Geometric SMEFT

Adam Martin (<u>amarti41@nd.edu</u>)

Based on:

2001.01453 [Helset, AM, Trott], 2007.00565 [Hays, Helset, AM, Trott] 2102.02819 [Corbett, Helset, AM, Trott], 2107.07470 [Corbett, AM, Trott], 2109.555 [AM, Trott]

Higgs2022, Nov 8th, 2022

No obvious signs of new light states at LHC — parametrize BSM effects with SM-EFT = SMEFT

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}(Q, u_c, d_c, L, e_c, H, \cdots, D_{\mu})$$

No obvious signs of new light states at LHC — parametrize BSM effects with SM-EFT = SMEFT

$$|A|^{2} = |A_{SM}|^{2} + \frac{2Re(A_{SM}^{*}A_{6})}{\Lambda^{2}} + \cdots$$

interference piece. State of the art what's SMEFT. Included in MC codes (SMEFTsim, SMEFT@NLO,..)

No obvious signs of new light states at LHC — parametrize BSM effects with SM-EFT = SMEFT

$$|A|^{2} = |A_{SM}|^{2} + \frac{2Re(A_{SM}^{*}A_{6})}{\Lambda^{2}} + \cdots$$

interference piece. State of the art what's SMEFT. Included in MC codes (SMEFTsim, SMEFT@NLO,..)

Determining Λ is THE goal of the SMEFT strategy — it's the scale where you build the next accelerator

Want to know Λ as well as we can ...

What's the impact from $1/\Lambda^4$ corrections?

SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6(flavor universal) $\mathcal{O}(1000)$ operators at dim-8

Higher order effects so should be small... but

- there are instances where interference term isn't present or is suppressed, e.g. helicity mismatch between SM and dim-6
- faster growth with energy, E^4 vs. E^2 : increasingly important when looking at high energy (e.g. tails of some kinematic distribution)

How do we proceed?

Is there a simple estimate, i.e (dim-6)² that works? Do we need to do case by case?

Geometric SMEFT:

A reorganization of the SMEFT operators, where 2 and 3-particle interactions can be determined to **all orders in** v/Λ . Number of operators is small, ~ constant at each order

With fewer operators around, can actually do complete $1/\Lambda^4$ calculations for certain processes.

Use those processes as simple laboratories for truncation error studies

SMEFT operators:

have the form $D^a H^b \bar{\psi}^c \psi^d F^x$

For operator affecting 2,3-pt vertices: restrictions

1.) Can't have too many fields

e.g. $(DH^{\dagger})(DH)(DH^{\dagger})(DH) \rightarrow 4^{+}$ fields, can't contribute

11

2.) Momentum on fields other than H is 'trivial'

e.g.
$$D_{\mu}H(D^{\mu}\bar{\psi})\psi$$

 $\sim (p_{H}\cdot p_{\bar{\psi}})H\bar{\psi}\psi$
 $\sim \left(\frac{m_{\psi}^{2}-m_{H}^{2}-m_{\bar{\psi}}^{2}}{2}\right)H\bar{\psi}\psi$
 $p_{H}+p_{\bar{\psi}}+p_{\psi}=0$

Just changes coefficient of $H\bar{\psi}\psi$: <u>not</u> a new operator structure

Allowed 2, 3-pt structures:

[+ versions with G^A]

$$\begin{split} h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\mu}\phi)^{J}, \quad g_{AB}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\mu\nu} \\ k^{A}_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\nu}\phi)^{J}\mathcal{W}^{\mu\nu}_{A}, \quad f_{ABC}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\nu\rho}\mathcal{W}^{C,\mu}_{\rho}, \\ Y(\phi)\bar{\psi}_{1}\psi_{2}, \quad L_{I,A}(\phi)\bar{\psi}_{1}\gamma^{\mu}\tau_{A}\psi_{2}(D_{\mu}\phi)^{I}, \quad d_{A}(\phi)\bar{\psi}_{1}\sigma^{\mu\nu}\psi_{2}\mathcal{W}^{A}_{\mu\nu}, \end{split}$$

Can't have derivatives in them, so only thing left is $H^{\dagger}H/\Lambda^2 \equiv \phi^2$

Additionally, # of possible EW structures for the functions saturates

Ex.) h_{IJ} multiplies two doublets: can either be singlet = δ_{IJ} , or triplet. Can be worked out to <u>all orders</u> in ϕ !

