

The ASACUSA Experiment

t

ASACUSA

Atomic

Spectroscopy

And

Collisions

Using

Slow

Antiprotons

Asakusa in Tokyo

The ASACUSA-Cusp Experiment

What do we study

• The ASACUSA Cusp experiment focuses on producing a beam of antihydrogen for the measurement of the transition frequency ground state hyperfine splitting in a field free region.

Why antimatter?

- The standard model of particle physics predicts matter-antimatter symmetry
 - Matter and antimatter created in equal quantities
 - Charge conjugation Parity Time reversal (CPT) unviolated
- Observed matter-antimatter asymmetry in nature

$$\eta = \frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 6.1 \times 10^{-10}$$

- Where n_b and $n_{\bar{b}}$ are number densities of baryons and antibaryons and n_{γ} the number density of cosmic background radiation photons
- This violation points to physics beyond the standard model

Why the HFS of antihydrogen

- Antihydrogen is the simplest stable* purely antimatter system
 - Amenable to high precision spectroscopic investigation
- Hydrogen is the most well studied systems in the physical sciences
 - v_{HFS} = 1,420,405.7513768(1) kHz

Why the HFS of antihydrogen

- •Key:
 - Right edge: value
 - Bar length: relative precision
 - Left edge: absolute sensitivity
 - Blue: measured
 - Orange: planned
 - Yellow: potentially measurable

See https://arxiv.org/2111.0456v2 for details

Why the HFS of antihydrogen

- •Key:
 - Right edge: value
 - Bar length: relative precision
 - Left edge: absolute sensitivity
 - Blue: measured
 - Orange: planned
 - Yellow: potentially measurable

See https://arxiv.org/2111.0456v2 for details

Overview

- The method
- •Status of the experiment
- Work during LS2
- The beginning of the ELENA era

This talk will concentrate on the production and characterisation of an antihydrogen beam for the hyperfine spectroscopy measurement

Hydrogen Spectroscopy

Main Results

- line-shape understood in detail
- systematic effects? not on few ppb-level
- 8000 Hbar events on detector for ppm result (conservative estimate for σ -transition)

Nature Communications, published on 12th June '17 DOI: 10.1038/ncomms15749

In contrast to the table-top matter experiments, antihydrogen spectroscopy requires complex apparatuses for the production of the elusive antimatter atoms.

$$\bar{p} + e^+ + e^+ \rightarrow \bar{H} + e^+$$

Antiproton Trap - MUSASHI

- Degrader foil reduces incoming antiproton energy to ~10keV
- Catching bias -12kV
- Antiprotons are cooled with $\sim 3 \times 10^8$ electrons
- 1-2 million antiprotons are trapped per AD cycle
- Antiprotons can be extracted with eV energies.

Positron Trap

(b)

В

B=2.6T

Double Cusp Trap

Radics, B., S. Ishikawa, N. Kuroda, D. J. Murtagh, Y. Nagata, M. Tajima, S. Van Gorp, et al. "Antihydrogen Synthesis in a Double-CUSP Trap towards Test of the CPT-Symmetry." *Hyperfine Interactions* 237, no. 1 (December 1, 2016): 156.

Detection of the first antihydrogen beam

Measurement of Quantum State Distribution

- The data analysis made use of machine learning techniques
 - Trained with \bar{p} annihilation
 - $\varepsilon_{\bar{p}}$ ~80%
 - False cosmic identification 0.25%
 - Cosmic rate $1.6s^{-1} \rightarrow 0.02$ per 5s mixing run

Status

- Beam observed
 - 0.006 s⁻¹ (*n*<60)
- •Internal quantum number distribution measured
 - 0.001 s⁻¹ (n=1) (4 h⁻¹) if v=1000ms⁻¹
- •How do we improve the beam intensity and the number of ground state atoms?

How to make more Hbar?

 Modelling of the formation and scattering of antihydrogen formation

Plasma Temperature

•If the temperature of the positron plasma can be reduced from 200K to 20K we gain **two orders of magnitude** in antihydrogen production

Plasma Temperature

- If the temperature of the positron plasma can be reduced from 200K to 20K we gain **two orders of magnitude** in antihydrogen production
- If the positron plasma is colder then the antiprotons will be colder producing slower antihydrogen
 - Longer to cascade \rightarrow Lower n states!

Control of electron/positron plasma properties

- Long Shutdown 2 (LS2) ran from December 2018 to August 2021 during this period no antiprotons were available
- A reproducible cold plasma was needed!
- What are we interested in ?
 - Temperature
 - Density
 - Number
 - Length
 - Radius

Evaporation

Number & Temperature

Control of electron/positron plasma properties

•To produce the same plasma each and every time : we fix a potential, apply strong drive rotating wall and evaporate → SDR-EVC

Property	Mean	\mathbf{SD}
$r_p \; (\mathrm{mm})$	0.417	0.003
T(K)	360	30
$N_f (10^6)$	11.0	0.3

ALPHA Collaboration, M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, et al. 'Enhanced Control and Reproducibility of Non-Neutral Plasmas'. *Physical Review Letters* 120, no. 2 (8 January 2018): 025001. https://doi.org/10.1103/PhysRevLett.120.025001.

Radics, B., S. Ishikawa, N. Kuroda, D. J. Murtagh, Y. Nagata, M. Tajima, S. Van Gorp, et al. "Antihydrogen Synthesis in a Double-CUSP Trap towards Test of the CPT-Symmetry." *Hyperfine Interactions* 237, no. 1 (December 1, 2016): 156.

