

Magnetic Dipole Moments

Magnetic dipole moment of current loop:

$$ec{\mu} = rac{IA}{c} \hat{n}$$

$$= rac{1}{c} rac{ev}{2\pi r} \pi r^2 \hat{n}$$

$$= rac{e}{2mc} mvr \hat{n}$$
 $\vec{\mu} = rac{e}{2mc} \vec{L}$

- 1925: Anomalous Zeeman effect could be explained by intrinsic electron spin with magnetic moment
- 1928: Dirac predicts g=2 for fundamental spin 1/2 particle, huge success
- 1933: Stern proposes measurement of g_{proton} . Pauli "Don't you know the Dirac theory? It's obvious $g_p=2$ "

The Magnetic Moment Anomaly

- 1947: Rabi 0.3% discrepancies in ground-state HFS of H,D
- 1947: Kusch and Foley discrepancy in Ga spectroscopy explained if $g_e = 2.00229(8)$
- 1947: Schwinger calculates correction $g_e = 2\left(1 + \alpha/2\pi\right) = 2.002324$
- $g_e=2(1+a_e)$ defines magnetic moment anomaly, $a_e\equiv \frac{(g_e-2)}{2}\approx \frac{\alpha}{2\pi}\approx 0.001162$

J. Schwinger

- Anomaly a_e due to radiative corrections from virtual particles in loops
- 1 part in 850 effect, huge success for QED!

Contributions to the Magnetic Moment Anomaly of the Muon

$$a_{\mu}(\mathsf{Standard\ Model}) = a_{\mu}(\mathsf{QED}) + a_{\mu}(\mathsf{Weak}) + a_{\mu}(\mathsf{Hadronic})$$

Muon g-2 Theory Initiative: Definitive Standard Model Prediction

- Collaboration of 100+ theorists, held 7 workshops 2017-2021
- ullet Goal: Study all theory inputs, provide definitive SM prediction for a_{μ}
- T. Aoyama et al., Physics Reports 887, 1-166 (2020)
- 166 pages, 132 authors, 82 institutions, 21 countries, 822 references
- ⇒ We compare experiment result with this recommended value
- → Theory work ongoing, Sept 2022 workshop, update in 2023

The Standard Model Prediction of a_u

```
a_{\mu}(\text{QED}) = 116 584 718.931 \pm 0.104 

a_{\mu}(\text{HadVP}; e^{+}e^{-}, \text{LO+NLO+NNLO}) = 6 845. \pm 40 

a_{\mu}(\text{Weak}; 2 \text{ loops}) = 153.6 \pm 1.0 

a_{\mu}(\text{Had}; \text{LBL}) = 92. \pm 18 

a_{\mu}(\text{Standard Model}) = 116 591 810. \pm 43 \times 10<sup>-11</sup>
```

- T. Aoyama et al. (Theory Initiative Whitepaper), "The anomalous magnetic moment of the muon in the Standard Model", Physics Reports 887, 1-166, Dec 2020.
- Uses data-driven approach to HVP
- Prediction has impressive precision: 370 ppb

Why measure the magnetic moment anomaly of the muon?

- $a_e = (g_e 2)/2$ determined to 0.24 ppb
- Muons live 2.2 μ seconds why measure a_{μ} ?

- \Rightarrow Contribution of new physics $\approx \left(\frac{m_{e,\mu}}{M_X}\right)^2$
- \Rightarrow Muon mass 206 times electron mass \Rightarrow new physics contribution 43,000 times larger
- \Rightarrow New physics contribution of 0.24 ppb on $a_e \Leftrightarrow 9$ ppm on a_μ
- \Rightarrow With much lower precision, a_{μ} sensitive to much higher mass scales

Muon g-2 Collaboration

7 Countries, 35 Institutions, 203 Collaborators

The Big Move: From Brookhaven to Fermilab in 2013

Transporting the Coils to Fermilab: Shut down 2 interstates!

