- → Limited by statistics of comparison measurement

2. Drive temperature

- → Larmor drive could change axial temperature of Larmor particle
- $\rightarrow \omega_{l}$ and ω_{c} are probed at different magnetic fields

3. Spin-state analysis

- → Spinflip detection is stochastic process with 80% 90% fidelity
- → Uncertainty in cyclotron fluctuations

Magnetic inhomogeneity

Parameter	2017	2022
B ₂ [T/m ²]	2.74(22)	0.1035(2)
B ₁ [T/m]	0.0712(4)	0.0252(1)

→ 970 p.p.b. systematic shift suppressed by a factor 20

Redesigned trap stack

2017:

2020:

Magnetic shimming and shielding system

Magnetic shimming and shielding system

Coil system transfer functions

B₂ coil characterization

B2 coil transfer function

Loading reproducibility

Loading stability

B₂ coil characterization

Compare cyclotron frequency ratio between particles of different temperature:

Ratio becomes insensitive to axial temperature as B₂ approaches 0

→ Further reduction of B₂ shifts by a factor 100

The cooling trap

Cooling Trap Layout

The cooling trap

Parameter	2016 measurement (PT)	2022 measurement (CT)
Detector temperature	12.8 K	4.2 K
Detection Q	450	1250
R_p	$75.000~\Omega$	360.000Ω
Pickup length (D_{eff})	21.5 mm	4.2 mm
Thermalization time $ au$	380 s	3.2 s
Transport time	78 s	4.6 s
Readout time	120 s	10 s
200 mK preparation time	15 h	8 min

Further improvements

• Implementation of phase-sensitive detection methods [1]

 Modified cooling schemes (sympathetic laser cooling) [2]

Stabilization of environmental parameters

 Development of a transportable trap (BASE-STEP) [3]

[3] C. Smorra et al., Technical Design Report of BASE-STEP, 2021.

BSE Conclusion and Outlook

Past measurements were limited by magnetic inhomogeneity and statistics

New shimming and shielding system removes dominant uncertainty

Cooling trap increases measurement statistics significantly

- → Upgrade experiment for new antiproton energy
- → Measure antiproton g-factor to 100 p.p.t. level during the next run

Shimming coil loading scheme

Shimming coil loading scheme

1. Apply quench current

3. Remove quench current

2. Apply loading current

4. Remove loading current

SE Self-shielding coil

SE Coil system joints

29/08/2022 43

BASE axial field strength

SE Coil system joints

29/08/2022 45

Charge-to-Mass ratio systematics

Effect	2018-1-SB	2018-2-SB	2018-3-PK	2019-1-SB
B ₁ -shift	0.03(2)	0.01(2)	< (0.01)	< (0.01)
B ₂ -shift	20.27(14.86)	8.38(14.86)	10.79(12.66)	3.75 (5.16)
C_4 -shift	(1.12)	(1.13)	(1.54)	(0.76)
C_6 -shift	< (0.01)	< (0.01)	< (0.01)	< (0.01)
Relativistic	1.20(92)	0.47(90)	1.90(2.32)	0.65(94)
Image charge shift	0.05(0)	0.05(0)	0.05(0)	0.05(0)
Trap misalignment	0.06(0)	0.06(0)	0.05(0)	0.05(0)
Voltage Drifts	-3.35(5.12)	-3.77(5.12)	-0.11(11)	-5.03(5.12)
Spectrum Shift	0.37(20.65)	16.89(46.49)	0.74(61)	-8.61(21.45)
FFT-Distortions	(1.57)	(3.48)	(0.03)	(1.23)
Resonator-Shape	0.02(3)	0.02(2)	< (0.01)	0.01(2)
B ₁ -drift offset	< (0.11)	< (0.11)	< (0.04)	< (0.04)
Resonator Tuning	< (0.16)	< (0.16)	< (0.06)	< (0.06)
Averaging Time	_	_	-2.87(25)	_
FFT Clock	_	_	(3.69)	_
Pulling Shift	_	_	2.86(24)	-
Linear Coefficient Shift	_	_	0.16(40)	-
Nonlinear Shift	_	_	0.03(2)	-
Systematic Shift	18.65(26.04)	22.11(49.22)	13.60(13.50)	-9.13(22.71)
R _{exp} – R _{theo}	13.02(27.12)	- 5.04(46.57)	7.99(18.57)	18.34(18.89)
R _{exp,c} — R _{theo}	-5.63(37.60)	-27.15(67.76)	-5.61(22.66)	27.47(29.54)

Optimized Larmor resonance

SCHNEIDER, Georg, et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science, 2017, 358. Jg., Nr. 6366, S. 1081-1084.

