Higgs 2022 | PISA

Higgs and flavour anomalies

11 - 11 - 2022

Higgs and the Flavour Anomalies

What are the possible connections?

$b \rightarrow c \ \tau \ \overline{v}_{\tau}$

Lepton Flavour Universality

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+} \tau \nu)}{\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)},$$
$$\ell = \mu, e$$

Tree-level SM process $\mathcal{H}_{eff}^{i} \stackrel{\text{C}}{=} \underbrace{\mathcal{K}}_{cb}^{*} \underbrace{\mathcal{K}}_{cb}^{*} \underbrace{\mathcal{K}}_{cb}^{\mu} \underbrace{\mathcal{K}}_{cb}$

~ 20% enhancement in LH currents ~ 4σ from SM

HFLAV
FPCP 2017

B-anomalies

Latest LHCb'22 R(D^(*)) result still based on Run-1 data. Waiting for Run-2 results.. Also waiting for the first Belle-II results!

$b \rightarrow c \ \tau \ \overline{v}_{\tau}$

Lepton Flavour Universality

Tree-level SM process \mathcal{H}_{eff} $\stackrel{\mathcal{C}}{=} \mathcal{F}_{cb} \stackrel{\mathcal{C}}{=} \mathcal{F}$

B-anomalies

Latest LHCb'22 R(D^(*)) result still based on Run-1 data. Waiting for Run-2 results.. Also waiting for the first Belle-II results!

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s\mu\mu$ transition. 08/2022

B-anomalies

Branching ratios

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s\mu\mu$ transition. 08/2022

Waiting for the LHCb re-analysis of the Run-2 data for the joint R_K-R_{K*} measurement.

B-anomalies

Branching ratios

B-anomalies

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s\mu\mu$ transition. 08/2022

Waiting for the LHCb re-analysis of the Run-2 data for the joint R_{K} - R_{K} * measurement.

LCFT $C_{s,b,\mu} \approx (37 \text{ TeV})^{-2}$

Branching ratios

Coherent EFT interpretation

$b \rightarrow s \mu^+ \mu^-$

 $[O_{\ell q}^{(1)}]_{\alpha\beta ij} = (\bar{\ell}_L^{\alpha} \gamma_\mu \ell_L^{\beta}) (\bar{q}_L^i \gamma^\mu q_L^j),$ $[O_{\ell q}^{(3)}]_{\alpha\beta ij} = (\bar{\ell}_L^{\alpha}\sigma^I\gamma_{\mu}\ell_L^{\beta})(\bar{q}_L^i\sigma^I\gamma^{\mu}q_L^j)$

- $3_q \rightarrow 2_q 3_l 3_l 3_q \rightarrow 2_q 2_l 2_l$
- $\sim \frac{1}{(4 \text{ TeV})^2} >> \sim \frac{1}{(40 \text{ TeV})^2}$ $\sim c_q \frac{V_{cb} (\lambda_q)^2}{2} \sim c_p \frac{V_{ts} (\lambda_p)^2}{2}$

New Physics mainly coupled to the 3rd generation.

No sizeable effect in **Higgs physics from** these operators.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

>> Very strong bounds on LQ couplings to 1st generation fermions, e.g. $K_L \rightarrow \mu$ e, etc..

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

>> Very strong bounds on LQ couplings to 1st generation fermions, e.g. $K_L \rightarrow \mu$ e, etc..

To address both B-anomalies:

TeV-scale leptoquark coupled to **3rd** and **2nd** generation g(3rd) > g(2nd) > g(1st)

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

7

TeV-scale leptoquark coupled to 3rd and 2nd generation g(3rd) > g(2nd) > g(1st)

S₁ and S₃ - contributions to anomalies

The large couplings to τ imply signatures in DY tails of $pp \rightarrow \tau \tau$, Also B_s -mixing and $B \rightarrow K^* \vee \overline{\nu}$ are close to present bounds.