Allowed 2, 3-pt structures:

[+ versions with G^A]

$$\begin{split} h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\mu}\phi)^{J}, \quad g_{AB}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\mu\nu} \\ k^{A}_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\nu}\phi)^{J}\mathcal{W}^{\mu\nu}_{A}, \quad f_{ABC}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\nu\rho}\mathcal{W}^{C,\mu}_{\rho}, \\ Y(\phi)\bar{\psi}_{1}\psi_{2}, \quad L_{I,A}(\phi)\bar{\psi}_{1}\gamma^{\mu}\tau_{A}\psi_{2}(D_{\mu}\phi)^{I}, \quad d_{A}(\phi)\bar{\psi}_{1}\sigma^{\mu\nu}\psi_{2}\mathcal{W}^{A}_{\mu\nu}, \end{split}$$

Can't have derivatives in them, so only thing left is $H^{\dagger}H/\Lambda^2 \equiv \phi^2$

Ex.)
$$h_{IJ} = \left[1 + \phi^2 C_{H\Box}^{(6)} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2} \right)^{n+2} \left(C_{HD}^{(8+2n)} - C_{H,D2}^{(8+2n)} \right) \right] \delta_{IJ} + \frac{\Gamma_{A,J}^I \phi_K \Gamma_{A,L}^K \phi^L}{2} \left(\frac{C_{HD}^{(6)}}{2} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2} \right)^{n+1} C_{H,D2}^{(8+2n)} \right) \right]$$

Dim-6 : 2 terms Dim-8+: 2 terms

Allowed 2, 3-pt structures:

[+ versions with G^A]

$$\begin{split} h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\mu}\phi)^{J}, \quad g_{AB}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\mu\nu} \\ k^{A}_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\nu}\phi)^{J}\mathcal{W}^{\mu\nu}_{A}, \quad f_{ABC}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\nu\rho}\mathcal{W}^{C,\mu}_{\rho}, \\ Y(\phi)\bar{\psi}_{1}\psi_{2}, \quad L_{I,A}(\phi)\bar{\psi}_{1}\gamma^{\mu}\tau_{A}\psi_{2}(D_{\mu}\phi)^{I}, \quad d_{A}(\phi)\bar{\psi}_{1}\sigma^{\mu\nu}\psi_{2}\mathcal{W}^{A}_{\mu\nu}, \end{split}$$

Can't have derivatives in them, so only thing left is $H^{\dagger}H/\Lambda^2 \equiv \phi^2$

Ex.)
$$h_{IJ} = \left[1 + \phi^2 C_{H\Box}^{(6)} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2}\right)^{n+2} \left(C_{HD}^{(8+2n)} - C_{H,D2}^{(8+2n)}\right)\right] \delta_{IJ} + \frac{\Gamma_{A,J}^I \phi_K \Gamma_{A,L}^K \phi^L}{2} \left(\frac{C_{HD}^{(6)}}{2} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2}\right)^{n+1} C_{H,D2}^{(8+2n)}\right)$$

Dim-6 : 2 terms Dim-8+: 2 terms

Flat 'metric' in SM, curved in SMEFT. Geometric perspective -> geoSMEFT

[Burgess, Lee, Trott '10, Alonso, Jenkins, Manohar '15, '16, Helset, Paraskevas, Trott '18] More recently [Cohen et al '22, Cheung et al '21, '22, Helset et al '22]

operators small and remains ~fixed for increasing mass dimension

Field space connection 6 8 10 1214 $h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D^{\mu}\phi)^{J}$ 22 2 2 $\mathbf{2}$ 4 4 4 $g_{AB}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\mu\nu}$ 3 4 $k_{IJA}(\phi)(D^{\mu}\phi)^{I}(D^{\nu}\phi)^{J}\mathcal{W}^{A}_{\mu\nu}$ $f_{ABC}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\nu\rho}\mathcal{W}^{C,\mu}_{\rho}$ $Y_{pr}^{u}(\phi)\bar{Q}u+$ h.c. $Y_{pr}^d(\phi)\bar{Q}d+$ h.c. $Y_{pr}^{e}(\phi)\overline{L}e + \text{h.c.}$ $L_{pr,A}^{\psi_{L}}(\phi)(D^{\mu}\phi)^{J}(\bar{\psi}_{p,L}\gamma_{\mu}\sigma_{A}\psi_{r,L}) \mid 2N_{f}^{2} \mid 4N_{f}^{2} \mid 4N_{f}^{2} \mid 4N_{f}^{2} \mid 4N_{f}^{2} \mid 4N_{f}^{2} \mid 4N_{f}^{2} \mid 4N_{f}^{2}$

