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No obvious signs of new light states at LHC — parametrize BSM 
effects with SM-EFT = SMEFT

ℒ = ℒSM + ∑
d

∑
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c(d)
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Λd−4
𝒪(d)

i (Q, uc, dc, L, ec, H, ⋯, Dμ)
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No obvious signs of new light states at LHC — parametrize BSM 
effects with SM-EFT = SMEFT

|A |2 = |ASM |2 +
2Re(A*SM A6)

Λ2
+ ⋯

interference piece. State of the art 
what's SMEFT. Included in MC codes 

(SMEFTsim, SMEFT@NLO,..)
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Determining  is THE goal of the SMEFT strategy  — it’s 
the scale where you build the next accelerator

Λ

Want to know  as well as we can …Λ

No obvious signs of new light states at LHC — parametrize BSM 
effects with SM-EFT = SMEFT

|A |2 = |ASM |2 +
2Re(A*SM A6)

Λ2
+ ⋯

interference piece. State of the art 
what's SMEFT. Included in MC codes 

(SMEFTsim, SMEFT@NLO,..)



|A |2 = |ASM |2 +
2Re(A*SM A6)

Λ2
+

1
Λ4 ( |A6 |2 + 2Re(A*SM A8)) + ⋯

interference piece, 
usually largest effect

‘Higher order’ 
 

corrections
𝒪(1/Λ4)

SMEFT Warsaw basis:      operators at dim-6 
 operators at dim-8

𝒪(60)
𝒪(1000)

What’s the impact from  corrections?1/Λ4
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(flavor universal)

Motivation



Higher order effects so should be small… but 

• there are instances where interference term isn’t present 
or is suppressed, e.g. helicity mismatch between SM and 
dim-6

• faster growth with energy,   vs.   : increasingly important 
when looking at high energy (e.g. tails of some kinematic 
distribution)

E4 E2

 How do we proceed?
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Is there a simple estimate, i.e (dim-6)2 that works?

Do we need to do case by case?



Geometric SMEFT: 
A reorganization of the SMEFT operators, where 

2 and 3-particle interactions can be determined to all orders in .  
Number of operators is small, ~ constant at each order

v/Λ

With fewer operators around, can actually do complete  
calculations for certain processes.  

 
Use those processes as simple laboratories for truncation error 

studies 

1/Λ4

[Helset, AM, Trott 2001.01453]     

Ex.)



SMEFT operators:
DaHbψ̄cψdFx

For operator affecting 2,3-pt vertices: restrictions

1.) Can’t have too many fields

  (DH†)(DH)(DH†)(DH)e.g.  4+ fields, can’t contribute→

2.) Momentum on fields other than H is ‘trivial’

DμH (Dμψ̄) ψ

∼ (pH ⋅ pψ̄) H ψ̄ ψ

∼ (
m2

ψ − m2
H − m2

ψ̄

2 ) H ψ̄ ψ

e.g.

pH + pψ̄ + pψ = 0

Just changes coefficient of  : not a new operator structureH ψ̄ ψ
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have the form



Allowed 2, 3-pt structures:
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[+ versions with GA ]

Similarly, D2ψ can be reduced as

D2ψ = DµDνg
µνψ = DµDν(γ

µγν + iσµν)ψ ⇒ EOM and higher-points, (2.8)

where σµν = i
2(γµγν − γνγµ). In what follows, when D2F appears, it is replaced in terms of

EOM terms and higher-point functions for these reasons. Explicitly reducing operator forms

by the EOM, when possible, in favour of other composite operators, has a key role in these

arguments.

Now consider higher-derivative contributions to three-point functions. Explicit appear-

ances of D2F are removed due to the proceeding argument. Further, a general combination

of derivatives, acting on three general SM fields F1,2,3,

f(H)(DµF1)(DνF2)D{µν}F3, (2.9)

is removable in terms of EOM terms and higher-point functions, using integration by parts:

f(H)(DµF1)(DνF2)D{µν}F3 (2.10)

=− f(H)
[

(D2F1)(DνF2) + (DµF1)(DµDνF2) + (DµDνF1)(DµF2) + (DνF1)(D
2F2)

]

(DνF3)

− (Dµf(H)) [(DµF1)(DνF2) + (DνF1)(DµF2)] (DνF3)

⇒− f(H) [(DµF1)(DµDνF2) + (DµDνF1)(DµF2)] (DνF3) + EOM and higher-points

⇒− f(H)(D[µ,ν]F1)(DµF2)(DνF3) + f(H)(DµF1)(DµF2)(D
2F3) + EOM and higher-points

⇒ EOM and higher-points.

As a result, in general, an operator with four or more derivatives acting on three (possibly

different) fields Fi can be reduced out of three-point amplitudes.

When considering field space connections that can reduce to three-point functions when

a vacuum expectation value is taken, we also use

f(φ)F1 (DµF2) (DµF3)⇒ (Dµf(φ)) (DµF1)F2 F3 +
1

2
(D2f(φ))F1 F2 F3 + EOM ,(2.11)

to conventionally move derivative terms onto scalar fields. After reducing the possible field

space connections using these arguments systematically, and integrating by parts, a minimal

generalization of field space connections for CP even electroweak bosonic two- and three-point

amplitudes is composed of

hIJ (φ)(Dµφ)
I(Dµφ)

J , gAB(φ)WA
µνWB,µν , kAIJ(φ)(Dµφ)

I(Dνφ)
J Wµν

A ,

fABC(φ)WA
µνWB,νρWC,µ

ρ ,

and the scalar potential V (φ).