Near Future Prospects in Flavour

Belle-II

Belle-II will be able to completely test $R(D^{(*)})$ with 5ab⁻¹. Measuring $R(K^{(*)})$ with 3% precision requires 50ab⁻¹. Discover SM value of $B^{0} \rightarrow K^{*0} v \overline{v}$ with ~5ab⁻¹. Bound on $Br(\tau \rightarrow \mu \gamma (3 \mu))$ will improve by a factor of 6 (60).

$\mu \rightarrow e LFV$

today:

$\mathcal{B}(\mu \to e\gamma)$	$< 5.0 imes 10^{-13}$
$\mathcal{B}(\mu \to 3e)$	$< 1.2 \times 10^{-12}$
$\mathcal{B}_{\mu e}^{(\mathrm{Ti})}$	$< 5.1 imes 10^{-12}$
$\mathcal{B}^{(\mathrm{Au})}_{\mu e}$	$< 8.3 imes 10^{-13}$

S₁, S₃: Higgs, EW and m_W

The two leptoquarks have potential couplings to the Higgs:

$$\begin{aligned} \mathcal{L}_{LQ} \supset &- \left(\lambda_{H13} (H^{\dagger} \sigma^{I} H) S_{3}^{I\dagger} S_{1} + \text{h.c.} \right) - \lambda_{\epsilon H3} i \epsilon^{IJK} (H^{\dagger} \sigma^{I} H) \\ &- \lambda_{H1} |H|^{2} |S_{1}|^{2} - \lambda_{H3} |H|^{2} |S_{3}^{I}|^{2} \end{aligned}$$

At one loop they **contribute to Higgs couplings** and S, T paramseters:

 $H^{\dagger}\sigma^{I}H)S_{3}^{J\dagger}S_{3}^{K}$

S₁, S₃: Higgs, EW and m_W

The two leptoquarks have potential couplings to the Higgs:

$$\mathcal{L}_{\mathrm{LQ}} \supset -\left(\lambda_{H13}(H^{\dagger}\sigma^{I}H)S_{3}^{I\dagger}S_{1} + \mathrm{h.c.}\right) - \lambda_{\epsilon H3}i\epsilon^{IJK}(H^{\dagger}) - \lambda_{H1}|H|^{2}|S_{1}|^{2} - \lambda_{H3}|H|^{2}|S_{3}^{I}|^{2}$$

At one loop they **contribute to Higgs couplings** and S, T paramseters:

 $\kappa_g - 1 = -(3.51\lambda_{H3} + 1.17\lambda_{H1}) \times 10^{-2}/m^2$, $\kappa_{\gamma} - 1 = -(2.32\lambda_{H3} + 0.66\lambda_{\epsilon H3} - 0.11\lambda_{H1}) \times 10^{-2}/m^2$, $\kappa_{Z\gamma} - 1 = -(1.89\lambda_{H3} + 0.23\lambda_{\epsilon H3} - 0.033\lambda_{H1}) \times 10^{-2}/m^2$.

S₁, S₃: Higgs, EW and m_W

The two leptoquarks have potential couplings to the Higgs:

$$\mathcal{L}_{LQ} \supset \left[-\left(\lambda_{H13} (H^{\dagger} \sigma^{I} H) S_{3}^{I^{\dagger}} S_{1} + \text{h.c.}\right) - \lambda_{\epsilon H3} i \epsilon^{IJK} (H^{\dagger} \sigma^{I} H) S_{3}^{I^{\dagger}} S_{1} + \text{h.c.}\right] - \lambda_{\epsilon H3} |H|^{2} |S_{3}^{I}|^{2}$$

Could these LQ address the m_w discrepancy recently claimed by CDF? Yes!

