

Precision measurements at low magnetic fields

Peter Fierlinger
Technical University of Munich

Content

- Magnetic field control of (selected) fundamental experiments at low fields:
 - Co-magnetometer: 129-Xe EDM, storage ring
 - Multiple cells: neutron EDM
 - 4-pi magnetometry: ~ neutron EDM, new low-field lab
- Generating small magnetic fields (in free space)
- A new Cs atomic magnetometer
- Applications of technology

129-Xe EDM

SEOP-hyperpolarized 3-He / 129-Xe co-magnetometer

$$\sigma = rac{\hbar}{2E}\delta\omega = rac{\hbar}{2E}rac{\epsilon}{ au^{3/2}S\sqrt{N}}$$

129-Xe EDM

Raw data:

Systematic effects:

Source	Sys. Error $(e \text{ cm})$
Leakage current	1.2×10^{-28}
Charging currents	1.7×10^{-29}
\vec{E} -correlated cell motion (rotation)	4.2×10^{-29}
\vec{E} -correlated cell motion (translation)	2.6×10^{-28}
Comagnetometer drift	6.6×10^{-28}
$ \vec{E} ^2$ effects	1.2×10^{-29}
$ ec{E} $ uncertainty	2.6×10^{-29}
Geometric phase	$\leq 2 \times 10^{-31}$
Total	7.2×10^{-28}

Result:

$$d_{A}(^{129}\text{Xe}) = (0.26 \pm 2.33_{\text{stat}} \pm 0.72_{\text{syst}}) \times 10^{-27} \ e \text{ cm}$$
 (10⁻²⁴ eV energy resolution)

Stay tuned: next version currently being prepared...

Neutron EDM

"Typical" setup for "next-gen" with $10^{-27} - 10^{-28}$ ecm sensitivity goal:

- Trapped ultra-cold neutrons

- Magnetometers:
 ¹⁹⁹Hg, Cs, ¹²⁹Xe, ³He, SQUIDs
- Direct B-field error ~ 1 fT over 250 s

$$d_{false:\Delta B} = \frac{2\mu\Delta B}{4E}$$

Indirect (geometric phase) ~
 Gradient ~ 0.1 nT/m

The PanEDM Experiment

- Double chamber: Gradient drift with 5 fT/m in 250 s instead of B-field drifts
- Extreme shielding factor: 6.10⁶ at 1 mHz
- < 100 pT residual field over whole volume
- Few x 10^{-4} relative homogeneity of 2 μ T field
- EDM chambers as small as reasonably possible

The PanEDM Experiment

"Approximated" 4-pi magnetometry

Multiple measurement cells

The PanEDM Experiment

drift with 5 fT/m Irifts 1.10⁶ at 1 mHz r whole volume y of 2 µT field reasonably

An ultra-light ALP search

Axion coupling to spins:

$$\mathcal{L} = g_{a\psi\psi} \partial_{\mu} a \bar{\psi} \gamma^{\mu} \gamma_5 \psi$$

The gradient of the axion field acts on spins:

$$ightarrow H = -g_{aee}
abla a \cdot \sigma$$
 \Leftrightarrow $H = -\mu
abla B \cdot \sigma$

$$H = -\mu \nabla B \cdot \sigma$$

Observable as oscillating magnetic field:

$$\mu B_{eff} = g_{aee} a_o m_a \vec{v} cos(m_a t) = g_{aee} \sqrt{
ho_{DM}} \vec{v} cos(m_a t)$$

Natural scale ~ 10⁻²⁰ T

Experiment:

- Electrostatic storage ring for polarized ions with frozen spin
- Quasi a co-magnetometer, without low-frequency magnetic shielding, 36 kHz
- Versatile: electrostatic storage works for any ion
- DFSZ axion models couple to electrons -> demonstrator setup with electron spin

Poster by Chiara Brandenstein

Storage ring experiment

 Non-relativistic 30 keV ions in demonstrator setup with Ba+ (currently under construction), works for any ion or ionic moelcule

 A sensitive differential magnetometer with ultimately 10⁻²¹ T resolution,
 suitable for ALP or FDM searches

The "smallest" and most stable magnetic fields with low noise

Residual field [pT]

Field homogeneity maps [pT]:

(Measurement dominated by sensor cables!)