The minimal set of field space connections involving fermionic field in two- and three-point

functions is

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µτAψ2(Dµφ)

I , dA(φ)ψ̄1σ
µνψ2WA

µν ,

– 6 –
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Can’t have derivatives in them, so only thing left is  H†H/Λ2 ≡ ϕ2

Additionally, # of possible EW structures for the functions saturates

Ex.)  multiplies two doublets: can either be singlet =  , or triplet. 
Can be worked out to all orders in ! 

hIJ δIJ
ϕ
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Dim-6 : 2 terms Dim-8+: 2 terms

Can’t have derivatives in them, so only thing left is  H†H/Λ2 ≡ ϕ2

Flat ‘metric’ in SM, curved in SMEFT. Geometric perspective -> geoSMEFT
[ Burgess, Lee, Trott ’10, Alonso, Jenkins, Manohar ’15, ’16, Helset, Paraskevas, Trott ’18]

More recently [Cohen et al ‘22, Cheung et al ’21, ‘22, Helset et al ’22]
 



# operators small and remains ~fixed for increasing mass dimension

Mass Dimension

Field space connection 6 8 10 12 14

hIJ(φ)(Dµφ)I(Dµφ)J 2 2 2 2 2

gAB(φ)WA
µνWB,µν 3 4 4 4 4

kIJA(φ)(Dµφ)I(Dνφ)JWA
µν 0 3 4 4 4

fABC(φ)WA
µνWB,νρWC,µ

ρ 1 2 2 2 2

Y u
pr(φ)Q̄u+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y d
pr(φ)Q̄d+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y e
pr(φ)L̄e+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

de,prA (φ)L̄σµνeWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

du,prA (φ)Q̄σµνuWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

dd,prA (φ)Q̄σµνdWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

LψR

pr,A(φ)(D
µφ)J (ψ̄p,RγµσAψr,R) N2

f N2
f N2

f N2
f N2

f

LψL

pr,A(φ)(D
µφ)J(ψ̄p,LγµσAψr,L) 2N2

f 4N2
f 4N2

f 4N2
f 4N2

f

Table 1. Counting of operators contributing to two- and three-point functions from Hilbert series.
These results are consistent with Ref. [4].

The minimum is redefined order by order in the power counting expansion

〈H†H〉 =
v2

2

(

1 +
3C(6)

H v2

4λ
+ v4

9 (C(6)
H )2 + 4C(8)

H λ

8λ2
+ · · ·

)

≡
v̄2T
2
. (3.2)

This generalization of the expectation value simplifies at leading order in 1/Λ2 to the vev

of the SM. Including the leading 1/Λ2 correction, the result is that of Ref. [26], the 1/Λ4

correction is as given in Ref. [18], etc. At higher orders in the polynomial expansion of H†H

that results from taking the derivative of the potential, numerical methods must be used to

find a minimum due to the Abel–Ruffini theorem. Note that this also means that expanding

out the vev dependence in a formal all-orders result to a fixed order necessarily requires

numerical methods.

The expectation values of the field space connections is also denoted by 〈〉 and a critical

role is played by
√
h
IJ

= 〈hIJ 〉1/2, and √gAB = 〈gAB〉1/2. The
√
h and

√
g depend on v̄T .

3.1 Scalar bilinear metric: hIJ(φ)

The relevant terms in L(6,8) for the scalar metric are [18]

L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)

+ C(8)
HD(H

†H)2(DµH)†(DµH) + C(8)
H,D2(H

†H)(H†σaH)(DµH)† σa (DµH).
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With geoSMEFT setup, can set EW inputs to all orders: 

The geometric definition of the canonically normalized mass eigenstate gauge couplings

are

ḡ2 = g2
√
g11 = g2

√
g22, (4.6)

ḡZ =
g2
c2θZ

(

cθ̄
√
g33 − sθ̄

√
g34
)

=
g1
s2θZ

(

sθ̄
√
g44 − cθ̄

√
g34
)

, (4.7)

ē = g2
(

sθ̄
√
g33 + cθ̄

√
g34
)

= g1
(

cθ̄
√
g44 + sθ̄

√
g34
)

, (4.8)

with corresponding mass eigenstate generators listed in the Appendix. Here we have used the

fact that as
√
g11 =

√
g22 due to SU(2)L gauge invariance, it also follows that

√
g12 = 0. These

definitions are geometric and follow directly from the consistency of the SMEFT description

with mass eigenstate fields. These redefinitions hold at all orders in the SMEFT power

counting expansion. Similarly, consistency also dictates the field space geometric definitions

of the mixing angles

s2θZ =
g1(
√
g44sθ̄ −

√
g34cθ̄)

g2(
√
g33cθ̄ −

√
g34sθ̄) + g1(

√
g44sθ̄ −

√
g34cθ̄)

, (4.9)

s2θ̄ =
(g1
√
g44 − g2

√
g34)2

g21 [(
√
g34)2 + (

√
g44)2] + g22 [(

√
g33)2 + (

√
g34)2]− 2g1g2

√
g34(
√
g33 +

√
g44)

. (4.10)

The gauge boson masses are also defined in a geometric manner as

m̄2
W =

ḡ22
4

√

h11
2
v̄2T , m̄2

Z =
ḡ2Z
4

√

h33
2
v̄2T m̄2

A = 0. (4.11)

To utilize these definitions, and map to a particular operator basis, one must expand out to a

fixed order in v̄2T /Λ
2. Nevertheless, such all-order definitions are of value. The relations hold

in any operator basis to define the Lagrangian parameters incorporating SMEFT corrections

in v̄2T /Λ
2 and clarify the role of these Lagrangian terms in the SMEFT expansion.