 $d\ln(r)/dt = 1.2e-4 s^{-1}$

Hold Time (s)

Plasma Cooling Rate

Heating Rate

$$T_f = T_w + H/G$$

Cyclotron Cooling Rate

Plasma cooling: radiation environment

Closed

Partly Open

Open

Ceramic "bracelet" to absorb cyclotron radiation from the plasma

High transparency <u>copper mesh</u> to reflect incoming microwaves
0.25 mm pitch
0.03 mm wire diameter
>20 dB attenuation at 60 GHz

- First results
 - Electrode temperature 5-6 K
 - Approximately 10 K colder than the previous design
 - Plasma Temperatures
 - 3-4 million electron 35 K (previously 150 K)
 - 60 million electrons 70 K

- Electrode temperature 5-6 K
 - Approximately 10 K colder than the previous design

Outlook

- The ASACUSA Cusp collaboration successfully detected a very weak and highly excited beam of antihydrogen 2.7 meters from their mixing region
- To increase the brightness and produce a ground state beam, colder mixing plasmas were required
- Thus far we have succeeded in producing cold electron plasmas in the new mixing trap
- This year we are working to repeat this with positrons and the cold positrons mixed with antiprotons
- There have been many more developments which I haven't had time to talk about
- We hope the future is cold (plasmas) and bright (beams)

Acknowledgements

- The SMI positron group
 - Dr Eric Hunter
 - Andreas Lanz
 - Alina Weiser

Full Collaboration

- C. Amsler, H. Breuker, S. Chesnevskaya, G. Costantini, R. Ferragut, G. Costantini, R. Ferragut, S. Chesnevskaya, G. Costantini, G. Costantini, G. R. Ferragut, S. Chesnevskaya, G. Costantini, G. Costant
- M. Giammarchi, A. Gligorova, G. Gosta, H. Higaki, E. D. Hunter, C. Killian, 1
- V. Kletzl, V. Kraxberger, N. Kuroda, A. Lanz, M. Leali, A. V. Mäckel, 1
- G. Maero, 6, 10 C. Malbrunot, 11, a) V. Mascagna, 3, 4 Y. Matsuda, 8 S. Migliorati, 3, 4
- D. J. Murtagh, 1 Y. Nagata, 12 A. Nanda, 1,9 L. Nowak, 11,9 E. Pasino, 6,10 M. Romé, 6,10
- M. C. Simon, M. Tajima, N. Toso, S. Ulmer, L. Venturelli, A. Weiser, 1,9
- E. Widmann, ¹ T. Wolz, ¹¹ Y. Yamazaki, ² and J. Zmeskal ¹

- 1) Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1030 Vienna, Austria
- ²⁾Ulmer Fundamental Symmetries Laboratory, RIKEN, 351-0198 Saitama, Japan
- ³⁾Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, 25121 Brescia, Italy
- 4)INFN sez. Pavia, 27100 Pavia, Italy
- ⁵⁾L-NESS and Department of Physics, Politecnico di Milano, 22100 Como, Italy
- 6)INFN sez. Milano, 20133 Milan, Italy
- ⁷⁾Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8530 Hiroshima, Japan
- ⁸⁾Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, 113-8654 Tokyo, Japan
- ⁹⁾University of Vienna, Vienna Doctoral School in Physics, 1090 Vienna, Austria
- ¹⁰⁾Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
- ¹¹⁾Experimental Physics Department, CERN, 1211 Geneva, Switzerland
- ¹²⁾Department of Physics, Tokyo University of Science, 162-8601 Tokyo, Japan
- ¹³⁾RIKEN Nishina Center for Accelerator-Based Science, 351-0198 Saitama,

Backup

Positron Trap Replaced

The existing positron trap was due to retire in 2021 but due to a lack of personnel in 2020/1 the new FPS trap was installed in 2022 and is currently being developed.

Positron Accumulator

- As the FPS trap has a lifetime of just 2s a new positron accumulator was built in 2021
- At present this device has been installed in the first coil of the positron transfer line and is being commissioned at this moment

Field Ionizer

Why start with cold positrons?

Drift Tube

3.0975E-4

3.1100E-4

Proton Source

- A novel proton source was developed at SMI
- Protons were produced via electron impact ionization of H₂ gas
- This process typically creates more H_2^+ and H_3^+ ions than protons
- The protons were 'filtered' by trapping the ions in the gas cell while applying a RW drive to 4 split electrodes

Proton Source

- The proton source was connected to the Cusp Mk IV trap
- We were able to accumulate
 1 million protons in the
 Cusp within a few seconds
- •Unfortunately time ran out for work with protons so it was not possible to try to produce Ry-H

Pressure and Trap Temperature Plasma Temperature Dependence

Cooling time Vs B

Plasma Temperature

•To measure the plasma temperature the potential barrier is slowly lowered while measuring the current delivered to an MCP (either with a charge amp or using the light from a phosphor screen and SiPM)

Combination k_bT + space charge determines the dN/dV

Positron Trap

•Sodium-22

• Half-life: 2.6 Years

• Supplier: iThemba labs

• Strength: up to 50mCi (1.85GBq)

•Neon

- $5 \times 10^{-3} \le \varepsilon_m \le 2.5 \times 10^{-2}$
- Band Gap Insulator
- Require cryogenic equipment