11 - 11 - 2022

1

Higgs 2022 | PISA

Higgs and flavour anomalies

Higgs and the Flavour Anomalies

What are the possible connections?

Latest LHCb'22 R(D^(*)) result still based on Run-1 data. Waiting for Run-2 results.. Also waiting for the first Belle-II results!

~ 20% enhancement in LH currents ~ 4σ from SM

$b \rightarrow c \tau \overline{\nu}$ \rightarrow C τ \overline{v}_τ = *MB^d*

B-anomalies (34)

I Flavour Universa **Lepton Flavour Universality**

$$
R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+} \tau \nu)}{\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)},
$$
\n
$$
\ell = \mu, e
$$
\n0.35\n0.30

Tree-level SM process ${\cal H}_{\rm eff}^{\rm VU}$ *G^F* $\frac{Q}{\sqrt{2}}\left(\frac{1}{2} \sum_{l} \sum_{l} \left[\sum_{l} \sum_{l} \sum_{l} \sum_{l} \sum_{l} \left[\sum_{l} \sum_{l} \sum_{l} \sum_{l} \left[\sum_{l} \sum_{l} \sum_{l} \right] \right] \right)$ with *SEC*b stupp or pssion.

Latest LHCb'22 R(D^(*)) result still based on Run-1 data. Waiting for Run-2 results.. Also waiting for the first Belle-II results!

$b \rightarrow c \tau \overline{\nu}$ \rightarrow C τ \overline{v}_τ = *MB^d*

B-anomalies (34)

I Flavour Universa **Lepton Flavour Universality**

$$
R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+} \tau \nu)}{\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)},
$$
\n
$$
\ell = \mu, e
$$
\n0.35\n0.30

Tree-level SM process ${\cal H}_{\rm eff}^{\rm VU}$ *G^F* $\frac{Q}{\sqrt{2}}\left(\frac{1}{2} \sum_{l} \sum_{l} \left[\sum_{l} \sum_{l} \sum_{l} \sum_{l} \sum_{l} \left[\sum_{l} \sum_{l} \sum_{l} \sum_{l} \left[\sum_{l} \sum_{l} \sum_{l} \right] \right] \right)$ with *SEC*b stupp or pssion.

B-anomalies

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s \mu \mu$ transition. 08/2022

Branching ratios

of the Run-2 data for the joint R_{K} - R_{K} ^{*} measurement.

B-anomalies

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s \mu \mu$ transition. 08/2022

Branching ratios

 ct_{LET}

of the Run-2 data for the joint R_{K} - R_{K} ^{*} measurement.

B-anomalies

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s \mu \mu$ transition. 08/2022

Branching ratios

-
-

Altmannshofer and Stangl [2103.13370]

 -0.5

 $C^{bs\mu\mu}_{\bf q}$

 0.0

 -1.0

R(D(*)) anomalies drive most new physics requirements

No sizeable effect in Higgs physics from these operators.

Coherent EFT interpretation

$b \rightarrow s \mu^{+} \mu^{-}$

 $[O_{\ell q}^{(1)}]_{\alpha\beta ij} = (\bar{\ell}_L^{\alpha} \gamma_\mu \ell_L^{\beta})(\bar{q}_L^i \gamma^\mu q_L^j),$ $B_s \rightarrow \mu\mu$ 1 σ R_K & R_{K^*} 1 σ , 2 σ $b \rightarrow s \mu \mu$ 1 σ , 2 σ $[O_{\ell q}^{(3)}]_{\alpha\beta ij} = (\bar{\ell}_L^{\alpha} \sigma^I \gamma_{\mu} \ell_L^{\beta})(\bar{q}_L^i \sigma^I \gamma^{\mu} q_L^j)$ 1.5 rare B decays 1σ , 2σ 1.0 $3q + 2q$ $3q^2$ $3q + 2q^2$ $\frac{1}{5}$ 0.5 -

~4σ

 -1.5

 0.0

 $\!-0.5$

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

-
-
-
-
-
-
- - -

Deviations in **semileptonic** processes, strong bounds from ΔF=2 & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

Deviations in **semileptonic** processes, strong bounds from ΔF=2 & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

 \gg Very strong bounds on LQ couplings to 1st generation fermions, e.g. K_L \rightarrow µ e, etc..