When the covariant derivative acts on fermion fields, the Pauli matrices σ1,2,3 for the

SU(2)L generators10, and the 2× 2 identity matrix I for the U(1)Y generator are used. This

is a more convenient generator set for chiral spinors. The covariant derivative acting on the

fermion fields ψ, expressed in terms of these quantities, is

Dµψ =

[

∂µ + iḡ3 Gµ
A
T A + i

ḡ2√
2

(

W+ T+ +W− T−)+ iḡZ
(

T3 − s2θZQψ

)

Zµ + iQψ ēAµ

]

ψ.

(4.12)

Here Qψ = σ3/2 + Yψ and the positive sign convention on the covariant derivative is present

and the convention
√
2W± = W1 ∓ iW2 and

√
2Φ± = φ2 ∓ iφ1 is used. Here T3 = σ3/2 and

2T± = σ1 ± iσ2 and Yψ = {1/6, 2/3,−1/3,−1/2,−1} for ψ = {qL, uR, dR, %L, eR}. Note that

the SU(2)L×U(1)Y generators of the fermion fields do not need to be the same as those for the

10Defined in the Appendix.
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(

T3 − s2θZQψ

)

Zµ + iQψ ēAµ
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definitions are geometric and follow directly from the consistency of the SMEFT description

with mass eigenstate fields. These redefinitions hold at all orders in the SMEFT power

counting expansion. Similarly, consistency also dictates the field space geometric definitions

of the mixing angles

s2θZ =
g1(
√
g44sθ̄ −

√
g34cθ̄)

g2(
√
g33cθ̄ −

√
g34sθ̄) + g1(

√
g44sθ̄ −

√
g34cθ̄)

, (4.9)

s2θ̄ =
(g1
√
g44 − g2

√
g34)2

g21 [(
√
g34)2 + (

√
g44)2] + g22 [(

√
g33)2 + (

√
g34)2]− 2g1g2

√
g34(
√
g33 +

√
g44)

. (4.10)

The gauge boson masses are also defined in a geometric manner as

m̄2
W =

ḡ22
4

√

h11
2
v̄2T , m̄2

Z =
ḡ2Z
4

√

h33
2
v̄2T m̄2

A = 0. (4.11)

To utilize these definitions, and map to a particular operator basis, one must expand out to a

fixed order in v̄2T /Λ
2. Nevertheless, such all-order definitions are of value. The relations hold

in any operator basis to define the Lagrangian parameters incorporating SMEFT corrections

in v̄2T /Λ
2 and clarify the role of these Lagrangian terms in the SMEFT expansion.

When the covariant derivative acts on fermion fields, the Pauli matrices σ1,2,3 for the

SU(2)L generators10, and the 2× 2 identity matrix I for the U(1)Y generator are used. This

is a more convenient generator set for chiral spinors. The covariant derivative acting on the

fermion fields ψ, expressed in terms of these quantities, is

Dµψ =

[

∂µ + iḡ3 Gµ
A
T A + i

ḡ2√
2

(

W+ T+ +W− T−)+ iḡZ
(

T3 − s2θZQψ

)

Zµ + iQψ ēAµ

]

ψ.

(4.12)

Here Qψ = σ3/2 + Yψ and the positive sign convention on the covariant derivative is present

and the convention
√
2W± = W1 ∓ iW2 and

√
2Φ± = φ2 ∓ iφ1 is used. Here T3 = σ3/2 and

2T± = σ1 ± iσ2 and Yψ = {1/6, 2/3,−1/3,−1/2,−1} for ψ = {qL, uR, dR, %L, eR}. Note that

the SU(2)L×U(1)Y generators of the fermion fields do not need to be the same as those for the

10Defined in the Appendix.
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couplings

mixing angles

masses

11

e, gZ, sin2 θZ   functions of  ⟶ g, g′￼, hIJ, gAB

geoSMEFT at work:



SMEFT phenomenology for processes involving 2, 3-pt interactions now 
doable to any order in v2/Λ2

 Specifically,  easily calculated for a large set of processes  𝒪(1/Λ4)

includes

and

suppressed by 

 
ΓZmZ

v2

12

geoSMEFT at work:

resonant

[2007.00565 Hays,  
      Helset, AM, Trott]

[2102.02819 Corbett, Helset, AM, Trott]



𝒜hγγ
SM

2
+ 2 Re (𝒜hγγ

SM)⟨h |γγ⟩ℒ(6) + ⟨h |γγ⟩2
ℒ(6)

⟨h |γγ⟩ℒ(6) = [
g2

2C̃(6)
HB + g2

1C̃(6)
HW − g1g2C̃(6)

HWB

(g2
1 + g2

2) v̄T ]defining:

(dim-6)2 estimate: 

13

𝒜hγγ
SM

2
+2 Re (𝒜hγγ

SM) (1 + ⟨ h
44⟩

ℒ(6))⟨h |γγ⟩ℒ(6) + (1 + 4v̄T Re (𝒜hγγ
SM)) (⟨h |γγ⟩ℒ(6))2

+2 Re (𝒜hγγ
SM)

g2
2C̃(8)