Mass Dimension

geoSMEFT at work:

With geoSMEFT setup, can set EW inputs to <u>all orders</u>:

 $e, g_Z, \sin^2 \theta_Z \longrightarrow \text{functions of } g, g', h_{IJ}, g_{AB}$

$$\bar{g}_{2} = g_{2} \sqrt{g}^{11} = g_{2} \sqrt{g}^{22},$$

$$\bar{g}_{Z} = \frac{g_{2}}{c_{\theta_{Z}}^{2}} \left(c_{\bar{\theta}} \sqrt{g}^{33} - s_{\bar{\theta}} \sqrt{g}^{34} \right) = \frac{g_{1}}{s_{\theta_{Z}}^{2}} \left(s_{\bar{\theta}} \sqrt{g}^{44} - c_{\bar{\theta}} \sqrt{g}^{34} \right),$$

$$\bar{e} = g_{2} \left(s_{\bar{\theta}} \sqrt{g}^{33} + c_{\bar{\theta}} \sqrt{g}^{34} \right) = g_{1} \left(c_{\bar{\theta}} \sqrt{g}^{44} + s_{\bar{\theta}} \sqrt{g}^{34} \right),$$

$$couplings$$

$$\bar{m}_W^2 = \frac{\bar{g}_2^2}{4} \sqrt{h_{11}}^2 \bar{v}_T^2, \qquad \bar{m}_Z^2 = \frac{\bar{g}_Z^2}{4} \sqrt{h_{33}}^2 \bar{v}_T^2 \qquad \bar{m}_A^2 = 0.$$
 masses

geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now doable to any order in v^2/Λ^2

Specifically, $\mathcal{O}(1/\Lambda^4)$ easily calculated for a large set of processes

[2102.02819 Corbett, Helset, AM, Trott]

e.g)
$$h \to \gamma \gamma$$

defining: $\langle h | \gamma \gamma \rangle_{\mathscr{L}^{(6)}} = \left[\frac{g_2^2 \tilde{C}_{HB}^{(6)} + g_1^2 \tilde{C}_{HW}^{(6)} - g_1 g_2 \tilde{C}_{HWB}^{(6)}}{(g_1^2 + g_2^2) \bar{v}_T} \right]$
 $\tilde{C}^{(6)} = C^{(6)} \frac{v_T^2}{\Lambda^2}$
 $\tilde{C}^{(8)} = C^{(8)} \frac{v_T^4}{\Lambda^4}$

(dim-6)² estimate:
$$\left|\mathscr{A}_{SM}^{h\gamma\gamma}\right|^{2} + 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}} + \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}}^{2}$$

Full
$$\mathcal{O}(1/\Lambda^4)$$
 result:

$$\begin{bmatrix}
\tilde{\mathcal{C}}_{H\square}^{(6)}, \tilde{\mathcal{C}}_{HD}^{(8)}, \tilde{\mathcal{C}}_{HD}^{(8)}, \tilde{\mathcal{C}}_{HD2}^{(8)}
\\
= 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right)^2 + 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \left(1 + \left\langle\sqrt{h}^{44}\right\rangle_{\mathscr{L}^{(6)}}\right) \langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}} + \left(1 + 4\bar{v}_T \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right)\right) \left(\langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}}\right)^2 \\
+ 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \left[\frac{g_2^2 \tilde{\mathcal{C}}_{HB}^{(8)} + g_1^2 \left(\tilde{\mathcal{C}}_{HW}^{(8)} - \tilde{\mathcal{C}}_{HW,2}^{(8)}\right) - g_1 g_2 \tilde{\mathcal{C}}_{HWB}^{(8)}}{(g_1^2 + g_2^2) \bar{v}_T}
\end{bmatrix}$$

e.g) $h \rightarrow \gamma \gamma$: Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)² and full $1/\Lambda^4$ result: for `tree' operators: $\mathcal{O}(1)$, `loop' operators: $\mathcal{O}(0.01)$

