HIGGS COUPLINGS TO FERMIONS

Tao Han PITT PACC University of Pittsburgh

THE HIGGS MAGIC

 $m_{H} = 125.38 \pm 0.14 \; GeV \textit{ PLB 805 (2020) 135425}$

The Standard Model – first time ever!

- Quantum mechanical
- **Relativistic**
- Renormalizable
- Perturbatively unitary to exponentially high scales, perhaps to the Planck scale!

All known physics

HIGGS BL THE MISHES E

Masses

- Particle mass hierarchy
- Tiny neutrino masses!
- Patterns of quark, neutrino mixings
- New CP-violation sources?

Higgs Yukawa couplings as the pivot for all !

THE HIGGS INQUIRIES

In the SM: $V(|\Phi|) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$ $\langle |\Phi| \rangle = v = (\sqrt{2}G_F)^{-1/2} \approx 246 \text{ GeV}$ m $\approx 126 \text{ GeV}$ Re(\$) $M_{W,Z}$ versus m_H versus m_f : (1). $M_{WVZ} = (\sqrt{M_Z} G_F)^{\mu+1} \sqrt{2} \approx 1246_v G_e^2 \sqrt{\frac{1}{2}} M_Z^2 Z^{\mu} Z_{\mu} (1+\frac{H}{v})^2$ BSMneasy240 break SU(2) \approx gauge/sector: Fundamental scalars (SUSY) Dynamical breaking (TC, composite ...) Non-linear realization ($m_H \rightarrow \infty$, or "Higgsless") (2). $m_{\rm H}$: $\frac{1}{2}m_H^2 H^2 + \frac{m_H^2}{2m} H^3 + \frac{m_H^2}{8m^2} H^4$ BSM: easy to construct a scalar model, but model-parameters quadratically sensitive to a new physics scale: $\delta m_{H}^{2} \propto -\frac{k^{2}}{4\pi^{2}}\Lambda^{2}$ (M²_{SUSY}, M²_{comp}, M²_{PL}...)

THE HIGGS INQUIRIES

(3). m_f: In the SM: $\mathcal{L}_{Y} \sim -\sum_{i,j} (Y_{ij}^{d} \bar{Q}_{iL} \Phi d_{jR} + Y_{ij}^{u} \bar{Q}_{iL} \tilde{\Phi} u_{jR})$ $Y_{ij}^{e} \bar{L}_{iL} \Phi e_{jR} + Y_{ij}^{\nu} \bar{L}_{iL} \tilde{\Phi} \nu_{jR})$ $\mathcal{L}_{Y} \sim \sum_{f} m_{f} \bar{f} f(1 + H/v) \quad Y_{f} = \frac{\sqrt{2} m_{f}}{v}$

- Vastly different hierarchical masses
- Neutrino masses: Dirac vs. Majorana?
- Weak interactions with ad hoc flavor mixings and the CPv phase(s)

Higgs is responsible for our existence! But is Y_e fixed by m_e? i.e., new physics modification?

 \checkmark atomic radius $\propto \frac{1}{\sim}$ m,

Giulia Zanderighi's talk

THE HIGGS INQUIRIES

(3). $\mathbf{m}_{\mathbf{f}}$: In the SM: $\mathcal{L}_{Y} \sim -\sum_{i,j} (Y_{ij}^{d} \bar{Q}_{iL} \Phi d_{jR} + Y_{ij}^{u} \bar{Q}_{iL} \tilde{\Phi} u_{jR})$ $Y_{ij}^{e} \bar{L}_{iL} \Phi e_{jR} + Y_{ij}^{\nu} \bar{L}_{iL} \tilde{\Phi} \nu_{jR})$ $\mathcal{L}_{Y} \sim \sum_{f} m_{f} \bar{f} f(1 + H/v) \quad Y_{f} = \frac{\sqrt{2} m_{f}}{v}$

BSM: much harder to accommodate

- Generate multiple mass scales
- Avoid FCNC
- Avoid Excessive CPv
- Q's:
- Minimal Flavor Violation? Why the flavor mixing aligned with the SM Yukawa form?

Exploring flavor physics is complementary & rewarding, Measuring Higgs Yukawa couplings is indispensable: **The smaller the coupling is, the more sensitive to deviations!**

Seeking for deviations from the SM: $\kappa_f = \frac{Y_f}{Y_f^{SM}}$

• 2HDM: $\kappa_{u,d} = \frac{\cos \alpha}{\sin \beta}, \quad \frac{\sin \alpha}{\cos \beta}$ (Type I, II, L,...)

G.C. Branco et al., arXiv:1106.0034.

Other extensions, See talks by Ian Lewis, Heidi Rzehak, Tania Robins ...