Intriguing experimental hints for New Physics. We should wait and see what more data will bring...

meanwhile, they spawned some interesting model building

(a partial selection in what follows)

14

From Leptoquarks to the Higgs, and back

From B-anomalies

M_{LQ} ~ TeV

Hierarchical couplings to SM fermions

g(3rd) > g(2nd) > g(1st)

From Leptoquarks to the Higgs, and back

From B-anomalies

M_{LQ} ~ TeV

Hierarchical couplings to SM fermions

g(3rd) > g(2nd) > g(1st)

Higgs & EW hierarchy

MBSM ≲ TeV

Hierarchical Yukawa couplings y(3rd) > y(2nd) > y(1st)

From Leptoquarks to the Higgs, and back

From B-anomalies

M_{LQ} ~ TeV

Hierarchical couplings to SM fermions

g(3rd) > g(2nd) > g(1st)

LQ from same UV responsible for the EW scale, connection between LQ couplings and Yukawa couplings.

Higgs & EW hierarchy

MBSM ≲ TeV

Hierarchical Yukawa couplings

y(3rd) > y(2nd) > y(1st)

Scalar Leptoquarks + Higgs as pNGB

[0910.1789, 1412.1791, 1803.10972]

> extensions of Composite Higgs models <</p>

Or

U₁ Vector Leptoquark as TC Pati Salam + Higgs as pNGB [2004.11376]

Or

Scalar Leptoquarks + Higgs as pNGB

[0910.1789, 1412.1791, 1803.10972]

Higgs Yukawas and LQ couplings can arise from same dynamics.

 $\Lambda \sim g_{\rho} f \sim 10 \text{ TeV}$ other resonances Gap $m_{SLQ} \ll \Lambda$ $m_{pNGB} \sim O(1) \text{ TeV}$ Leptoquarks hierarchy problem Higgs

U₁ Vector Leptoquark as TC Pati Salam + Higgs as pNGB [2004.11376]

> extensions of Composite Higgs models <</p>

Or

Scalar Leptoquarks + Higgs as pNGB

[0910.1789, 1412.1791, 1803.10972]

Higgs Yukawas and LQ couplings can arise from same dynamics.

 $\Lambda \sim g_{\rho} f \sim 10 \text{ TeV}$ other resonances **Gap** $m_{SLQ} \ll \Lambda$ $m_{pNGB} \sim O(1) \text{ TeV}$ Leptoquarks hierarchy problem Higgs

U₁ Vector Leptoquark as TC Pati Salam + Higgs as pNGB [2004.11376]

> extensions of Composite Higgs models <</p>

$$\left\langle \bar{\Psi}_i \Psi_j \right\rangle = -B_0 f^2 \delta_{ij}$$

The condensate of the strong sector, that gives the Higgs as pNGB, also breaks spontaneously an extra SU(4) gauge symmetry. The NGBs are eaten by the $U_1 LQ$.

 $M_U \sim g_4 f$

Or

Scalar Leptoquarks + Higgs as pNGB

[0910.1789, 1412.1791, 1803.10972]

Higgs Yukawas and LQ couplings can arise from same dynamics.

 $\Lambda \sim g_{\rho} f \sim 10 \text{ TeV}$ other resonances **Gap** $m_{SLQ} \ll \Lambda$ $m_{pNGB} \sim O(1) \text{ TeV}$ Leptoquarks hierarchy problem

Higgs

U₁ Vector Leptoquark as TC Pati Salam + Higgs as pNGB [2004.11376]

> extensions of Composite Higgs models <</p>

$$\left\langle \bar{\Psi}_i \Psi_j \right\rangle = -B_0 f^2 \delta_{ij}$$

The condensate of the strong sector, that gives the Higgs as pNGB,

also breaks spontaneously an extra SU(4) gauge symmetry. The NGBs are eaten by the $U_1 LQ$.

$$M_U \sim g_4 f$$

Deviations in Higgs couplings as in typical Composite Higgs models: $\delta \kappa_{V,f} \sim v^2 / f^2 \sim (\text{few}) \%$

Conclusions

Several interesting anomalies in B decays, pointing to New Physics at the TeV scale. Waiting for updates from LHCb and Belle-2. Correlated signals are expected ($p \ p \rightarrow \tau \tau, b \rightarrow s \ v \ v$, lepton LFV, ...).