[Arzt'93], [Einhorn, Wudka '13], [Craig et al '20]

fixing $1/\Lambda^2$, $(\dim -6)^2$ result: contours show range of effects once full $1/\Lambda^4$ effects are included

similar story for $h \to Z\gamma$

e.g) $h \rightarrow \gamma \gamma$: Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)² and full $1/\Lambda^4$ result: for `tree' operators: $\mathcal{O}(1)$, `loop' operators: $\mathcal{O}(0.01)$

e.g.) $Z \rightarrow \ell^+ \ell^-$: Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)² and full $1/\Lambda^4$ result: for `tree' operators: $\mathcal{O}(1)$, `loop' operators: $\mathcal{O}(0.01)$

Now tree-level operators present for both dim-6 and dim-8

smaller impact, $\mathcal{O}(\%)$ at Λ = TeV

~ (dim6)² piece not a bad estimate

Redo classic SMEFT LEP1 analysis to $\mathcal{O}(1/\Lambda^4)$

scanning dim-8 coefficients

$g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} =$	$\frac{\bar{g}_Z}{2} \left[(2s_{\theta_Z}^2 Q_{\psi} - \sigma_3) \delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right]$
=	$\langle g_{\mathrm{SM,pr}}^{\mathcal{Z},\psi} \rangle + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^2/\Lambda^2)} + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^4/\Lambda^4)} + \cdots$

SMEFT corrections in $\{\hat{m}_W, \hat{m}_Z, \hat{G}_F\}/\{\hat{\alpha}, \hat{m}_Z, \hat{G}_F\}$ scheme					
$\mathcal{O}(rac{v^4}{\Lambda^4})$	$\langle g^{\mathcal{Z},u_R}_{ ext{eff,pp}} angle$	$\langle g_{ ext{eff,pp}}^{\mathcal{Z},d_R} angle$	$\langle g_{ ext{eff,pp}}^{\mathcal{Z},\ell_R} angle$		
$\langle g_{\mathrm{eff}}^{\mathcal{Z},\psi} angle^2$	14/5.5	-27/-11	-9.1/-3.6		
$\tilde{C}_{HB} C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58		
\tilde{C}^2_{HD}	0.28 / -0.026	-0.14/0.013	-0.42/0.040		
$ ilde{C}_{HD} ilde{C}_{H\psi}^{(6)}$	-0.83/-0.19	-0.83/-0.19	-0.83/-0.19		
$\tilde{C}_{HD}\tilde{C}_{HWB}$	0.59/-0.19	-0.29/0.097	-0.88/0.29		
$\tilde{C}_{HD} \langle g_{\mathrm{eff}}^{\mathcal{Z},\psi} \rangle$	4.0/0.50	4.0/0.50	4.0/0.50		
$(\tilde{C}_{H\psi}^{(6)})^2$	0.62/1.4	-1.2/-2.8	-0.42/-0.93		
$\tilde{C}_{HWB} \tilde{C}^{(6)}_{H\psi}$	-0.69/0.58	-0.69/0.58	-0.69/0.58		
$\tilde{C}_{H\psi}^{(6)} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$	-6.7/-5.8	13/12	4.5/3.9		
$\tilde{C}_{HWB} \left\langle g_{\text{eff}}^{\mathcal{Z},\psi} \right\rangle$	3.7/0.26	3.7/0.26	3.7/0.26		
$\tilde{C}_{HW}C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58		
$ ilde{C}^{(8)}_{HD}$	-0.014/0.026	0.0069/-0.013	0.021/-0.040		
$ ilde{C}^{(8)}_{HD,2}$	-0.21/0.026	0.10/-0.013	0.31/-0.040		
$ ilde{C}^{(8)}_{H\psi}$	0.19/0.19	0.19/0.19	0.19/0.19		
$ ilde{C}^{(8)}_{HW,2}$	-0.38/0	0.19/0	0.58/0		
$ ilde{C}^{(8)}_{HWB}$	-0.10/0.19	0.051/-0.097	0.15/-0.29		
$\delta C^{(8)}$	0.078/0.15	0.020/0.075	0.19/0.99		