Deviations in **semileptonic** processes, strong bounds from ΔF=2 & CLFV processes.

TeV-scale leptoquark coupled to **3rd** and **2nd** generation $g(3rd) > g(2nd) > g(1st)$

To address both B-anomalies:

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

>> Very strong bounds on LQ couplings to 1st generation fermions, e.g. K_L → μ e, etc..

TeV-scale leptoquark coupled to **3rd** and **2nd** generation $g(3rd) > g(2nd) > g(1st)$

S₁ and S₃ - contributions to anomalies 1 af ^o bn bet

The large couplings to τ imply signatures in DY tails of *pp→ τ τ*, Also B_s -mixing and $B \rightarrow K^*$ v \bar{v} are close to present bounds.

Belle-II will be able to **completely test R(D(*)) with 5ab-1**. **Measuring R(K(*)) with 3% precision requires 50ab-1**. Discover SM value of $B^0 \to K^{*0} \nu \overline{\nu}$ with ~5ab-1 Bound on $Br(\tau \rightarrow \mu \gamma \; (3 \; \mu))$ will **improve by a factor of 6 (60)**.

Near Future Prospects in Flavour

today:

Belle-II μ → e LFV

S1, S3: Higgs, EW and mW

The two leptoquarks have potential couplings to the Higgs:

$$
\mathcal{L}_{\text{LQ}} \supset -\left(\lambda_{H13}(H^{\dagger}\sigma^I H)S_3^{I\dagger}S_1 + \text{h.c.}\right) - \lambda_{\epsilon H3}i\epsilon^{IJK}(H) -\lambda_{H1}|H|^2|S_1|^2 - \lambda_{H3}|H|^2|S_3^I|^2
$$

At one loop they **contribute to Higgs couplings and S, T paramseters**:

 $H^\dagger \sigma^I H) S_3^{J\dagger} S_3^K$

S1, S3: Higgs, EW and mW

The two leptoquarks have potential couplings to the Higgs:

$$
\mathcal{L}_{\text{LQ}} \supset -\left(\lambda_{H13}(H^{\dagger}\sigma^I H)S_3^{I\dagger}S_1 + \text{h.c.}\right) - \lambda_{\epsilon H3}i\epsilon^{IJK}(H^{\dagger}\sigma^I H)S_3^{I\dagger}S_1 + \lambda_{H12}H^2|S_3^{I\dagger}|^2
$$

At one loop they **contribute to Higgs couplings and S, T paramseters**:

 $\kappa_g - 1 = -(3.51\lambda_{H3} + 1.17\lambda_{H1}) \times 10^{-2}/m^2$, $\kappa_{\gamma} - 1 = -(2.32\lambda_{H3} + 0.66\lambda_{eH3} - 0.11\lambda_{H1}) \times 10^{-2}/m^2$, $\kappa_{Z\gamma} - 1 = -(1.89\lambda_{H3} + 0.23\lambda_{\epsilon H3} - 0.033\lambda_{H1}) \times 10^{-2}/m^2$.

S1, S3: Higgs, EW and mW

The two leptoquarks have potential couplings to the Higgs:

$$
\mathcal{L}_{\text{LQ}} \supset \left[- \left(\lambda_{H13} (H^\dagger \sigma^I H) S_3^{I\dagger} S_1 + \text{h.c.} \right) - \lambda_{\epsilon H3} i \epsilon^{IJK} (H^\dagger \sigma^I H) S_3^{I\dagger} S_1 + \text{h.c.} \right]
$$

$$
- \left. \lambda_{H1} |H|^2 |S_1|^2 - \lambda_{H3} |H|^2 |S_3^I|^2 \right]
$$

Could these LQ address the m_w discrepancy recently claimed by CDF? Yes!