Connections to Higgs physics are not direct, but the mediators responsible for the anomalies could leave an impact on Higgs couplings.

Flavour anomalies + EW hierarchy problem point both to New Physics at TeV. A combined solution seems natural. For example: extensions of Composite Higgs models with scalar or vector leptoquarks.

Deviations in Higgs couplings due to its composite nature are then expected.

S₁ and S₃ - global analysis

Using the complete one-loop matching to SMEFT, we include in our analysis the following observables.

All these are used to build a global likelihood.

$$-2\log \mathcal{L} \equiv \chi^2(\lambda_x, M_x) = \sum_i rac{\left(\mathcal{O}_i(\lambda_x, M_x) - \mu_i
ight)^2}{\sigma_i^2} \; .$$

Observable	Experimental bounds
Z boson couplings	App. A.12
$\delta g^Z_{\mu_L}$	$(0.3 \pm 1.1)10^{-3} [99]$
$\delta g^Z_{\mu_R}$	$(0.2 \pm 1.3)10^{-3} [99]$
$\delta g^Z_{ au_L}$	$(-0.11 \pm 0.61)10^{-3}$ [99]
$\delta g^Z_{ au_R}$	$(0.66 \pm 0.65)10^{-3}$ [99]
$\delta g^Z_{b_L}$	$(2.9 \pm 1.6)10^{-3} [99]$
$\delta g^Z_{c_R}$	$(-3.3\pm5.1)10^{-3}$ [99]
$N_{ u}$	2.9963 ± 0.0074 [100]

Observable	SM prediction	Experimental bounds	
$b ightarrow s\ell\ell$ observables		[37]	
$\Delta C_9^{sb\mu\mu}$	0	-0.43 ± 0.09 [79]	
$\mathcal{C}_9^{\mathrm{univ}}$	0	-0.48 ± 0.24 [79]	
$b \to c \tau(\ell) \nu$ observables		[37]	
R_D	0.299 ± 0.003 [12]	$0.34 \pm 0.027 \pm 0.013$ [12]	
R_D^*	0.258 ± 0.005 [12]	$0.295 \pm 0.011 \pm 0.008$ [12]	
$P_{ au}^{D^*}$	-0.488 ± 0.018 [80]	$-0.38 \pm 0.51 \pm 0.2 \pm 0.018$ [7]	
F_L	0.470 ± 0.012 [80]	$0.60 \pm 0.08 \pm 0.038 \pm 0.012$ [81]	
$\mathcal{B}(B_c^+ \to \tau^+ \nu)$	2.3%	< 10% (95% CL) [82]	
$R_D^{\mu/e}$	1	$0.978 \pm 0.035 \; [83, 84]$	
$b \to s \nu \nu$ and $s \to d \nu \nu$		[37]	
R_K^{ν}	1 [85]	< 4.7 [86]	
$R_{K^*}^{\nu}$	1 [85]	< 3.2 [86]	
$b \rightarrow d\mu\mu$ and $b \rightarrow dee$		App. A.5	
${\cal B}(B^0 o \mu \mu)$	$(1.06 \pm 0.09) \times 10^{-10}$ [87,88]	$(1.1 \pm 1.4) \times 10^{-10}$ [89,90]	
${\cal B}(B^+ o\pi^+\mu\mu)$	$(2.04\pm0.21) imes10^{-8}$ [87, 88]	$(1.83 \pm 0.24) \times 10^{-8}$ [89,90]	
$\mathcal{B}(B^0 \to ee)$	$(2.48 \pm 0.21) imes 10^{-15} \ [87, 88]$	$< 8.3 \times 10^{-8}$ [51]	
${\cal B}(B^+ o \pi^+ ee)$	$(2.04\pm0.24) imes10^{-8}$ [87, 88]	$< 8 imes 10^{-8}$ [51]	
B LFV decays		[37]	
$\mathcal{B}(B_d \to \tau^{\pm} \mu^{\mp})$	0	$< 1.4 \times 10^{-5}$ [91]	
$\mathcal{B}(B_s o au^{\pm} \mu^{\mp})$	0	$< 4.2 imes 10^{-5}$ [91]	
${\cal B}(B^+ o K^+ au^- \mu^+)$	0	$< 5.4 imes 10^{-5}$ [92]	
$\mathcal{B}(B^+ \rightarrow K^+ \pi^+ \mu^-)$	n	$< 3.3 \times 10^{-5}$ [92]	
$D(D^* \rightarrow K^* T^* \mu^*)$	0	$< 4.5 \times 10^{-5}$ [93]	
Observable	SM prediction	Experimental bounds	