• SMEFT: a linear representation:

 $\mathcal{L}_{Y} \sim \sum_{n=0}^{N} \frac{Y_{ij}^{n}}{\Lambda^{2n}} (\Phi^{\dagger} \Phi)^{n} \bar{L}_{iL} \Phi e_{jR} \to \delta \kappa_{f} \sim Y_{1} \frac{v^{2}}{\Lambda^{2}} \sim O(\text{a few}\%) \text{ the target!}$

and perhaps flavor changing $H \rightarrow \mu \tau$! TH, D. Marfatia, PRL 86, 1442 (2001); new CPv phases in Yukawa ... Harnik, Kopp, Zupan, arXiv:1209.1397.

• HEFT: a non-linear representation:

$$U = e^{i\phi^a \tau_a/v} \quad \text{with} \quad \phi^a \tau_a = \sqrt{2} \begin{pmatrix} \frac{\phi^0}{\sqrt{2}} & \phi^+ \\ \phi^- & -\frac{\phi^0}{\sqrt{2}} \end{pmatrix} \quad L_{\mathrm{Y}} \sim -\frac{v}{2\sqrt{2}} \left[\sum_{n \ge 0} \mathbf{y}_n \left(\frac{H}{v} \right)^n (\bar{\nu}_L, \, \bar{\mu}_L) \, U(1 - \tau_3) \begin{pmatrix} \nu_R \\ \mu_R \end{pmatrix} + \mathrm{h.c.} \right]$$

The scale is at $\Lambda \sim 4\pi v \leftarrow$ close by the deviation can be sizable: $\rightarrow \delta \kappa_f \sim Y_1 \frac{H}{v} \sim O(1)$

Snowmass Energy Frontier summaries

EF04 report: https://arxiv.org/pdf/2209.08078.pdf

Higgs couplings@LHC: talk by Stefano Rosati

Sensitivities to Yukawa couplings at Higgs factories

EF01/02 report: <u>https://arxiv.org/pdf/2209.07510.pdf</u> Symbols of sensitivities:

★ $\leq \mathcal{O}(10^{-3})$ $\diamond \mathcal{O}(.01)$ $\diamond \mathcal{O}(.1)$ $\diamond \mathcal{O}(1)$ $\Box > \mathcal{O}(1)$ Provide Study Beyond HL-LHC										
Achieving percentage/sub-percentage level! $y_u y_d y_s y_c y_b y_t y_e y_\mu y_\tau$							y_{τ}			
2,	LHC/HL-LHC				٠	٠	٠		•	•
-LHC	ILC/C^3 250				٠	٠	٠		•	٠
Ŧ	CLIC 380			?	٠	۲	٠		٠	٠
sb	FCC-ee 240			?	٠	۲	٠		٠	٠
Hig	CEPC 240			?	٠	٠	٠		٠	٠
	μ-Collider			?	•	*	٠		٠	٠
	FCC-hh/SPPC	?	?	?	?	٠	٠	?	٠	٠

Higgs couplings@LHC: Stefano Rosati et al.

THE HIGGS PURSUITS Hff couplings : Much work has been done, many great talks, I will discuss some ideas. $m_H^2 = m_{H0}^2 - \frac{3}{8\pi^2} y_t^2 \Lambda^2$ (1). y_t : The most wanted! h The current LHC sensitivity: tc g 0000000 $\delta \kappa_t = 0.35^{+0.36}_{-0.34}$ (ATLAS) (G. Di Gregorio, ICHEP 2022) g 0000000 talks by Giulia Zanderighi; Judith Katzy

Future lepton collider sensitivity:

Values in % units		LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC
δy_t	Global fit	6.12	2.53	2.08	1.30	0.739	1.48
	Indiv. fit	5.08	1.85	1.80	1.17	0.705	1.26

Table 8: Uncertainties for the top-quark Yukawa coupling at 68% probability for different scenarios, in percentage. The ILC500, ILC550 and CLIC scenarios also include the HL-LHC. The ILC1000 scenario includes also ILC500 and HL-LHC.

EF04 report: https://arxiv.org/pdf/2209.08078.pdf

ttH coupling @ high scales:

1. Yukawa $y_t(Q)$ RGE running: 2. Off-shell probe of EFT operators:

t(p)

HL-LHC@3 ab⁻¹ on new physics scale:

	Γ_H / Γ_H^{SM}	Λ_{EFT}
$H^* \to ZZ \to \ell\ell\nu\nu$	1.31	$0.8 { m TeV}$
$H^* \to ZZ \to 4\ell$	1.3 (68% CL) [33]	0.55 TeV [34]

Higgs off-shell: talks by Pascal Vanlaer, Michiel Jan Veen

3. Composite form factors:

$$\Gamma(q^2/\Lambda^2) = \frac{1}{(1+q^2/\Lambda^2)^n}$$

D. Goncalves, TH, S. Mukhopadhyay, arXiv:1710.02149 (PRL, 2017); arXiv:1803.09751; D. Goncalves, TH. I. Leung, H. Qin, arXiv:2012.05272; R. Abraham, D. Goncalves, TH, S.C.I. Leung, H. Qin, arXiv:2012.05272.