14

Intriguing experimental hints for New Physics. We should wait and see what more data will bring…

meanwhile, they spawned some interesting model building

(a partial selection in what follows)

From Leptoquarks to the Higgs, and back

From B-anomalies

MLQ ~ TeV

Hierarchical couplings to SM fermions

 $g(3rd) > g(2nd) > g(1st)$

From Leptoquarks to the Higgs, and back

From B-anomalies

MLQ ~ TeV

 $y(3rd) > y(2nd) > y(1st)$ Hierarchical Yukawa couplings

Hierarchical couplings to SM fermions

 $g(3rd) > g(2nd) > g(1st)$

MBSM ≲ **TeV**

Higgs & EW hierarchy

From Leptoquarks to the Higgs, and back

From B-anomalies

MLQ ~ TeV

Hierarchical couplings to SM fermions

 $g(3rd) > g(2nd) > g(1st)$

MBSM ≲ **TeV**

Higgs & EW hierarchy

Hierarchical Yukawa couplings

 $y(3rd) > y(2nd) > y(1st)$

LQ from same UV responsible for the EW scale, connection between LQ couplings and Yukawa couplings.

16

Model building for LQs and Higgs

Scalar Leptoquarks + Higgs as pNGB

> extensions of Composite Higgs models <

U1 Vector Leptoquark as TC Pati Salam + Higgs as pNGB [2004.11376]

[0910.1789, 1412.1791, 1803.10972]

or

16

> extensions of Composite Higgs models < inducing some tension in the models \sim extensions of Composite Higgs models \leq

U1 Vector Leptoquark as TC Pati Salam + Higgs as pNGB [2004.11376] They usually generate under the F $+$ **Higgs as pN**

Higgs Yukawas and LQ couplings can arise from same dynamics. $\frac{1}{10}$ mass $\frac{1}{2}$ mass scale of the other matrix $\frac{1}{2}$ countributions can arise from same dynamics.

[0910.1789, 1412.1791, 1803.10972]

or

Model building for LQs and Higgs arise as a composite vector resonance of a new strongly coupled sector lying at the TeV \sim stall and scale in the Model boson and the Higgs boson and Higgs and Higgs and boson (pNGB), as in composite Higgs models. In all these scenarios other states, such as

Scalar Leptoquarks + Higgs as pNGB neutral or color-octet vectors, are necessarily present with a mass close to the LQ one.

- Higgs $+$ \wedge \sim g_p f \sim 10 TeV *other resonances - f* $+m_{pNGB} \sim O(1)$ TeV *Leptoquarks* Gap $m_{SLQ} \ll \Lambda$ **Little** hierarchy problem The scalar leptoquarks *S*¹ and *S*3, on the other hand, can be naturally lighter than $t \Lambda \sim g_p$ f ~ 10 TeV symmetric other resonances $T_{\text{magn}} \sim O(1)$ TeV serval are the leading ones. The leading ones. The leading in Refs. ϵ t approach, where H_{H} and H_{H} and H_{H} and H_{H} and H_{H} ered. In such a setup it is natural to consider also the Higgs boson as a pNGB of the same discrimation of the problem ness problem of the electroweak scale. The *S*¹ and *S*³ LQs have already been considered,

U1 Vector Leptoquark as TC Pati Salam + Higgs as pNGB $\overline{\mathbf{u}}$ Condensation and property $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Condensation $\mathbf{L}\mathbf{e}$ [2004.11376] They usually generate under the F $+$ **Higgs as pN**

> The condensate of the strong sector, that gives the Higgs as pNGB, **rances** also breaks spontaneously an extra SU(4) gauge symmetry.
The NGBs are eaten by the U₁ LQ. The NGBs are eaten by the U_1 LQ. $\begin{array}{r} \text{The collection of a group section, and gives the right-angled point.} \ \text{or} \ \$

> > $M_U \sim g_4 f$

> extensions of Composite Higgs models <

$$
\langle \bar{\Psi}_i \Psi_j \rangle = -B_0 f^2 \delta_{ij}
$$

 $[0910.1789, 1412.1791, 1803.10972]$ > extensions of Composite Higgs models < [0910.1789, 1412.1791, 1803.10972]

Higgs Yukawas and LQ couplings can arise from same dynamics. $\frac{1}{10}$ mass $\frac{1}{2}$ mass scale of the other matrix $\frac{1}{2}$ countributions can arise from same dynamics.