Observable	SM prediction	Experimental bounds
D leptonic decay		[37] and App. A.4
${\cal B}(D_s o au u)$	$(5.169 \pm 0.004) \times 10^{-2} \ [94]$	$(5.48 \pm 0.23) \times 10^{-2}$ [51]
${\cal B}(D^0 o \mu \mu)$	$\approx 10^{-11}$ [95]	$< 7.6 \times 10^{-9}$ [96]
${\cal B}(D^+ o\pi^+\mu\mu)$	${\cal O}(10^{-12})$ [97]	$< 7.4 imes 10^{-8}$ [98]
Rare Kaon decays $(\nu\nu)$		App. A.1
${\cal B}(K^+ o \pi^+ u u)$	$8.64 imes 10^{-11}$ [99]	$(11.0 \pm 4.0) \times 10^{-11} \ [100]$
${\cal B}(K_L o \pi^0 u u)$	3.4×10^{-11} [99]	$< 3.6 imes 10^{-9}$ [101]
Rare Kaon decays $(\ell \ell)$		App. A.3 and A.2
$\mathcal{B}(K_L \to \mu \mu)_{SD}$	8.4×10^{-10} [102]	$< 2.5 \times 10^{-9}$ [76]
${\cal B}(K_S o \mu \mu)$	$(5.18 \pm 1.5) \times 10^{-12} \ [76, 103, 104]$	$< 2.5 imes 10^{-10}$ [105]
${\cal B}(K_L o \pi^0 \mu \mu)$	$(1.5 \pm 0.3) \times 10^{-11} \ [106]$	$< 4.5 \times 10^{-10} \ [107]$
$\mathcal{B}(K_L \to \pi^0 ee)$	$(3.2^{+1.2}_{-0.8}) \times 10^{-11} \ [108]$	$< 2.8 imes 10^{-10} \; [109]$
LFV in Kaon decays		App. $\Lambda.3$ and $\Lambda.2$
${\cal B}(K_L o \mu e)$	0	$< 4.7 \times 10^{-12} \ [110]$
$\mathcal{B}(K^+ \to \pi^+ \mu^- e^+)$	0	$< 7.9 imes 10^{-11} \; [111]$
${\cal B}(K^+ o \pi^+ e^- \mu^+)$	0	$< 1.5 imes 10^{-11} \ [112]$
CP-violation		App. A.8
ϵ_K'/ϵ_K	$(15 \pm 7) \times 10^{-4} \ [113]$	$(16.6 \pm 2.3) \times 10^{-4} [51]$