HB + g2
1 (C̃(8)

HW − C̃(8)
HW,2) − g1g2C̃(8)

HWB

(g2
1 + g2

2) v̄T

 Full  result:𝒪(1/Λ4)

e.g)   h → γγ

 decays: impact on decay widths 1 → 2

C̃(6)
H□, C̃(6)

HD, C̃(8)
HD, C̃(8)

HD2

<latexit sha1_base64="gRkLF/8GQhmCxuxt1NbQbx39AfI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3V9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A518jWs=</latexit> {

C̃(6) = C(6) v2
T

Λ2

C̃(8) = C(8) v4
T

Λ4



fixing  
result: contours show 
range of effects once 
full  effects are 

included

1/Λ2, (dim-6)2

1/Λ4
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.004, C(6)
HWB

= 0.007, C(6)
HD

= �0.74, and �G
(6)
F

= �1.6. In the right panel they are

C
(6)
HB

= 0.007, C(6)
HW

= 0.007, C(6)
HWB

= �0.015, C(6)
HD

= 0.50, and �G
(6)
F

= 1.26.

Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.
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 only1/Λ2

1/Λ2 + (dim-6)2

:   Quantify effect by randomly drawing coefficients and 
comparing dim-6, (dim-6)2 and full  result: 


for `tree’ operators:  ,`loop’ operators: 
1/Λ4

𝒪(1) 𝒪(0.01)
[Arzt’93], [Einhorn, Wudka ’13], [Craig et al ’20]

e.g)   h → γγ

14

 decays: impact on decay widths1 → 2

similar story for h → Zγ



:   Quantify effect by randomly drawing coefficients and 
comparing dim-6, (dim-6)2 and full  result: 


for `tree’ operators:  ,`loop’ operators: 
1/Λ4

𝒪(1) 𝒪(0.01)

e.g)   h → γγ
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C
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HB

=

�0.01, C(6)
HW

= 0.004, C(6)
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= 0.007, C(6)
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C
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HB

= 0.007, C(6)
HW

= 0.007, C(6)
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= �0.015, C(6)
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= 0.50, and �G
(6)
F

= 1.26.

Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.
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 only1/Λ2

1/Λ2 + (dim-6)2

Large effect,  at 
 = 2.5TeV ;  

 
only loop-level operators




 enter at dim-6, 

while tree-level 

operators 




enter at dim-8

𝒪(20%)
Λ

(H†H) XμνXμν

(H†H)2 XμνXμν

15

 decays: impact on decay widths1 → 2

[ model example:    
   kinetically mixed U(1) ]
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Figure 3. The deviations in Z ! `` from the O(v2/⇤2) (red line) and partial-square (black line)
results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions). In the left
panel the coe�cients determining the O(v2/⇤2) and partial-square results are C1,(6)

H`
= �0.46, C3,(6)

H`
=

1.24, C(6)
He

= 1.53, C(6)
HD

= �0.79, C(6)
HWB

= 0.007, and �G
(6)
F

= 0.16. In the right panel they are

C
1,(6)
H`

= 1.55, C3,(6)
H`

= �0.71, C(6)
He

= 0.23, C(6)
HD

= �0.51, C(6)
HWB

= �0.008, and �G
(6)
F

= �0.44.

SMEFT result as an estimate of a ‘truncation uncertainty’; and (2) taking the fractional un-

certainty on each coe�cient to be v
2
/⇤2. The former procedure uses the partial O(v4/⇤4)

information in the L(6) operators to take all the calculable terms when complete higher orders

are not available. The latter procedure instead only scales the measured coe�cient by the

ratio of dimensionful parameters.

We test the uncertainty procedures by taking the full O(v4/⇤4) SMEFT calculation to

provide the ‘true’ value of a given coe�cient. The shift in the partial width relative to the

SM is calculated for a set of coe�cients drawn from a gaussian distribution. Fixing the value

of this shift and taking a given value of ⇤, we determine the change in one of the coe�cients

when calculating the partial width at O(v2/⇤2), or with the partial-square procedure. The

deviation in the coe�cient value relative to its initial value is taken as the ‘truncation error’.

Figure 4 shows the distribution of this error for C(6)

HW
in the O(v2/⇤2) (left) and partial-

square (right) calculations of �(h ! ��) using 50,000 samplings of the coe�cients and taking

⇤ = 2.5 TeV. This error distribution can be compared to the distribution of uncertainty

estimates shown in Fig. 5, where the distribution in the left panel is the di↵erence between

the O(v2/⇤2) and partial-square calculations, and in the right panel it is v
2
/⇤2 times the

coe�cient. The uncertainty estimate is 1-2 orders of magnitude smaller than the error, with

the v
2
/⇤2 distribution narrower by a factor of a few.

The validity of an uncertainty estimate is typically demonstrated by the pull distribution,

defined as the error divided by the uncertainty. An unbiased estimate of the central value

– 18 –

e.g.)  Z → ℓ+ℓ−

Now tree-level operators present 
for both dim-6 and dim-8

smaller impact,  at  = TeV𝒪( % ) Λ

16

 decays: impact on decay widths1 → 2

~ (dim6)2 piece not a bad estimate

 : Quantify effect by randomly drawing coefficients and 
comparing dim-6, (dim-6)2 and full  result: 


for `tree’ operators:  ,`loop’ operators: 
1/Λ4

𝒪(1) 𝒪(0.01)



Redo classic SMEFT LEP1 analysis to  𝒪(1/Λ4)

EWPD is the ideal controlled case to study SMEFT truncation

1113EWPD LEP legacy

Just Taylor expand the geosmeft effective couplings to second order.