Model building for LQs and Higgs is expected to alter the RG evolution of the gauge couplings. arise as a composite vector resonance of a new strongly coupled sector lying at the TeV \sim stall and scale in the Model boson and the Higgs boson and Higgs and Higgs and boson (pNGB), as in composite Higgs models. In all these scenarios other states, such as

Scalar Leptoquarks + Higgs as pNGB neutral or color-octet vectors, are necessarily present with a mass close to the LQ one.

or

 $m_{SLQ} \ll \Lambda$ $M_{U \sim \Omega} f$ $\text{NU} \sim \text{g}$ transforming in the adjoint of SU(10)*D*. Under *GSM* = SU(3)*^c* ⇥SU(2)*^w* ⇥U(1)*^Y* they are arranged in the following irreps:
And the following in the
And the fo **- Higgs** $+$ \wedge \sim g_p f \sim 10 TeV *other resonances - f* $+m_{pNGB} \sim O(1)$ TeV *Leptoquarks* Gap $m_{SLQ} \ll \Lambda$ **Little** hierarchy problem The scalar leptoquarks *S*¹ and *S*3, on the other hand, can be naturally lighter than $t \wedge \sim g_{\rho}$ f ~ 10 TeV arise as pNGB of the spontaneously broken global graphs are pNGB of the spontaneously broken graphs and ~ 10 symmetric other resonances $T_{\text{magn}} \sim O(1)$ TeV serval are the leading ones. The leading ones. The leading in Refs. ϵ t approach, where H_{H} and H_{H} and H_{H} and H_{H} and H_{H} ered. In such a setup it is natural to consider also the Higgs boson as a pNGB of the same discrimation of the problem ness problem of the electroweak scale. The *S*¹ and *S*³ LQs have already been considered,

Scalar Leptoquarks + Higgs as pNGB $\sqrt{\frac{2.163 \text{ N}}{3 \text{ calar} \cdot \text{l}}$ entoquarks + Higgs as nNGB or $\sqrt{\frac{1}{2} \text{ V}}$ Vector Lept

U1 Vector Leptoquark as TC Pati Salam + Higgs as pNGB [2004.11376] They usually generate under the F $+$ **Higgs as pN**

> The condensate of the strong sector, that gives the Higgs as pNGB, **rances** also breaks spontaneously an extra SU(4) gauge symmetry.
The NGBs are eaten by the U₁ LQ. The NGBs are eaten by the U_1 LQ. $\begin{array}{r} \text{The collection of a group section, and gives the right-angled point.} \ \text{or} \ \$

> extensions of Composite Higgs models <

$$
\langle \bar{\Psi}_i \Psi_j \rangle = -B_0 f^2 \delta_{ij}
$$

 $[0910.1789, 1412.1791, 1803.10972]$ > extensions of Composite Higgs models < [0910.1789, 1412.1791, 1803.10972]

Higgs Yukawas and LQ couplings can arise from same dynamics. $\frac{1}{10}$ mass $\frac{1}{2}$ mass scale of the other matrix $\frac{1}{2}$ countributions can arise from same dynamics.

 $m_{SLQ} \ll \Lambda$ $M_{U \sim \Omega} f$ $\text{NU} \sim \text{g}$ valence irrep. valence irre $+$ \wedge \sim g_p f \sim 10 TeV *other resonances - f* $+m_{pNGB} \sim O(1)$ TeV *Leptoquarks* Gap $m_{SLQ} \ll \Lambda$ **Little** hierarchy problem The scalar leptoquarks *S*¹ and *S*3, on the other hand, can be naturally lighter than $t \wedge \sim g_{\rho}$ f ~ 10 TeV arise as pNGB of the spontaneously broken global graphs are pNGB of the spontaneously broken graphs and ~ 10 symmetric other resonances $T_{\text{magn}} \sim O(1)$ TeV $\int f$ Leptoquarks \int Deviations in Figure coupling on an interior field \int discrimation of the problem

Model building for LQs and Higgs is expected to alter the RG evolution of the gauge couplings. arise as a composite vector resonance of a new strongly coupled sector lying at the TeV \sim stall and scale in the Model boson and the Higgs boson and Higgs and Higgs and boson (pNGB), as in composite Higgs models. In all these scenarios other states, such as

$$
M_U\!\sim\!g_4f
$$

or

- Higgs

transformation in the adjoint of Supering Companies (Superintendo Companies Higgs models) arranged in the beviations in Higgs couplings as in the following in the following in the following state of the following state o Deviations in Higgs couplings as in typical Composite Higgs models: $\delta \kappa_{V,f} \sim \nu^2/f^2 \sim \text{(few)}$ % theory (EFT) and the new state however only the new state in the new state were considered and the new state \sim ered. Interactive interaction in the $\partial K_{V,f} \simeq {\cal V}^2$ / $J^2 \simeq$ (TeW) $\%$

ness problem of the electroweak scale. The *S*¹ and *S*³ LQs have already been considered,