• Trailer with coils passes toll arches with 6" clearance on each side

The new Muon g-2 Experiment at Fermilab

Goal: Measure the muon magnetic moment anomaly a_μ to 140 ppb, a fourfold improvement over the 540 ppb precision of Brookhaven

- \Rightarrow Brookhaven statistics limited: $a_{\mu}^{\rm BNL} = 0.001\,165\,920\,89\,(54)_{\rm stat}\,(33)_{\rm sys}$
 - BNL ± 540 ppb uncertainty $\Leftrightarrow 9 \times 10^9$ events
- \Rightarrow Fermilab goal factor 21, $2 \times 10^{11} e^+$

Fermilab Advantages:

- 4 bunches of 10^{12} protons at 8 GeV
- Hit target, p, π, μ to delivery ring
- Long decay channel for $\pi \Rightarrow \mu$
- ullet Only μ enter ring, minimal hadronic flash
- \Rightarrow 4× higher fill frequency than BNL
- → Muons per fill similar

How do we measure a_{...}? Overview of Measurement Technique

- Inject polarized muons into magnetic storage ring (B=1.45 T) with electric vertical focusing
- Muon cyclotron frequency $\omega_c \approx 2\pi \times 6.7\,\mathrm{MHz}$
- Muon spin vector precession $\omega_s \approx 2\pi \times 6.9 \, \text{MHz}$

$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_C$$

$$\vec{\omega}_a \approx \frac{e}{mc} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \left[\frac{mc}{p} \right]^2 \right) \vec{\beta} \times \vec{E} \right]$$

$$\vec{\omega}_a \approx 229 \, \text{kHz}$$

- \Rightarrow Cancel term from electrostatic vertical focusing at $p_{\mathrm{magic}} = \frac{mc}{\sqrt{a_{\mu}}} \approx$ 3.094 GeV/c
- ⇒ Experiment measures two quantities:
 - (1) Muon anomalous precession frequency ω_a to $\pm\,100\,\mathrm{ppb}$ (stat) $\pm\,70\,\mathrm{ppb}$ (syst)
 - 2) Magnetic field $ec{B}$ in terms of proton NMR frequency ω_p to $\pm\,70\,\mathrm{ppb}$ (syst)

Injecting, Kicking, and **Storing** the Polarized Muon Beam

Electrostatic Quadrupoles (ESQ)

- Electric quadrupole field provides vertical focusing
- Beam: simple harmonic motion about closed orbit
- Quads cover 43% of azimuth

Measuring ω_a : Detecting the e^+ from muon decay with calorimeters

- \Rightarrow Parity violation in decay: $\mu^+ \rightarrow e^+ \bar{\nu}_{\mu} \nu_e$
- \Rightarrow Muon Rest Frame: highest energy decay e^+ emitted in precessing muon spin direction
- \Rightarrow Lab Frame Positron Energy: $E_{\text{lab}} \approx \gamma E^* \left[1 + \cos \left(\omega_a t \right) \right]$
- \Rightarrow Positron detection rate above threshold $\propto \cos{(\omega_a t)}$
 - Reconstruct e^+ energy and time
 - Extrapolate for phase of μ^+ spin at decay

• FFT of residual to fit shows many features: 5 parameter entirely inadequate

Importance of Beam Dynamics: Coherent Betatron Oscillations (CBO)

- ullet Calo acceptance depends on muon radius at decay: coherent beam motion modulates e^+ time spectrum
- Radial betatron wavelength (blue line) \neq circumference (cyclotron wavelength)
- ullet Red line: apparent radial breathing in and out of beam at alias frequency $f_{\mathsf{CBO}} = f_{\mathsf{cyclotron}} f_{\mathsf{betatron}}$
- Effect dephases gradually, nearly cancels when all detectors added together

Run-1 Challenge: Phase Acceptance Correction: C_{pa}

- Detector acceptance couples g-2 phase of detected e^+ to parent muon decay position (x,y, ϕ)
- Wiggle plots for $(1) \neq (2)$

Beam vertical width changed during fill

•
$$\Delta\omega_a = \frac{d\phi}{dt} = \frac{d\phi}{dY_{rms}} \frac{dY_{rms}}{dt} \neq 0$$