Ex: Helset, 
Corbett, Martin, 
Trott (next week)

Dim 8 EWPD now  
known. One can study the  
error induced in SMEFT 
truncation in this controlled 
and ideal example.

Taylor expand obs 
to second order.

SMEFT EWPD

11M.Trott, Durham, 6th September 2017M.Trott, Oct 27th  2017 3312

Once you know  

You just Taylor expand to the desired order using the geo SMEFT results 

EWPD LEP legacy

EWPD is essentially solved in closed form. 

Consider a             coupling to a fermion bilinear.

Compact all            orders answer!

W±, Z
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scanning dim-8 coefficients

[2102.02819

 Corbett, Helset, AM, Trott]



Combining SM loops with 𝒪(1/Λ4)
we have the result for h ! ��
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The results have been presented in a manner to make clear the origin of the various contri-

butions. First the corrections are up to O(v̄4
T
/⇤4) terms in the operator expansion. Next the

one loop contributions involving novel one loop diagrams and operator mixing in the SMEFT

are given. The contributions from rescaling the SM amplitude for a series of corrections are

then reported. Finally, the last line is due to input parameter corrections to the SM ampli-

tude. Several numerically small corrections that follow from the formulae given are neglected

here as the contributions are negligible compared to the retained terms. These neglected

corrections are generally further suppressed by small Yukawa couplings. Here f
m̂W
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From Table 1, we also find the following SM leading-order h ! �� partial width in the ↵̂

scheme:

�↵̂

SM(h ! ��) =
m̂

3

h

4⇡

����A
h��

SM

����
2

= 1.06⇥ 10�5GeV. (5.12)
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where

𝒪(1/Λ2)

𝒪(1/Λ2 × loop)

𝒪(1/Λ4)

[Corbett, AM, Trott 2107.07470]

Can combine with 𝒪(1/Λ2) × SM loop

Combined result informs on how 
assumptions about coefficients affect 
uncertainty
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where

𝒪(1/Λ2)

𝒪(1/Λ2 × loop)

𝒪(1/Λ4)

[Corbett, AM, Trott 2107.07470]

Can combine with 𝒪(1/Λ2) × SM loop

Combined result informs on how 
assumptions about coefficients affect 
uncertainty

Coefficient choice: i.e.   vs.  
intertwines loop and SMEFT expansions! 

C(6)
GH g2

3 C(6)
GH



Key part of 2- and 3-pt result is 
that special kinematics made all 

momentum products trivial

No longer true at -pt interactions, i.e. for 4-pt:≥ 4 𝒪 ∼ sn tm

 infinite set of higher derivative operators can contribute⟶

4-pt interactions: can we go ‘full metric’?

19

Effects must be added in by hand.  But — dim-8 effects 
enter  by interfering with SM, therefore need to 

match SM helicity/color/flavor structure

𝒪(1/Λ4)

In practice means # of `by-hand’ operators is small for many 
relevant n = 4 processes



SM

3pt — in geoSMEFT

new at 4-pt,  
operators at 

𝒪(10)
1/Λ4

Ex.   to  pp → ℓ+ℓ−, ℓ±ν 𝒪(1/Λ4)
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Figure 3. Dimension eight operator contribution to �(pp ! `
+
⌫) in the center of mass energy

range 1TeV 
p
ŝ  2TeV (left panel) and 2TeV 

p
ŝ  3TeV (right panel) compared to the

full O(1/⇤4) result with the dimension eight coe�cients shut o↵: |(�(pp ! `
+
⌫)O(1/⇤4) � �(pp !

`
+
⌫)no dim-8)/�(pp ! `

+
⌫)O(1/⇤4)| plotted as a function of the dimension six Wilson coe�cient

strength C
(6) = [�1.0, 1.0] and the ratio of the dimension eight coe�cient strength relative to the

dimension six coe�cient (taking all dimension eight coe�cients to be equal), C(8)
/C

(6) = [0.1, 10].
The new physics scale ⇤ = 5TeV in both panels. The shaded region indicates where the SMEFT
contribution is larger than the SM contribution (either positive or negative).

terms of actual observables, and they can be viewed as rough bounds14. More accurate bounds

require correctly incorporating the appropriate experimental acceptance/e�ciencies and are

left for future work.

As C
(8)

/C
(6) is varied from 0.1 to 10, the e↵ect of the dimension eight terms increases

by roughly two orders of magnitude. For example, fixing C
(6) = 0.1 and varying C

(8)
/C

(6)

the impact of the dimension eight piece varies grows from 5.7 ⇥ 10�4 to 0.057 (for
p
ŝ 2

[1 TeV, 2TeV]). The e↵ects of C(8)
/C

(6) are larger for negative C(6) because of a cancellation

between the negative O(1/⇤2) interference and positive dimension six squared O(1/⇤4) con-

tributions. The overall impact of dimension eight also increases as we move to higher ŝ. Note

that we can use Fig. 3 to extrapolate the results of Fig. 2 to ⇤ other than 5TeV, as shifting

⇤ ! ⇤0 is equivalent to rescaling both C
(6) and C

(8)
/C

(6) by (⇤/⇤0)2.