17

Several interesting anomalies in B decays, pointing to New Physics at the TeV scale. Waiting for updates from LHCb and Belle-2. Correlated signals are expected $(p \ p \rightarrow \tau \tau, b \rightarrow s \nu \nu, \text{ lepton LFV}, \dots).$

Conclusions

Connections to Higgs physics are not direct, but the mediators responsible for the anomalies could leave an impact on Higgs couplings.

Flavour anomalies + EW hierarchy problem point both to New Physics at TeV. A combined solution seems natural. For example: extensions of Composite Higgs models with scalar or vector leptoquarks.

Deviations in Higgs couplings due to its composite nature are then expected.

S 1 and S 3 - global analysis

Using the complete one-loop matching to SMEFT, we include in our analysis the following observables.

 $\overline{\overline{\overline{J}}\overline{\overline{J}}}$

All these are used to build a **global likelihood** .

$$
-2\log\mathcal{L}\equiv\chi^2(\lambda_x,M_x)=\sum_i\frac{\left(\mathcal{O}_i(\lambda_x,M_x)-\mu_i\right)^2}{\sigma_i^2}\;.
$$

 \rightarrow Cannot fit $(g-2)_{\mu}$ $λ$ **1R** = 0

(see backup slides for a $S_1 + S_3$ scenario that addresses also the muon magnetic moment)

 $R(D^{(*)})$

 $\lambda^{\prime\prime}$ =

S₁ and S₃ — only LH couplings λ **1R** = θ \rightarrow Cannot fit (g-2)_μ $R(D^{(*)})$ $|g_\tau/g_\mu|$ (R_D,R_{D^*}) 68%CL 95%CL 99%CL $M_1=$ $M_3=1$ TeV Model $S_1+S_3^{(LH)}$ 0.3 0.4 $0.5\left\lceil$ $\lambda_{s\tau}^{\beta}$ $3{\cal L}$ $=$ $\lambda_{b_{\tau}}^{3}$ $\frac{3}{b_r}$ Re[V_{ts}/V_{tb}] -0.10 -0.05 0.00 0.00 $|0.02|$ 0.04 0.06 0.08 0.10 $\lambda_{\rm b\mu}^{\rm 5\,I}$ 3 L λ^3 $\overline{}$ (see backup slides for a $S_1 + S_3$ scenario that

Figure 5: Result from the fit in the *S*¹ + *S*³ (LH) model, with only left-handed couplings. In Figure 5: Result from the fit in the *S*¹ + *S*³ (LH) model, with only left-handed couplings. In the upper panels we show the preferred regions in the planes of two couplings, where the two

 ^N = (NHC*,* 1*,* 1)*^YL*⁺ ¹ $\overline{\mathbf{A}}$ *E* $\overline{D}U(T)$ *,* $\mathbf{U} = \mathbf{SU(10)}\mathbf{L} \times \mathbf{SU(10)}\mathbf{R} \times \mathbf{U(1)}\mathbf{V}$ and $H = \mathbf{SU(10)}\mathbf{V}$ $\langle\Psi$ **SU(***N***HC) confines at ΛHC ~ 10 TeV** $G = SU(10)_L \times SU(10)_R \times U(1)_V$ $\xrightarrow{f \sim 1 \text{TeV}} H = SU(10)_V \times U(1)_V$ $G = SU(10)_L \times SU(10)_R \times U(1)_V$ \longrightarrow $H = SU(10)_V \times U(1)_V$ H and LQ are close partners!!