Observable SM prediction		Experimental bounds	
$\Delta F = 2$ processes		[37]	
$B^0 - \overline{B}^0$: $ C^1_{B_d} $	0	$< 9.1 \times 10^{-7} { m ~TeV^{-2}} [114, 115]$	
$B^0_s - \overline{B}^0_s$: $ C^1_{B_s} $	0	$< 2.0 imes 10^{-5} { m ~TeV^{-2}} [114, 115]$	
$K^0 - \overline{K}^0$: $\operatorname{Re}[C_K^1]$	0	$< 8.0 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$	
$K^0 - \overline{K}^0$: Im $[C_K^1]$	0	$< 3.0 \times 10^{-9} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^1]$	0	$< 3.6 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Im $[C_D^1]$	0	$< 2.2 \times 10^{-8} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^4]$	0	$< 3.2 \times 10^{-8} { m ~TeV^{-2}} [114, 115]$	
$D^0 - \overline{D}^0$: Im $[C_D^4]$	0	$< 1.2 \times 10^{-9} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^5]$	0	$< 2.7 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Im $[C_D^5]$	0	$< 1.1 \times 10^{-8} \text{ TeV}^{-2} [114, 115]$	
LFU in τ decays		[37]	
$ g_{\mu}/g_{e} ^{2}$	1	1.0036 ± 0.0028 [116]	
$ g_{ au}/g_{\mu} ^2$	1	1.0022 ± 0.0030 [116]	
$ g_{ au}/g_e ^2$	1	1.0058 ± 0.0030 [116]	
LFV observables		[37]	
${\cal B}(au o \mu \phi)$	0	$< 1.00 \times 10^{-7} [117]$	
$\mathcal{B}(au ightarrow 3\mu)$	0	$< 2.5 imes 10^{-8}$ [118]	
$\mathcal{B}(au o \mu \gamma)$	0	$< 5.2 \times 10^{-8}$ [119]	
$\mathcal{B}(au o e\gamma)$	0	$< 3.9 \times 10^{-8}$ [119]	
${\cal B}(\mu o e \gamma)$	0	$< 5.0 \times 10^{-13}$ [120]	
$\mathcal{B}(\mu ightarrow 3e)$	0	$< 1.2 \times 10^{-12} [121]$	
$\mathcal{B}_{\mu c}^{(\mathrm{Ti})}$	0	$< 5.1 imes 10^{-12}$ [122]	
$\mathcal{B}^{(\mathrm{Au})}_{\mu c}$	0	$< 8.3 imes 10^{-13}$ [123]	
EDMs		[37]	
$ d_e $	$< 10^{-44} \mathrm{e}\cdot\mathrm{cm}\left[124, 125 ight]$	$< 1.3 imes 10^{-29} \mathrm{e} \cdot \mathrm{cm} [126]$	
$ d_{\mu} $	$< 10^{-42} { m e} \cdot { m cm} \left[{ m 125} ight]$	$< 1.9 imes 10^{-19} { m e} \cdot { m cm} [127]$	
$d_{ au}$	$< 10^{-41} \mathrm{e} \cdot \mathrm{cm} [125]$	$(1.15 \pm 1.70) \times 10^{-17} \mathrm{e} \cdot \mathrm{cm} [37]$	
d_n	$< 10^{-33} { m e} \cdot { m cm} [128]$	$< 2.1 \times 10^{-26} e \cdot cm \ [129]$	
Anomalous		[37]	
Magnetic Moments			
$a_e - a_e^{SM}$	$\pm 2.3 \times 10^{-13}$ [130, 131]	$(-8.9 \pm 3.6) \times 10^{-13}$ [132]	
$a_{\mu} - a_{\mu}^{SM}$	$\pm 43 \times 10^{-11}$ [42]	$(279 \pm 76) \times 10^{-11} [40, 42]$	
$a_{ au}-a_{ au}^{SM}$	$\pm 3.9 \times 10^{-8}$ [130]	$(-2.1 \pm 1.7) \times 10^{-7}$ [133]	

 $\lambda^{1R} = 0$ \rightarrow Cannot fit (g-2)_µ

(see backup slides for a S_1+S_3 scenario that addresses also the muon magnetic moment)

 $R(D^{(*)})$

 $\lambda^{1L} =$

0.5 Model $S_1 + S_3^{(LH)}$ 99%CL 95%CL 0.4 68%CL $M_1 = M_3 = 1 \text{TeV}$ 0.3 (R_D,R_{D^*}) $|g_{\tau}/g_{\mu}|$ 0.2 $\lambda^{1\,L}_{\mathrm{s} au}$ $B_s - \overline{B}_s$ 0.1 TERE[Vts/Vtb] 0.0 -0.1-0.2 0.5 1.5 0.0 1.0 2.0 $\lambda_{\mathrm{b} au}^{1\,L}$ Plots updated w.r.t. [v3:2008.09548]