<u>Combining SM loops with $\mathcal{O}(1/\Lambda^4)$ </u>

Can combine with $\mathcal{O}(1/\Lambda^2) \times SM$ loop $\frac{\Gamma_{SMEFT}^{\hat{m}_W}}{\Gamma_{SM}^{\hat{m}_W}} \simeq 1 - 788 f_1^{\hat{m}_W}, \qquad \mathcal{O}(1/\Lambda^2)$ $+ 394^{2} (f_{1}^{\hat{m}_{W}})^{2} - 351 (\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)}) f_{3}^{\hat{m}_{W}} + 2228 \,\delta G_{F}^{(6)} f_{1}^{\hat{m}_{W}},$ $+ 979 \,\tilde{C}_{HD}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.80 \,\,\tilde{C}_{HW}^{(6)} - 1.02 \,\tilde{C}_{HWB}^{(6)}) - 788 \left[\left(\tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{4} \right) \,f_{1}^{\hat{m}_{W}} + f_{2}^{\hat{m}_{W}} \right],$ $\mathcal{O}(1/\Lambda^4)$ $+2283\,\tilde{C}_{HWB}^{(6)}(\tilde{C}_{HB}^{(6)}+0.66\,\tilde{C}_{HW}^{(6)}-0.88\,\tilde{C}_{HWB}^{(6)})-1224\,(f_1^{\hat{m}_W})^2,$ $-117 \,\tilde{C}_{HB}^{(6)} - 23 \,\tilde{C}_{HW}^{(6)} + \left[51 + 2\log\left(\frac{\hat{m}_h^2}{\Lambda^2}\right) \right] \,\tilde{C}_{HWB}^{(6)} + \left[-0.55 + 3.6\log\left(\frac{\hat{m}_h^2}{\Lambda^2}\right) \right] \,\tilde{C}_W^{(6)},$ $+ \left[27 - 28 \log\left(\frac{\hat{m}_h^2}{\Lambda^2}\right)\right] \operatorname{Re} \tilde{C}_{uB}^{(6)} + 5.5 \operatorname{Re} \tilde{C}_{uH}^{(6)} + 2 \tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{2},$ $-3.2\,\tilde{C}_{HD}^{(6)}-7.5\,\tilde{C}_{HWB}^{(6)}-3\,\sqrt{2}\,\delta G_F^{(6)}.$ $\mathcal{O}(1/\Lambda^2 \times \text{loop})$

where

$$\begin{split} \delta G_F^{(6)} &= \frac{1}{\sqrt{2}} \left(\tilde{C}_{Hl}^{(3)} + \tilde{C}_{Hl}^{(3)} - \frac{1}{2} (\tilde{C}'_{\ \mu e e \mu} + \tilde{C}'_{\ e \mu \mu e}) \right), \\ f_1^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(6)} + 0.29 \ \tilde{C}_{HW}^{(6)} - 0.54 \ \tilde{C}_{HWB}^{(6)} \right], \\ f_2^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(8)} + 0.29 \ (\tilde{C}_{HW}^{(8)} + \tilde{C}_{HW,2}^{(8)}) - 0.54 \ \tilde{C}_{HWB}^{(8)} \right], \\ f_3^{\hat{m}_W} &= \left[\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)} - 0.66 \ \tilde{C}_{HWB}^{(6)} \right], \end{split}$$

Combined result informs on how assumptions about coefficients affect uncertainty

[Corbett, AM, Trott 2107.07470]