Several states are present at the TeV scale as pNGB, including $H_1 \sim i\sigma^2(\bar{\Psi}_L\Psi_N)$

F \overline{X} *wo* Higgs double *j*=*L,N,E,Q* H_{SM} , $H_2 \sim (1,2)_{1/2}$ $\begin{equation*} \begin{array}{lll} \text{Two Higgs doublets:} & \text{H}_{\text{SM}} & \tilde{\text{H}}_2 \sim (\mathbf{1.2})_{1/2} \end{array} & \begin{array}{lll} \text{H}_{2} \sim (\bar{\Psi}_{E} \Psi_{L}) \end{array} \end{equation*}$ states and $\frac{1}{2}$ $\frac{1}{2}$ onigher and implet $L\alpha$. By $(0,1)^{-1/3}$ 0 $(0,9)^{-1/3}$ $S_3 \sim (\bar{\Psi}_Q \sigma^a \Psi_L)$ Singlet and Triplet LQ: $S_1 \sim (3,1)_{-1/3} + S_1 \sim (3,3)_{-1/3}$ Two Higgs doublets: HSM, H $\frac{1}{2}$

 ${\cal L}_{\rm 4-Fermi} \sim \frac{c_{\psi\Psi}}{\Lambda^2} \bar{\psi}_{\rm SM} \psi_{\rm SM} \bar{\Psi} \Psi \quad \stackrel{E \lesssim \Lambda_{HC}}{\longrightarrow} \sim y_{\psi\phi} \, \bar{\psi}_{\rm SM} \psi_{\rm SM} \, \phi + \nonumber$ Λ_t^2 , $\frac{1}{2}$ and $\frac{1}{2}$ are the SM gauge groups. + impose approximate U(2)⁵ flavor symmetry. fulfilavour p_{max} arising the LQ couplings to fermions, including the fit the fit the fit the fit to fermions, including the $\mathcal{G}\psi\phi$ φ sim φ is \cdots LQ couplings \mathbf{f} as the present as the present limits from direct searches, are presented in Section 6. Finally, I amplitude in \mathbf{f} $C_{\psi\Psi}$ in the following in the ^π˜¹ [∼] (Ψ¯ *^Q^T ^A*Ψ*Q*) (8*,* ¹)⁰ ^π˜³ [∼] (Ψ¯ *^Q^T ^A*σ*a*Ψ*Q*) (8*,* ³)⁰ 8 + 24 *^R*˜² [∼] (Ψ¯ *^E*Ψ*Q*) (3*,* ²)1*/*⁶ *^T*² [∼] (Ψ¯ *^Q*Ψ*^N*) (¯3*,* ²)5*/*⁶ 12 + 12 ^π˜¹ [∼] (Ψ¯ *^Q^T ^A*Ψ*Q*) (8*,* ¹)⁰ ^π˜³ [∼] (Ψ¯ *^Q^T ^A*σ*a*Ψ*Q*) (8*,* ³)⁰ 8 + 24 $L_{\mathrm{4-Fermi}} \sim$ c_{ψ} Λ_t^2 *t* $\bar{\psi}_{\rm SM} \psi_{\rm SM} \bar{\Psi} \Psi \quad \stackrel{E \leq \Lambda_{HC}}{\longrightarrow} \sim y_{\psi \phi} \, \bar{\psi}_{\rm SM} \psi_{\rm SM} \, \phi + \ldots \quad \quad \begin{array}{c} \text{Yukawas 8} \ \text{I} \ \text{O} \ \text{C} \end{array}$ $+$ impose approximate $U(2)^5$ flavor symmetry

A Fundamental Composite Higgs + LQ Model set of fermions in the fundamental of this new gauge group and charged under the SM above the scale ⇤*HC*, in order to generate the top Yukawa and the leptoquark couplings, described in terms of the matrix *^U*(φ) [≡] *^u*(φ)² generating a set of 99 real pNGBs transforming in the adjoint of SU(10)*D*. They can be described in terms of the matrix *^U*(φ) [≡] *^u*(φ)² , \blacksquare described in terms of the matrix *^U*(φ) [≡] *^u*(φ)² generating a set of 99 real pNGBs transforming in the adjoint of SU(10)*D*. They can be