Had we calculated the net O(1/⇤4) relative to the O(1/⇤2) result – analogous to the

left plot of Fig. 2 – for the same inputs, the result would depend more sensitively on the

individual coe�cient sign choice. However, for
p
ŝ 2 [1 TeV, 2TeV] this ratio is driven by

the dimension six coe�cient, to the extent that the ratio when C
(6) = 0.1, C(8)

/C
(6) = 10 is

14The contours are essentially unchanged if we neglect all dimension six coe�cients other than C
3,(6)
LQ

or if

we plot in bins of mT instead of
p
ŝ.

– 19 –

[see also Boughezal et al 2207.01703, Allwicher et al 2207.10714] 

pp → ℓ+ℓ− pp → ℓ±ν

[Kim, AM 2203.11976]

Phenomenology: impact on dim-6 bounds

•Extending fits to data to include 1/Λ4 dimension-6 squared 
effects can have a significant impact on the constraints.

Boughezal, Mereghetti, FP 2106.05337

fit to ATLAS DY data (four-
fermion operators)

fit to EW precision data (Zff 
vertex corrections)

1/Λ2 only

1/Λ4

Corbett, Helset, Martin, Trott 2102.02819 21

[Boughezal el al 2106.05337]



, Resonant :  ,   1 → 2 2 → 2 gg → h → γγ e+e− → Z → f̄ f

Library of process known to   𝒪(1/Λ4)

Drell-Yan,  known; , diboson in progresspp → Wh Zh

Roadmap for truncation studies

I’ve focused on ‘bottom up’ analyses, but top down also important

New process:
• geoSMEFT pieces have same kinematics at dim 6 and 8

 can capture many effects by reweighing: ∴

• Only need to add contact terms/novel kinematics

σ(SM × dim-6) couplings  at 1/Λ4

couplings  at 1/Λ2In MG already via 
SMEFTsim/

SMEFT@NLO

Known 
analytically

[Corbett, Kim, AM]

[Dawson et al 2110.06929, 2205.01561]



So where does this leave us?

Lots to do:
• Encapsulate what we’ve learned into a truncation 

uncertainty/uncertainties to hand off to experimentalists 

• How to pin down new coefficients (e.g. remove flat 
directions)? 

22

[Alioli et al 2003.11615, Boughezal et al 2104.03979, 2207.01703]

• geoSMEFT: approach where 2 and 3 particle vertices sensitive 
to a minimal # of operators, # ~ constant with mass 
dimension.  Physics with 2-, 3-particle vertices doable to any 
order in  (tree level) 

• Can study select processes to , use them to form 
guidelines for how to include truncation error more generally in 
SMEFT studies

v/Λ

1/Λ4

[ex. AM, Trott 2109.05595]



Thank you!
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in Fig. 1. We see the
growth is exponential, which is to be expected on general grounds [43].

5 Discussion

The method we have outlined in this paper can be extended trivially to determining the
content and number of higher dimension operators for any four-dimensional relativistic
gauge theory with scalar and fermionic matter. The master equation is eq. (3.14), which
needs to be modified from the SM to the theory of interest. The pieces of eq. (3.14)
which are SM specific are the gauge groups (and as such the Haar measures that need to be
integrated over to produce gauge singlets), and the field content (which enters the plethystic
exponential).

In the present work we studied the expansion of eq. (2.7) in powers of mass dimension,
✏. However, in our previous work in (0+1) dimensions [11] we were able to obtain all-order
formulae for Hilbert series, revealing a fascinating analytic structure which could not be
seen in any finite order expansion. Can we hope to attack eq. (2.7) directly? Could this
reveal some previously hidden all-order structure of the SM EFT? While lofty, questions
along these lines merit detailed investigation of the structure underlying operator bases,
which we take up in [1].
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[Henning et al 1512.03433]
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Geometric SMEFT: 

# operators contributing 
to ‘pole physics’
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Figure 3. The green/yellow/gray contours correspond to the 68%/95%/99.9% CL two parame-
ter fit determined by ��

2
O(v4/⇤4), while the red rings correspond to the same CL determined using

��
2
O(v2/⇤2). In the top panels the free parameters are CHD and CHWB , while in the bottom panels

the free parameters are CHD and C
(6)
H`

. Note that the axes ranges vary from panel to panel. In the
left panels, we have taken the scale ⇤ = 1 TeV, while in the right panels ⇤ = 2 TeV. All calculations
use the m̂W scheme.

6.1 U(1) kinetic mixing

In this model, a heavy U(1) gauge boson Kµ with Stueckelberg mass [62] mK kinetically

mixes with Bµ, the U(1)Y gauge boson in the SM. The SM Lagrangian is extended with the

UV Lagrangian

�L = �
1

4
Kµ⌫K

µ⌫ +
1

2
m

2

KKµK
µ
�

k

2
B

µ⌫
Kµ⌫ , (6.1)

where the field strength is Kµ⌫ = @µK⌫ � @⌫Kµ. Integrating out the heavy K
µ field, the

matching pattern in the SMEFT, with geoSMEFT operator form conventions, is given in

Table 8 and Table 9. This weakly coupled, renormalizable model has one scale and one

coupling, but its matching pattern does not follow the pattern claimed to follow from a

UV of this form in some literature. The matching pattern is consistent with the results of

Ref. [16, 47–49].