Combining SM loops with $\mathcal{O}(1/\Lambda^4)$

$$\begin{split} \delta G_F^{(6)} &= \frac{1}{\sqrt{2}} \left(\tilde{C}_{Hl}^{(3)} + \tilde{C}_{Hl}^{(3)} - \frac{1}{2} (\tilde{C}'_{\ \mu e e \mu} + \tilde{C}'_{\ e \mu \mu e}) \right), \\ f_1^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(6)} + 0.29 \ \tilde{C}_{HW}^{(6)} - 0.54 \ \tilde{C}_{HWB}^{(6)} \right], \\ f_2^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(8)} + 0.29 \ (\tilde{C}_{HW}^{(8)} + \tilde{C}_{HW,2}^{(8)}) - 0.54 \ \tilde{C}_{HWB}^{(8)} \right], \\ f_3^{\hat{m}_W} &= \left[\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)} - 0.66 \ \tilde{C}_{HWB}^{(6)} \right], \end{split}$$

Combined result informs on how assumptions about coefficients affect uncertainty

[Corbett, AM, Trott 2107.07470]

<u>4-pt interactions: can we go 'full metric'?</u>

Key part of 2- and 3-pt result is that special kinematics made all momentum products trivial

No longer true at \geq 4-pt interactions, i.e. for 4-pt: $\mathcal{O} \sim s^n t^m$

Effects must be added in by hand. But — dim-8 effects enter $\mathcal{O}(1/\Lambda^4)$ by interfering with SM, therefore need to match SM helicity/color/flavor structure

In practice means # of `by-hand' operators is small for many relevant n = 4 processes

[see also Boughezal et al 2207.01703, Allwicher et al 2207.10714]

Roadmap for truncation studies

Library of process known to $\mathcal{O}(1/\Lambda^4)$

 $1 \rightarrow 2$, Resonant $2 \rightarrow 2$: $gg \rightarrow h \rightarrow \gamma\gamma$, $e^+e^- \rightarrow Z \rightarrow \bar{f}f$ Drell-Yan, $pp \rightarrow Wh$ known; Zh, diboson in progress [Corbett, Kim, AM]

I've focused on 'bottom up' analyses, but top down also important [Dawson et al 2110.06929, 2205.01561]

New process:

- geoSMEFT pieces have same kinematics at dim 6 and 8
 - : can capture many effects by reweighing:

In MG already via
$$\sigma(SM \times \text{dim-6})$$

SMEFTsim/
SMEFT@NLO
 $\sigma(SM \times \text{dim-6})$
 $\sigma(SM \times \text{di$

Only need to add contact terms/novel kinematics

So where does this leave us?

- geoSMEFT: approach where 2 and 3 particle vertices sensitive to a minimal # of operators, # ~ constant with mass dimension. Physics with 2-, 3-particle vertices doable to any order in v/Λ (tree level)
- Can study select processes to $1/\Lambda^4$, use them to form guidelines for how to include truncation error more generally in SMEFT studies

Lots to do:

 Encapsulate what we've learned into a truncation uncertainty/uncertainties to hand off to experimentalists

[ex. AM, Trott 2109.05595]

How to pin down new coefficients (e.g. remove flat directions)?

[Alioli et al 2003.11615, Boughezal et al 2104.03979, 2207.01703]

Thank you!

Geometric SMEFT:

[Henning et al 1512.03433]

Redo classic SMEFT LEP1 analysis to $\mathcal{O}(1/\Lambda^4)$

E.g. try classic S-T plot: Zero all dimension-6 operators except $C_{HD} \sim T$, $C_{HWB} \sim S$ but leave all dimension-8 on. Set all dimension-8 coefficients to 1 (tree) or 0.01 (loop) and fix Λ , then compare χ^2 ellipses with and without dimension-8 terms

can repeat for other 2-d projections

Redo classic SMEFT LEP1 analysis to $\mathcal{O}(1/\Lambda^4)$

E.g. try classic S-T plot: Zero all dimension-6 operators except $C_{HD} \sim T$, $C_{HWB} \sim S$ but leave all dimension-8 on. Set all dimension-8 coefficients to 1 (tree) or 0.01 (loop) and fix Λ , then compare χ^2 ellipses with and without dimension-8 terms

can repeat for other 2-d projections

Kinetic mixing model

Try a specific UV model: kinetically mixed U(1)

$$\Delta \mathscr{L} = -\frac{1}{4} K_{\mu\nu} K^{\mu\nu} + \frac{1}{2} m_K^2 K_{\mu} K^{\mu} - \frac{k}{2} B^{\mu\nu} K_{\mu\nu}$$

integrate out to dim-8 (tree level only)

$$\Delta \mathscr{L} = -\frac{k^2}{2m_K^2} j_\mu j^\mu + \frac{k^2 - k^4}{2m_K^4} \left(\partial^2 j_\mu\right) j^\mu + \frac{g_1^2 k^4}{4m_K^4} \left(H^\dagger H\right) j_\mu j^\mu$$

where

$$j_{\mu} = \sum_{\psi} \left(-g_1 \mathbf{y}_{\psi} \right) \bar{\psi} \gamma_{\mu} \psi + \left(-\frac{1}{2} g_1 \right) H^{\dagger} i D_{\mu} H$$