Applied B0 field

...Limited by sensor alignment

Damping factor:

0.01 Hz ... 6.10⁶

 $10 \text{ Hz} > 10^8$

(inside PanEDM experiment)

The "smallest" and most stable magnetic fields with low noise

- Field conditions inside new shielded lab at Harbin Institute of Technology, China,
- Measured with Rb optical magnetometers

	_		
	1	. m	
	Bx bottom	(pT)	
€ 🕇	38.4	27.0	15.6
⊒ I	7.8	3.8	-0.1
ı Į	-22.9	-19.4	-15.9
Bx center (pT)			
	-1.9	-7.1	-12.4
	-6.3	-7.1	-8.0
	-10.6	-7.1	-3.6
	Bx top (pT))	
	14.9	9.7	4.4
	7.9	-1.7	-11.3
	0.9	-13.1	-27.1

State of the art in 2010 ~ 2 nT

Experiments where the same technology is/will be applied (e.g.):

- n-nbar @ ESS
- Atomic fountains
- BECs (CARIOQA, BECCAL @ ISS)

E.g. Atomic fountain at Univ. Hannover

Magnetic domains and currents

Frequency and amplitude dependence, e.g. with Metglas

Magnetic domains vs. currents

5697 J. Appl. Phys., Vol. 64, No. 10, 15 November 1988

Equilibration

Quantitative agreement of simulation and experiment!

Modified Jiles-Atherton model:

- Interdomain coupling
- Domain wall density
- Saturation magnetization
- "Pinning" sites
- Presence of applied fields

Z. Sun et al., IEEE Transactions on Industrial Electronics: 68 (2021), 6, 5385 - 5395

Equilibration

Consequences:

- 1) Stable conditions
- 2) Small fields
- 3) Small gradients

Noise

Where does noise come from?

Johnson noise

$$\delta I = \sqrt{4kT/R}$$

 Cut-off frequencies: skineffect, self inductance, magnetic (inductive) cut-off

$$\delta B(f): f^{-1/2} \to f^0 \to f^{-1/4} \to f^{-3/4}$$

Thermal currents

Measuring magnetic fields

- Difference between accuracy and sensitivity
- Bandwidth:
 - Accuracy often comes with low bandwidth
 - Precision with low accuracy
- Sensor and field cannot be separated

Best results typically obtained:

Polarized noble gas precession combined with high precision sensor

Example: Cs optical magnetometers

- Completely non-magnetic, 3D printed, room temperature
- Systematics very clean and well understood
- Operated as sensor array
- Insensitive to RF noise

M. Rosner et al., Appl. Phys. Lett. 120, 161102 (2022)

Cs optical magnetometers

Alignment pumping: no net polarization, just spin alignment

42 fT/sqrt(Hz) at ~ 0.1 s integration time

- Measurement principle: nonlinear magneto-optical rotation
- Operation optimized for small systematics:

Cs optical magnetometers

- Photon count rate limited sensitivity required for clean systematics
- Precision: 35 fT at ~ 250 s (typical Ramsey cycle)
- Stability: 25 fT at ~400 s integration
- Accuracy: few pT

Cs optical magnetometers

Main systematic issue:

Light shift effect

Key features to make sensor work well:

- Polarizing optical fibers (Pump and Probe)
- Cleanup polarizers inside the sensor
- Polarization analysis directly after the cell
- Temperature stabilized DAVLL system
- Low-noise and drift-stable polarimeter board
- Free precession decay mode
- Active field stabilization (limit of performance)
 - field and sensor cannot be disentangled

Storm, Appl. Phys. Lett. 110, 072603 (2017)

Comparison: the "best" SQUID magnetometer @ PTB

- Extreme sensitivity of 160 fT/sqrt(Hz) at 40 Hz as gradiometer
- Fulfills a different tasks: no defined accuracy, high bandwidth,
 but > pT noise at 250 s integration time

FIG. 1. Left: the schematic setup of LINOD2 in gradiometer configuration. Right: a view of one of the heat shields made from Al_2O_3 strips together with the copper mesh heat shield at the dewar reservoir. The outer shell has been removed.