– 17 –

E.g. try classic S-T plot: Zero all dimension-6 operators except 
 CHD ~ T,  CHWB ~ S but leave all dimension-8 on. Set all dimension-8 

coefficients to 1 (tree) or 0.01 (loop) and fix , then compare  
ellipses with and without dimension-8 terms

Λ χ2

Redo classic SMEFT LEP1 analysis to  𝒪(1/Λ4)

χ2

χ2

can repeat for other 2-d projections

including dim-8

dim-6 (linear) only
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E.g. try classic S-T plot: Zero all dimension-6 operators except 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CHD,min, CHWB,min ∼ 0.01 ∼ 𝒪(v4/Λ4)
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Try a specific UV model: kinetically mixed U(1)

integrate out to dim-8 (tree level only)

Δℒ = −
1
4

KμνKμν +
1
2

m2
KKμKμ −

k
2

BμνKμν

Δℒ = −
k2

2m2
K

jμ jμ +
k2 − k4

2m4
K

(∂2jμ) jμ +
g2

1k4

4m4
K

(H†H) jμ jμ

jμ = ∑
ψ

(−g1yψ) ψ̄γμψ + (−
1
2

g1) H†iDμH

where 

Kinetic mixing model
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Table 3. Matching coe�cients onto operators in L
(8) relevant for �(h ! ��) and �(Z !  ̄ ). In ad-

dition to these matching contributions, there are four-fermion operators and four-point contributions.
See the results in Eqn. 6.11, which include these terms and neglect only e↵ects suppressed by Yukawa
couplings.

field strengths. This is an accidental pattern due to the renormalizability of some

UV physics models. Such matching patterns are not present in non-renormalizable

UV theories in general [49]. They also do not apply to operators with higher mass

dimensions. The result in Eqn. (6.11) shows that gauge field-strength operators can

receive tree-level matching contributions at L
(8) in a weakly-coupled renormalizable

UV model. This is consistent with the results in Ref. [49, 50]. At L
(7), the seesaw

model also leads to operators with gauge field strengths [56] in tree-level matching.

These examples show that the operator normalization pattern of Ref. [48] does not

extend to operators of arbitrary mass dimension in the SMEFT.

• The rearrangement of derivative terms at L(8) leads to matching coe�cients proportional

to v̄
2

T
/m

2

K
for L

(6). Formally, an infinite series in (v̄2
T
/m

2

K
)n is present in matching

coe�cients for higher-dimensional operators. This is due to rearranging matching terms

in the non-redundant operator basis. However, as this dependence is an artifact of this

particular basis we expect it to cancel in the full result. This occurs as expected.

Restricting the results to the subset of operators that contribute to �(h ! ��) and �(Z !

 ̄ ), the matching results for L(8) operators are given in Table 3.
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Table 2. L(6) matching coe�cients; here b1 = k
2
� 2� (k2 � k

4) v̄
2
T

m
2
K
. Flavour indicies are suppressed

and the heavy field does not violate U(3)5 flavour symmetry. Fierz rearrangements of the four-fermion
operators are allowed.

at L(8) requires non-trivial manipulations. These terms can be reduced into the form

j
µ
@
2
jµ ' g

2

1

h
(DµH

†)(D⌫H)(Dµ
H

†)(D⌫
H)� (DµH

†)(D⌫H)(D⌫
H

†)(Dµ
H)

i

+ g
2

1

h
g1(H

†
H)Bµ⌫(D

µ
H

†) i (D⌫
H)� g2 (H

†
H) (Dµ

H
†) i�a (D

⌫
H)W a

µ⌫

i

+
g
2

1
g
2

2

8
W

a

µ⌫W
µ⌫

a (H†
H)2 �

g
4

1

8
Bµ⌫B

µ⌫(H†
H)2 + g

3

1y ( ̄�
µ
 )Bµ⌫ D

⌫

⇣
H

†
H

⌘

�
g
2

1
g
2

2

8
( ̄L�a�

µ
 L)


(H†

H)

✓
H

†
i

$

D
a

µH

◆
+ (H†

�aH)

✓
H

†
i

$

DµH

◆�

�
g
2

1
g
2

2

4

h
4 (H†

H)2(DµH
†
D

µ
H) + � (H†

H)3 (v̄2T � 2(H†
H)) +H

†
�aH (DµH

†
�
a
D

µ
H)

i

+ 2ig21y ( ̄�
µ
 )


�(v̄2T � 2H†

H)

✓
H

†
$

DµH

◆
+ (D⌫H

†)(D⌫
DµH)� (D⌫

DµH
†)(D⌫H)

�

� g
2

1y ( ̄�
µ
 )

⇣
H

†
H

⌘✓
1

2

�
g
2

1 + g
2

2

�✓
H

†
i

$

DµH

◆
+ g

2

1 y 0( ̄0�
µ
 
0)

◆

+ g
2

1y ( ̄�
µ
 )


�
g
2

2

2
 ̄L�µ�

a
 L (H†

�aH) + g2W
a

µ⌫ D
⌫

⇣
H

†
�aH

⌘�
, (6.11)

where a sum is implied over all  L,  , and  
0 pairs, and terms proportional to Yukawa

couplings are neglected. The conventions used for reducing to the operator basis in the L
(8)

matching are those of the geoSMEFT formulation [9], which allows all-orders results in the

v̄T /⇤ expansion to be defined. In this convention derivatives have been moved onto scalar
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…

dim-6 dim-8

No operators that 
impact  h → γγ

operators impacting  
 presenth → γγ

∴ at dim-6 level, no effect, while there is an effect if we go to full  1/Λ4

Kinetic mixing model
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Example:

We define the Yukawa connection in Eqn. (2.19), where

Y e
pr(φI) = −H(φI)[Ye]