The cooling trap

- Status today with 30s cooling in the CT.
- Optimization of spectrum acquisition time (64s to 18s) (should be possible for positive AT feedback).
- Optimization of spectrum acquisition time (64s to 18s) AND CT cooling (30s to 3s).
- Optimization of spectrum acquisition time (64s to 18s) AND CT cooling (30s to 3s) AND further transport optimization.

31/08/2022 48

SE SME constraints

Coefficient	Limit
$\left \tilde{b}_{p}^{z}\right $	$< 1.8 \cdot 10^{-24} \text{ GeV}$
$\left \tilde{b}_{p}^{XX}\right.+\tilde{b}_{p}^{YY}\left.\right $	$< 1.1 \cdot 10^{-8} \text{ GeV}^{-1}$
$\left ilde{b}_{p}^{ZZ} ight $	$< 7.8 \cdot 10^{-9} \text{ GeV}^{-1}$
$\left \widetilde{b}_{p}^{*z}\right $	$< 3.5 \cdot 10^{-24} \text{ GeV}$
$\left \tilde{b}_{p}^{*XX}\right.+\left.\tilde{b}_{p}^{*YY}\right.\right $	$< 7.4 \cdot 10^{-9} \text{ GeV}^{-1}$
$ig \widetilde{b}_p^{*ZZ} ig $	$< 2.7 \cdot 10^{-8} \text{ GeV}^{-1}$

Coefficient	Previous Limit	Improved Limit	Factor
$ \tilde{c}_e^{XX} $	$< 3.23 \cdot 10^{-14}$	$< 7.79 \cdot 10^{-15}$	4.14
$ ilde{c}_e^{YY} $	$< 3.23 \cdot 10^{-14}$	$< 7.79 \cdot 10^{-15}$	4.14
$ ilde{c}_e^{ZZ} $	$< 2.14 \cdot 10^{-14}$	$< 4.96 \cdot 10^{-15}$	4.31
$ \tilde{c}_p^{XX} , \tilde{c}_p^{*XX} $	$< 1.19 \cdot 10^{-10}$	$< 2.86 \cdot 10^{-11}$	4.14
$\left \left \left \tilde{c}_{p}^{YY}\right ,\left \tilde{c}_{p}^{*YY}\right \right $	$< 1.19 \cdot 10^{-10}$	$< 2.86 \cdot 10^{-11}$	4.14
$\left \left \left \left \tilde{c}_{p}^{ZZ}\right ,\left \tilde{c}_{p}^{*ZZ}\right \right. ight $	$< 7.85 \cdot 10^{-11}$	$<1.82 \cdot 10^{-11}$	4.31
Ш			

Coefficient	Limit
$ ilde{b}_p^{*X}$	$< 9.7 \cdot 10^{-25} \text{ GeV}$
\widetilde{b}_p^{*Y}	$< 9.7 \cdot 10^{-25} \text{ GeV}$
$\left ilde{b}_{p}^{*XX} - ilde{b}_{p}^{*YY} ight $	$< 5.4 \cdot 10^{-9} \text{GeV}^{-1}$
$ ilde{b}_p^{*XZ}$	$< 3.7 \cdot 10^{-9} \text{GeV}^{-1}$
$ ilde{b}_p^{*YZ}$	$< 3.7 \cdot 10^{-9} \text{GeV}^{-1}$
$ ilde{b}_p^{*XY}$	$< 2.7 \cdot 10^{-9} \text{GeV}^{-1}$

BSE GSHFS Antihydrogen

Deviation from ν_F due to proton structure	-32.77(1) ppm
Recoil corrections	+5.85(7) ppm
Finite electric and magnetic radius (Zemach corrections)	-41.43(44) ppm
Polarizability of proton	+1.88(64) ppm
Remaining deviation theory-experiment	+0.86(78) ppm