HL-LHC sensitivity projection: a factor of few from SM

Future HL-LHC: $\kappa_c \leq 3$. [2201.11428]

EF01/02 report: <u>https://arxiv.org/pdf/2209.07510.pdf</u> Hbb, Hcc: talks by Susan Dittmer, Alessandro Calandri; Marco Stamenkovic, Miha Muskinja

Higgs production rate is high: #H@LHC ~ 50 M /ab ! Need new ideas!

- VBF \rightarrow H+ γ :
- Striking signatures and sizable signal events
- Extra handle to trigger on
- Suppression of gluon-rich background *q*

B. Carlson, TH, I. Leung, aXive:2105.08738

- Upper bound on κ_c at 95% C.L in absence of systematics:

	LHC	Cut-based	BDT	ZH [16, 17]	Fit [33]	<i>Hc</i> [31]	$H \to c \bar{c} \gamma$ [41]
	$36.1 { m ~fb^{-1}}$	20	16	10	-	-	-
v _C	3 ab^{-1}	6.5	5.4	2.5	1.2	2.6 - 3.9	8.6
-	North Contraction of the	Contraction of the local sector of the secto					5.0

H → J/ψ via fragmentation:
 ➢ Enhanced from the fragmentation
 ➢ Direct coupling to charm

TH, A. Leibovich, Y. Ma, X.Z. Tan: aXive:2202.08273 (and talk by Ma)

BR($H \rightarrow c\bar{c} + J/\psi$) = $(2.0 \pm 0.5) \times 10^{-5}$ BR($H \rightarrow c\bar{c} + \eta_c$) = $(6.0 \pm 1.0) \times 10^{-5}$ Note: BR($H \rightarrow J/\psi + \gamma$) = 2.8×10^{-6} \rightarrow Dominated by VMD Hcc: talks by Alessandro Calandri; Marco

Stamenkovic

THE HIGGS PURSUITS (3). 2^{nd} generation Y_{μ} : The next hope! The current LHC sensitivity: $BR_{H \rightarrow \mu^+\mu^-}^{SM} = (2.17 \pm 0.04) \times 10^{-4}$ Observation: ATLAS: 2.0σ ; CMS 3.0σ Talk by Stefano Rosati, P. Lenzi HL-LHC sensitivity projection: $BR(H \rightarrow \mu\mu) < 10\%$ (assuming the SM width) Model-independent measurement at a muon Higgs factory: 650 100 600 $\Gamma_h =$ $\Gamma_h =$

Events

$\Gamma_h = 4.21 \text{ MeV}$	$L_{\rm step}~({\rm fb}^{-1})$	$\delta\Gamma_h$ (MeV)	δB	$\delta m_h \ ({ m MeV})$
	0.005	0.73	6.5%	0.25
R=0.01%	0.025	0.35	3.0%	0.12
	0.2	0.17	1.1%	0.06
	0.01	0.30	4.4%	0.12
R=0.003%	0.05	0.15	$\mathbf{2.0\%}$	0.06
	0.2	0.08	1.0%	0.03

Barger, Berger, Gunion, Han: <u>https://arxiv.org/abs/hep-ph/9504330;</u> TH, Z. Liu: <u>https://arxiv.org/abs/1210.7803;</u> M. Greco, TH, Z. Liu: <u>https://arxiv.org/abs/1607.03210</u>

Model-independent measurement off the resonance: High energy option

- To enhance the Yukawa coupling effects, multiple Higgs/Goldstone boson production more beneficial.
- Due to the energy-dependence, higher energy collider preferred.

At 30 TeV: $\delta \kappa_{\mu} \sim 1\%$ - 4%, corresponding to $\Lambda \sim 30$ TeV – 100 TeV.

TH, W. Kilian, N. Kreher, Y. Ma, J. Reuter, T. Striegl, K. Xie: <u>https://arxiv.org/abs/2108.05362;</u> E. Celada, TH, W. Kilian, N. Kreher, Y. Ma, F. Maltoni, D. Pagani, J. Reuter, T. Striegl, K. Xie; to appear. **THE HIGGS PURSUITS** (4). 1st generation y_e : There is a chance! $y_e = \sqrt{2}m_e/v = 2.9 \times 10^{-6}$

M. Greco, TH, Z. Liu: https://arxiv.org/abs/1607.03210 Accel. Frontier report: https://arxiv.org/pdf/2203.06520.pdf

Conclusions:

- The fermion sector involves multiple scales; numerous mixing parameters, CP phase(s)
 → rich physics, but least predictive!
- Exploring flavor physics is complementary & rewarding, measuring Higgs Yukawa couplings is indispensable
- SMEFT sets a target: $\delta \kappa_f \sim Y_1 \frac{v^2}{\Lambda^2} \sim O(\text{a few}\%)$
- HEFT could be nearly: $\delta \kappa_f \sim Y_1 \frac{H}{v} \sim O(1)$
- Many well-motivated models lead to characteristic signatures to look for: flavor violating decays, invisible decays, more Higgses, neutrino connection ...

More work to do & lots of fun!