Kinetic mixing model

dim-6

	H^4D^2
$\frac{H^2\psi^2D}{2}$	$C_{H\Box}^{(6)} \mid -\frac{g_1^2 k^2}{8m_{\chi}^2}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$C_{He}^{(6)} = -\frac{y_e g_1^2}{2m_K^2} b_1$	2.00K
$C_{Hq}^{1,(6)} \mid -\frac{y_q g_1^2}{2m_K^2} b_1$	$\frac{\psi^4:(\bar{L}L)(\bar{L}L)}{(\epsilon)}$
$C_{Hu}^{(6)} \mid -\frac{y_u g_1^2}{2m_{-}^2} b_1$	$C_{\ell\ell}^{(0)} \mid -\frac{1}{8} \frac{g_1 \kappa}{m_K^2}$
$C_{Hd}^{(6)} \mid -\frac{y_d g_1^2}{2 g_1^2} b_1$	$C_{qq}^{1,(6)} \mid -\frac{1}{72} \frac{g_1^2 k^2}{m_K^2}$
$ma = 2m_K^2$	$C_{\ell q}^{1,(6)} \mid \frac{1}{12} \frac{g_1^2 k^2}{m_K^2}$

dim-8

$H^4\psi^2 D$	
$C_{H\ell}^{1,(8)} \left \begin{array}{c} \frac{y_{\ell}g_{1}^{4}}{4m_{K}^{4}}k^{4} - \frac{g_{1}^{2}y_{\ell}}{m_{K}^{4}}(k^{2} - k^{4})(2\lambda + \frac{g_{1}^{2} + g_{2}^{2}}{4}) \end{array} \right.$	
$C_{He}^{1,(8)} \left \begin{array}{c} \frac{\mathbf{y}_{e}g_{1}^{4}}{4m_{K}^{4}}k^{4} - \frac{g_{1}^{2}\mathbf{y}_{e}}{m_{K}^{4}}(k^{2} - k^{4})(2\lambda + \frac{g_{1}^{2} + g_{2}^{2}}{4}) \end{array} \right $	H^6D^2
$\boxed{ C_{Hq}^{1,(8)} \mid \frac{y_q g_1^4}{4 m_K^4} k^4 - \frac{g_1^2 y_q}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4}) } $	$C_{H,D2}^{(8)} \mid \frac{g_1^4 k^4}{8 m_K^4} - \frac{g_1^2 g_2^2}{2 m_K^4} (k^2 - k^4)$
$\boxed{ C_{Hu}^{1,(8)} \mid \frac{y_u g_1^4}{4 m_K^4} k^4 - \frac{g_1^2 y_u}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4}) } $	$C_{HD}^{(8)} \left \begin{array}{c} \frac{3g_1^4k^4}{16m_K^4} - \frac{g_1^2g_2^2}{2m_K^4}(k^2 - k^4) \right.$
$\boxed{C_{Hd}^{1,(8)} \mid \frac{y_d g_1^4}{4m_K^4}k^4 - \frac{g_1^2y_d}{m_K^4}(k^2 - k^4)(2\lambda + \frac{g_1^2 + g_2^2}{4})}$	X^2H^4
$C_{H\ell}^{2,(8)} \qquad -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	$C_{HB}^{(8)} - \frac{g_1^4}{16 m_K^4} (k^2 - k^4)$
$C_{Hq}^{2,(8)} = -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	$\begin{array}{ c c c c c }\hline C^{(8)}_{HW} & & \frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4) \\ \hline \end{array}$
$C_{H\ell}^{3,(8)} = -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	
$C_{Hq}^{3,(8)} \qquad -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	