†
pr +H(φI)

∞
∑

n=0

C(6+2n)
eH
pr

(

φ2

2

)n

, (3.21)

Y d
pr(φI) = −H(φI)[Yd]

†
pr +H(φI)

∞
∑

n=0

C(6+2n)
dH
pr
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φ2

2
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, (3.22)

Y u
pr(φI) = −H̃(φI)[Yu]

†
pr + H̃(φI)

∞
∑

n=0

C(6+2n)
uH
pr

(

φ2

2

)n

. (3.23)

3.4 (Dµφ)I ψ̄ Γµψ

The class seven operators in the Warsaw basis, and extended to higher mass dimensions, are

of the form

Q1,(6+2n)
Hψ
pr

= (H†H)nH†←→iDµHψ̄pγµψr,

Q3,(6+2n)
Hψ
pr

= (H†H)nH†←→iDµ
aHψ̄pγµσaψr,

Q2,(8+2n)
Hψ
pr

= (H†H)n(H†σaH)H†←→iDµHψ̄pγµσaψr,

Qε,(8+2n)
Hψ
pr

= εabc (H
†H)n (H†σcH)H†←→iDµ

bHψ̄pγµσaψr. (3.24)

where
←→
D µ

a = (σaDµ −
←−
Dµ σa). Connections corresponding to these operators are defined as

Lψ,prJ,A = −(φγ4)JδA4

∞
∑

n=0
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Hψ
pr
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φ2

2

)n
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+
1

2
(φγ4)J (1− δA4)

(

φKΓK
A,Lφ

L
)

∞
∑

n=0

C2,(8+2n)
HψL
pr

(

φ2

2

)n

+
εABC

2
(φγB)J

(

φKΓK
C,Lφ

L
)

∞
∑

n=0

Cε,(8+2n)
HψL
pr

(

φ2

2

)n

.

Similarly one can define the right-handed charged current connection

Lud,pr
J =

δ2L
δ(Dµφ)Jδ(ūpγµdr)

=
φ̃I
2
(−ΓI

4,J + iγI4,J )
∞
∑

n=0

C(6+2n)
Hud
pr

(

φ2

2

)n

, (3.26)

where Q(6+2n)
Hud
pr

= (H†H)n(H̃iDµH)ūpγµdr.
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Similarly, D2ψ can be reduced as

D2ψ = DµDνg
µνψ = DµDν(γ

µγν + iσµν)ψ ⇒ EOM and higher-points, (2.8)

where σµν = i
2(γµγν − γνγµ). In what follows, when D2F appears, it is replaced in terms of

EOM terms and higher-point functions for these reasons. Explicitly reducing operator forms

by the EOM, when possible, in favour of other composite operators, has a key role in these

arguments.

Now consider higher-derivative contributions to three-point functions. Explicit appear-

ances of D2F are removed due to the proceeding argument. Further, a general combination

of derivatives, acting on three general SM fields F1,2,3,

f(H)(DµF1)(DνF2)D{µν}F3, (2.9)

is removable in terms of EOM terms and higher-point functions, using integration by parts:

f(H)(DµF1)(DνF2)D{µν}F3 (2.10)

=− f(H)
[

(D2F1)(DνF2) + (DµF1)(DµDνF2) + (DµDνF1)(DµF2) + (DνF1)(D
2F2)

]

(DνF3)

− (Dµf(H)) [(DµF1)(DνF2) + (DνF1)(DµF2)] (DνF3)

⇒− f(H) [(DµF1)(DµDνF2) + (DµDνF1)(DµF2)] (DνF3) + EOM and higher-points

⇒− f(H)(D[µ,ν]F1)(DµF2)(DνF3) + f(H)(DµF1)(DµF2)(D
2F3) + EOM and higher-points

⇒ EOM and higher-points.

As a result, in general, an operator with four or more derivatives acting on three (possibly

different) fields Fi can be reduced out of three-point amplitudes.

When considering field space connections that can reduce to three-point functions when

a vacuum expectation value is taken, we also use

f(φ)F1 (DµF2) (DµF3)⇒ (Dµf(φ)) (DµF1)F2 F3 +
1

2
(D2f(φ))F1 F2 F3 + EOM ,(2.11)

to conventionally move derivative terms onto scalar fields. After reducing the possible field

space connections using these arguments systematically, and integrating by parts, a minimal

generalization of field space connections for CP even electroweak bosonic two- and three-point

amplitudes is composed of

hIJ (φ)(Dµφ)
I(Dµφ)

J , gAB(φ)WA
µνWB,µν , kAIJ(φ)(Dµφ)

I(Dνφ)
J Wµν

A ,

fABC(φ)WA
µνWB,νρWC,µ

ρ ,

and the scalar potential V (φ).

The minimal set of field space connections involving fermionic field in two- and three-point

functions is

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µτAψ2(Dµφ)

I , dA(φ)ψ̄1σ
µνψ2WA

µν ,
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contributing 
operators

compact form for connection:

higher dim. versions 
of “class 7” 
operators

new effects 
from d ≥ 8
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What about GF?
GF involves more than quadratic terms:

However, since GF derived at muon mass scale  
and SM term is from L4, # of higher dimensional contributions is 

dramatically reduced

(D ∼ mμ ≪ Λ)

All orders result is possible even for contact terms:

[Hays, Helset, Martin, Trott 2007.00565]

C(8+2n)
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2n )
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