Gauge group: $\text{SU}(N_{HC}) \times \text{SU}(3)_c \times \text{SU}(2)_w \times \text{U}(1)_Y$ *^L* = (NHC*,* 1*,* 2)*^Y^L , ^Q* = (NHC*,* 3*,* 2)*^YL* ¹ Gauge group: *"HyperColor"* $SU(N_{HC}) \times SU(3)_c \times SU(2)_w \times U(1)_Y$ \mathbb{F}_{q} is expected to form a condensation is expected to form a condensation in Ψ_{Q} | \mathbb{N}_{HC}

$$
\langle \bar{\Psi}_i \Psi_j \rangle = -B_0 f^2 \delta_{ij}
$$
\n[DM. 1803.10972]\n
$$
T_2 V
$$

 $TV = \frac{STI(10) \times IT(1)}{T}$ content, which is a set of two scalar LQ among other fields. The two scalar LQ among other fields. $\mathcal{S}_{\mathcal{S}}$ and lefton, the H₂ $\sim (\bar{\Psi}_F \Psi_I)$ $\text{H}_2 \sim (1,2)_{1/2}$ $\text{H}_2 \sim (\Psi_E \Psi_L)$ $m = \frac{1}{2} m + \frac{1}{2} m$ sector. The strong sector. This generates a sector. The pNGB, which is not the pNGB, $S_3 \sim (\bar{\Psi}_0 \sigma^a \Psi_I)$ is $S_3 \sim (\bar{\Psi}_0 \sigma^a \Psi_I)$ $H = SU(10)_V \times U(1)_V$ **h**_{1/2} ∼ ($\bar{\Psi}_E \Psi_L$) $S_1 \sim (3.3)_{1/3}$ $S_1 \sim (\bar{\Psi}_Q \Psi_L)$ appendix C.2 for details): The contract of the
): The contract of the contract

 $\mathcal{L} = \mathcal{L} \cup (\mathcal{L} \cup \mathcal{V}) \setminus \mathcal{L} \cup (\mathcal{L} \cup \mathcal{V})$ H and LQ are close partners!!

 $P(\psi_{\rm SM} \phi + \dots \frac{Y_{\rm UKawas}}{P_{\rm O}})$ v_{SNI} ϕ + \dots Yukawas & Yukawas & LQ couplings

L L L Exercise above, *f* **is the expression above,** *f* **is the expression above,** *f* **is the expression above,** $f(x) = f(x)$ **is the expression above,** $f(x) = f(x)$ **is the expression of the expression of the expression of the**

 \sim Table 1: Extra Dirac fermions charged under the hypercolor SU(*N*, 1803, 10972]

pNGBs are arranged into representations of *G*SM = SU(3)*^c* × SU(2)*^w* × U(1)*^Y* as (see The complete list of generators and the SM embedding is detailed in appendix C.1. The

NGB, including
\n
$$
H_1 \sim i\sigma^2(\bar{\Psi}_L\Psi_N)
$$

\n $H_2 \sim (\bar{\Psi}_E\Psi_L)$
\n $S_1 \sim (\bar{\Psi}_Q\Psi_L)$
\n $S_1 \sim (\bar{\Psi}_Q\Psi_L)$
\n $S_3 \sim (\bar{\Psi}_Q\sigma^a\Psi_L)$

appendix C.2 for details):

Composite Higgs + Vector LQ

[2004.11376]

 $\langle \bar{\zeta}_L^{\alpha} \zeta_R^{\beta} \rangle = -\frac{1}{2} B_{\zeta} f_{\zeta}^2 \delta_{\alpha\beta}$

 $SU(4)_D$

15 eaten NGB: - heavy coloron U_1 LQ - Z' $M_U \sim g_4 f_\zeta$

Heavy fermions

For the Composite Higgs part: $\langle \bar{\xi}_L^{ic} \xi_L^j \rangle = \langle \bar{\xi}_R^{ic} \xi_R^j \rangle = -\frac{1}{2} B_\xi f_\xi^2 \, \epsilon_{ij}$ $SU(4)_{\text{EW}} \times U(1)_A \rightarrow Sp(4)_{\text{EW}}$ 6 pNGB: - Higgs doublet

 \times

 $SU(4)$

 $SU(3)'\times U(1)'$

Light fermions

- 2 singlets

Vector leptoquark UV models

Flavour hierarchy \leftrightarrow Hierarchy of scales (RG stable) Accidental approximate $U(2)^5$ at low energy!

This picture can be embedded in a warped 5D compactification

Fuentes-Martin et al; 2203.01952

EW hierarchy problem can be addressed by adding a further Planck brane.