FIG. 2. Measured magnetic flux density noise $S_{B,m}^{1/2}$ for the two setups with 45 mm diameter pick-up coils: Magnetometer (solid green curve) and gradiometer (solid blue curve). The calculated intrinsic SQUID noise levels $S_{B,i}^{1/2}$ are given by the dotted curves. For the gradiometer, the noise is referred to the bottom pick-up loop, and the gradient noise is shown on the right.

Applications of sensors: Fetal Magnetocardiography (fMCG)

- Optically pumped alkali sensors are not RF sensitive (unlike SQUIDs), bandwidth 1-100 Hz
- Sensitive to medical conditions like the "long-QT" problem, related to severe issues
- At TUM: collaboration with the Deutsches Herzzentrum, measurements with patients ongoing since Dec. 2021

fMCG

 Analysis using independent component analysis (ICA) – analogy: the cocktail party problem

Technology transfer both ways: ICA now used for signal improvement of 129-Xe measurements

Applications: Magnetoencephalography (MEG)

Signal patterns are complicated (no simple dipoles) and at fT-level:
 machine learning methods combined with low-field techniques

The future: many pixels, machine learning methods for pattern recognition

MEG

Example:

- Altered gamma wave activity in mood & cognitive disorders (e.g. Alzheimer's disease, epilepsy, schizophrenia
- -DC signals related to motion control

Figure 1: DC-MEG recording of a movement evoked brain response. After 15 seconds of rest, the volunteer started with a finger tapping paradigm over 30 seconds. A clear brain response with an amplitude step of about 300 fT can be seen. After stopping the finger movement, the signal returned to the resting level [6].

DC steps
In MEG hard to reach,
due to limited stability
of environment

Low signal amplitude: In MEG hard to reach, only in very strong shields

ТИП

Next step: low magnetic field lab at TUM under construction!

A new facility using all recent experience:

- SF at mHz ~ 100.000
- Oder 1 pT residual field
- Below 1 fT noise
- Multi-channel field monitoring and characterization at fT-level in time and below pT in space
- Use for patients and fundamental research
- Ground work done, construction of shields and coils starting now

Magnetic characterization /

Fetal heart imaging (fMCG)

P. Fierlinger - SSP 2022 Vienna

Side note: A new low-noise lab

- The lab: cubic wooden house without any metallic parts, additionally a measurement/operations house, to be built in summer 2023
- Site: near Tamsweg, at 1600 m altitude no 50 Hz, no trucks, no cars, no trains, no hikers, geologically silent and extremely remote!

Science: (e.g.)

 Spin precession measurements without shielding, (e.g. Axion-electron coupling)

Technology:

- Extremely homogeneous B-fields
- Sensor calibration and alignment
- Sensor development e.g for MEG:
 - field and noise issues decoupled
- R&D for (satellite-based) mesospheric sodium magnetometry project

Side note:

Mesosphere Na magnetometer

 There is no full magnetic field map of the earth below satellite orbits – a problem for navigation

- Mesosphere (at 92 km height) offers a unique possibility: an optically thick Na layer!
- Cubesat at 450 km with a diode laser to probe
 Na Zeeman splitting
- Na lasers available from telescope guide stars

Summary

- Low field techniques are a connection between fundamental physics and applications
- ~ 30 fT level for stability and precision of atomic magnetometers over 100's of seconds
- Big advances in last decade: factor of 1000 reduction of residual fields, single-pT-level in reach!
 - Enables new quality of fundamental experiments
 - Allows access to new types of measurements e.g. for MEG
- New low-field lab at TUM under construction
- New low-noise lab being established