- Account for $\phi(t)$ in fit
- Took a year to understand

•
$$C_{pa} = (-158 \pm 75) \, \text{ppb}$$

Extracting ω_a^m : measured g-2 frequency

Incorporating beam dynamics, detector effects, muon losses, fit function becomes:

$$N(t) = N_0 \cdot N_x(t) \cdot N_y(t) \cdot \Lambda(t) \cdot e^{-t/\gamma \tau_{\mu}} \cdot \left[1 + A_0 \cdot A_x(t) \cdot \cos\left(\omega_a^m t + \phi_0 \cdot \phi_x(t)\right)\right]$$

$$N_{x}(t) = 1 + e^{-t/\tau_{\text{CBO}}} A_{N,x,1} \cos(\omega_{\text{CBO}} t + \phi_{N,x,1})$$

$$+ e^{-2t/\tau_{\text{CBO}}} A_{N,x,2} \cos(2\omega_{\text{CBO}} t + \phi_{N,x,2})$$

$$N_{y}(t) = 1 + e^{-t/\tau_{y}} A_{N,y,1} \cos(\omega_{y} t + \phi_{N,y,1})$$

$$+ e^{-2t/\tau_{y}} A_{N,y,2} \cos(\omega_{VW} t + \phi_{N,y,2})$$

$$\Lambda(t) = 1 - K_{\text{loss}} \int_{0}^{t} e^{t'/\gamma\tau_{\mu}} L(t') dt'$$

$$A_{x}(t) = 1 + e^{-t/\tau_{\text{CBO}}} A_{A,x,1} \cos(\omega_{\text{CBO}} t + \phi_{A,x,1})$$

$$\phi_{x}(t) = 1 + e^{-t/\tau_{\text{CBO}}} A_{\phi,x,1} \cos(\omega_{\text{CBO}} t + \phi_{\phi,x,1})$$

Detour back in time: Importance of Magnetic Field Homogeneity

- ullet Muons occupy volume determined by vertical and radial $oldsymbol{B}$ fields, betatron oscillations
- Muon spin precesses ω_a according to ${m B}$ in small volume $\Rightarrow \omega_a({\vec r}) \approx a_\mu \left[\frac{eB({\vec r})}{m_\mu}\right]$
- Need B field weighted by stored muon distribution
- Reasons for homogeneous field:
 - Stable beam dynamics, adiabaticity
 - Smaller uncertainty on $\tilde{\omega}_p$ from convolution of muon distribution with field
 - Easier to measure

Measuring the Magnetic Field B using Pulsed Proton NMR in Water

$$\omega_a \approx a_\mu \left[\frac{eB}{m_\mu}\right] \qquad a_\mu = \frac{\omega_a}{\omega_p'} \frac{2\mu_p'}{\hbar} \frac{m_\mu}{e} \longrightarrow \frac{\omega_a}{\tilde{\omega}_p'(T_r)} \times \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_\mu}{m_e} \frac{g_e}{2}$$

$$\Rightarrow \text{ Extract } B \text{ using NMR:} \quad \hbar \omega_p'(T_r) = 2 \mu_p'(T_r) B$$

- Magnetic moment of proton in spherical water sample $\mu_p'(34.7^{\circ}C)$ measured to 10.5 ppb
- \Rightarrow Want NMR precession frequency protons in spherical water $\omega_p'(T_r)$ in storage volume while muons stored
- Some Problems:
 - Can't have NMR probes in storage volume at same time/place as muons!
 - Whatever we use to measure B-field perturbs the local field! \Rightarrow measured B-field different than what muons see!
- Calibration/corrections necessary to go from raw magnetometer frequency $\omega_{\rm raw}$ to equivalent $\omega_p'(T_r)$
- Essential steps:
 - Develop calibration probe whose NMR frequency ω_{cp} can be related to $\omega_p'(T_r)$
 - Transfer calibration to device (NMR Trolley) that measures field inside muon storage volume $\Rightarrow \omega_p'(x,y,\phi,t_0)$
 - Use NMR probes outside storage volume to monitor field while muons stored $\omega_p'(x,y,\phi,t)$

Mapping the field in the storage volume every 3 days with the trolley:

- ullet Trolley with 17 NMR probes maps magnetic field in muon storage volume every pprox 3 days
- 9000× 17 data points (every 5 mm)
- Takes a few hours

During Muon Storage: track the field with the fixed probes

- 378 fixed NMR probes, above/below storage volume
- NMR probe stations every 5°, read every 1.4 seconds
- Determine offset between fixed probes and trolley when it passes by
- ⇒ Infer what trolley would read while muons stored