S₁ and S₃ — only LH couplings

A Fundamental Composite Higgs + LQ Model

Gauge group: $SU(N_{HC}) \times SU(3)_c \times SU(2)_w \times U(1)_Y$ "HyperColor"

SU($N_{\rm HC}$) confines at $\Lambda_{\rm HC} \sim 10 {\rm ~TeV}$ $\langle \Psi$ $G = SU(10)_{\rm L} \times SU(10)_{\rm R} \times U(1)_{\rm V} \xrightarrow{f \sim 1 \text{ TeV}} H = SU(10)_{\rm V} \times U(1)_{\rm V}$

Several states are present at the **TeV scale** as pNGB, including

H_{SM}, $\tilde{H}_2 \sim (1,2)_{1/2}$ Two Higgs doublets: Singlet and Triplet LQ: $S_1 \sim (3,1)_{-1/3} + S_1 \sim (3,3)_{-1/3}$

 $\mathcal{L}_{4-\text{Fermi}} \sim \frac{c_{\psi\Psi}}{\Lambda_{\star}^2} \bar{\psi}_{\text{SM}} \psi_{\text{SM}} \bar{\Psi} \Psi \xrightarrow{E \lesssim \Lambda_{HC}} \sim y_{\psi\phi} \, \bar{\psi}_{\text{SM}} \psi_{\text{SM}} \phi + \dots$ + impose approximate U(2)⁵ flavor symmetry

	$\mathrm{SU}(N_{HC})$	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_w$	$\mathrm{U}(1)_Y$
Ψ_L	$\mathbf{N}_{\mathbf{HC}}$	1	2	Y_L
Ψ_N	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L + 1/2$
Ψ_E	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L - 1/2$
Ψ_Q	$\mathbf{N_{HC}}$	3	2	$Y_L - 1/3$

[D.M. 1803.10972]

$$\Psi_i \Psi_j \rangle = -B_0 f^2 \delta_{ij}$$

H and LQ are close partners!!

$$H_1 \sim i\sigma^2 (\bar{\Psi}_L \Psi_N)$$
$$H_2 \sim (\bar{\Psi}_E \Psi_L)$$
$$S_1 \sim (\bar{\Psi}_Q \Psi_L)$$
$$S_3 \sim (\bar{\Psi}_Q \sigma^a \Psi_L)$$

Yukawas & _Q couplings

Composite Higgs + Vector LQ

Heavy

fermions

Light fermions

15 eaten NGB: - heavy coloron - U₁ LQ - 7' $M_U \sim g_4 f_{\zeta}$

 $\langle \bar{\zeta}^{\alpha}_L \, \zeta^{\beta}_R \rangle = -\frac{1}{2} \, B_{\zeta} \, f^2_{\zeta} \, \delta_{\alpha\beta}$

 $SU(4)_{\rm D}$

For the Composite Higgs part: $\langle \bar{\xi}_L^{i\,c}\,\xi_L^j\rangle = \langle \bar{\xi}_R^{i\,c}\,\xi_R^j\rangle = -\frac{1}{2}\,B_\xi\,f_\xi^2\,\epsilon_{ij}$ $SU(4)_{\rm EW} \times U(1)_A \to Sp(4)_{\rm EW}$ 6 pNGB: - Higgs doublet - 2 singlets

[2004.11376]

Vector leptoquark UV models

Flavour hierarchy \leftrightarrow Hierarchy of scales (RG stable) Accidental approximate U(2)⁵ at low energy! This picture can be embedded in a warped 5D compactification

Fuentes-Martin et al; 2203.01952

EW hierarchy problem can be addressed by adding a further Planck brane.