No operators that impact $h \rightarrow \gamma \gamma$

...

operators impacting $h \rightarrow \gamma \gamma$ present

at dim-6 level, no effect, while there is an effect if we go to full $1/\Lambda^4$

Example: $L_{I,A}(\phi)\overline{\psi}_1\gamma^{\mu}\tau_A\psi_2(D_{\mu}\phi)^I$

contributing operators

$$\begin{array}{l} \mathcal{Q}_{H\psi}^{1,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{3,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{a}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{a}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{6,(8+2n)} = \epsilon_{bc}^{a}(H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}. \end{array} \right\} \begin{array}{c} \text{higher dim. versions} \\ \text{of ``class 7''} \\ \text{operators} \\ \text{operators} \\ \text{operators} \\ \text{from } d \geq 8 \end{array}$$

compact form for connection:

$$\begin{split} L_{J,A}^{\psi,pr} &= -(\phi \,\gamma_4)_J \delta_{A4} \sum_{n=0}^{\infty} C_{H\psi}^{1,(6+2n)} \left(\frac{\phi^2}{2}\right)^n - (\phi \,\gamma_A)_J (1-\delta_{A4}) \sum_{n=0}^{\infty} C_{H\psi_L}^{3,(6+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{1}{2} (\phi \,\gamma_4)_J (1-\delta_{A4}) \left(\phi_K \Gamma_{A,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{2,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{\epsilon_{BC}^A}{2} (\phi \,\gamma_B)_J \left(\phi_K \Gamma_{C,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{\epsilon,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \end{split}$$

What about G_F?

G_F involves more than quadratic terms:

However, since G_F derived at muon mass scale $(D \sim m_{\mu} \ll \Lambda)$ and SM term is from L⁴, # of higher dimensional contributions is dramatically reduced

$$C_{4\ell,2}^{(8+2n)}\left(H^{\dagger}H\right)^{1+n}\left(\bar{\ell}_{2}\gamma^{\mu}\sigma^{i}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{i}\ell_{1}\right) \qquad iC_{4\ell,5}^{(8+2n)}\epsilon_{ijk}\left(H^{\dagger}H\right)^{n}\left(H^{\dagger}\sigma^{i}H\right)\left(\bar{\ell}_{2}\gamma^{\mu}\sigma_{j}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{k}\ell_{1}\right)$$

All orders result is possible even for contact terms:

$$\mathscr{G}_{F}^{4pt} = \frac{1}{\bar{v}_{T}^{2}} \left(\tilde{C}_{\mu c c \mu}^{(6)} + \tilde{C}_{\mu \mu \mu e}^{(6)} + \frac{\tilde{C}_{4\ell,2}^{(8+2n)}}{2^{n}} + \frac{\tilde{C}_{4\ell,5}^{(8+2n)}}{2^{n}} \right)$$

[Hays, Helset, Martin, Trott 2007.00565]

What about G_F?

G_F involves more than quadratic terms:

However, since G_F derived at muon mass scale $(D \sim m_{\mu} \ll \Lambda)$ and SM term is from L⁴, # of higher dimensional contributions is dramatically reduced

$$C_{4\ell,2}^{(8+2n)}\left(H^{\dagger}H\right)^{1+n}\left(\bar{\ell}_{2}\gamma^{\mu}\sigma^{i}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{i}\ell_{1}\right) \qquad iC_{4\ell,5}^{(8+2n)}\epsilon_{ijk}\left(H^{\dagger}H\right)^{n}\left(H^{\dagger}\sigma^{i}H\right)\left(\bar{\ell}_{2}\gamma^{\mu}\sigma_{j}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{k}\ell_{1}\right)$$

All orders result is possible even for contact terms:

$$\mathscr{G}_{F}^{4pt} = \frac{1}{\bar{v}_{T}^{2}} \left(\tilde{C}_{\mu c c \mu}^{(6)} + \tilde{C}_{\mu \mu \mu e}^{(6)} + \frac{\tilde{C}_{4\ell,2}^{(8+2n)}}{2^{n}} + \frac{\tilde{C}_{4\ell,5}^{(8+2n)}}{2^{n}} \right)$$

[Hays, Helset, Martin, Trott 2007.00565]