The Absolute Calibration Probe (CP) and Calibrating the Trolley

- Determine corrections relating ω^{cp} to $\omega_p'(T_r)$ to 20 ppb
- Cross-checked with ³He probe to 38 ppb

- Alternately measure B in same location with trolley, CP
- Relates $\omega_{\text{trolley}}(\vec{r})$ to $\omega^{CP}(\vec{r})$ to $\omega_p'(T_r, \vec{r})$
- Takes 4-8 hours to calibrate single trolley probe
- Results consistent to 30 ppb

Largest Field Systematic Uncertainty: Field Transients from the Electrostatic Quads: B_q

- When muons injected, electrostatic quads are pulsed
- Impulse causes motion of quad plates
- Moving conductor in B → magnetic field perturbation
- Not seen by trolley
- Seen by fixed probes but attenuated, phase shifted
- Must measure separately
- Inserted NMR probes between pulsing quads

Table of Muon g-2 Run-1 Statistical and Systematic Uncertainties

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)	• • •	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$	• • •	56
B_k	-27	37
$B_q^{"}$	-17	92
$\mu_p'(34.7^{\circ})/\mu_e$	• • •	10
m_{μ}/m_{e}	• • •	22
$g_e/2$	• • •	0
Total systematic	• • •	157
Total fundamental factors		25
Totals	544	462

Data set	$\tilde{\omega}_p'(T_r)/2\pi$ (Hz)	Uncertainty (ppb)
Run-1a	61,791,871.2	115
Run-1b	61,791,937.8	127
Run-1c	61,791,845.4	125
Run-1d	61,792,003.4	108
	Average over all data s	ets
Field Measurements		56
ESQ Transient		92
Kicker Transient		37
Total		114

- Took three years to analyze Run 1 (2018)
- Field measurement uncertainty: calibration, trolley maps, tracking uncertainty, muon convolution, ...
- $\omega_a^m(\text{systematic})$: pileup, gain correction, modeling CBO decoherence
- Results stable vs fit start/stop times, individual calorimeters,
 Run 1a, b, c, d (different quad and kicker settings)

Ready to Unblind

- Both ω_a and ω_p share common clock
- ω_a clock hardware "blinded"
- Obscures timebase for the "wiggle" plot
- Blinding factor set by people outside collaboration, stored in envelopes
- Unblinding: yields $\omega_a \Rightarrow a_\mu$

Clock stability monitored weekly by non-collaborators

Final Result: Run-1 Muon g-2

$$a_{\mu}({\rm Exp}) - a_{\mu}({\rm SM}) = (251 \pm 59) \times 10^{-11}$$

Significance: 4.2 σ

$$a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11}$$
 (0.46 ppm)
 $a_{\mu}(\text{Exp}) = 116\,592\,061(41) \times 10^{-11}$ (0.35 ppm)

- FNAL results consistent with BNL
- Statistical uncertainty 434 ppb
- Systematic uncertainty 157 ppb
- Fund. constants uncertainty 25 ppb
- \Rightarrow Discrepancy large compared to weak $(251 \pm 59 \text{ vs } 153.6) \times 10^{-11}$

What about the BMW20 Result? (Sz. Borsanyi et al., Nature 593, 51-55, Apr 7, 2021)

$$a_{\mu}(\text{Exp}) - a_{\mu}(\text{BMW2020}) = (107 \pm 71) \times 10^{-11}$$

- BMW 2020: First lattice QCD estimate of HadVP below a percent
- Huge accomplishment!
- Too late to include in WP result
- In tension with dispersive approach
- Members of BMW in Theory Initiative
- → Important to resolve

M. Ce et al., (Mainz) arXiv:2206.06582v1

- FNAL result consistent with BNL
- ullet Combined result differs from SM prediction by 4.2 σ
- Run-1 is 6% of final data set
 - ullet μ^- data run not approved
 - Taking more μ^+ data
 - g-2 Theory Initiative workshop Sep 2022
 - Update in 2023
 - HVP(lattice) below 0.5% by 2025?
 - HVP: MUonE, other exp inputs
 - Hlbl(dispersive) $\lesssim 10\%$ by 2025?
 - Hlbl(lattice) $\lesssim 10\%$ by 2025?
 - HVP(lattice) below 0.5% by 2025?
- Looking forward to result from J-PARC g-2

