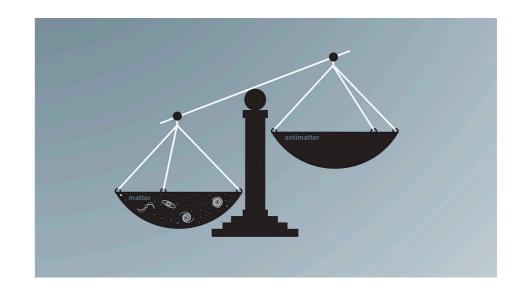
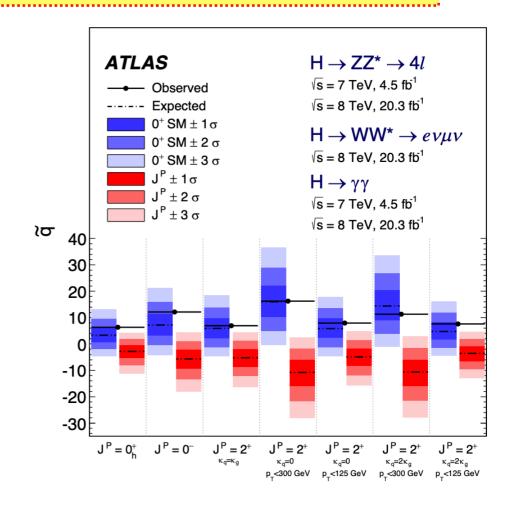
Studies of Higgs boson CP

Higgs2022 - Pisa 07/11/2022

Ahmed Tarek

on behalf of the ATLAS and CMS collaborations




Introduction

- CP violation is one of the three Sakharov conditions need to explain the baryon asymmetry of the universe
- A few sources of CP violation exist already in the Standard Model: CKM, PMNS matrices
 - However, they are significantly insufficient to account for the cosmic asymmetry

Additional CP violating sources will be unequivocal signs of physics beyond the standard model!

- ullet The Standard Model Higgs boson is a CP-even scalar with $J^{CP}=0^{++}$
- Multiple measurement were performed in Run-1 in ATLAS and CMS testing various spin and parity models
 - Comparing the SM predictions with various alternative CP models
 - Pure CP-odd Higgs excluded by more than 3σ by both experiments

CP violation in the Higgs sector?

- CP violation in the Higgs sector can be found either in:
 - ullet Extended Higgs sector models, for example 2HDM: searches for pseudo-scalar Higgs A^0
 - Anomalous Higgs boson couplings with gauge bosons and fermions
 - CP admixture couplings are still allowed experimentally! [the focus of this talk]

How to look for CPV in the Higgs sector?

- Look for deviations in SM predictions for Higgs boson rate measurements ⇒ Can not distinguish CP-even from CP-odd
- ullet Measure shape effects on CP-sensitive observables: Angles, Optimal observables, MELA, $\Delta\phi_{ii}$ and others

Where to look for CPV in the Higgs sector?

Fermionic couplings

- Affected at Tree-level: most notably with heavier third generation fermions (taus and top quarks)
- Probed in ttH production, and $H \to \tau\tau$ decays
- Typically modelled with a mixing angle between CP-even and CP-odd couplings

$$\mathcal{L}_{ffH} = \kappa_f' y_f \phi \bar{\psi}_f(\cos \alpha + i \gamma_5 \sin \alpha) \psi_f$$

Bosonic couplings

- ullet Modelled with higher order operators suppressed by BSM scale Λ
 - typically in EFT framework
- ullet Probed in VBF/VH production, and H o WW and H o ZZ decays

$$\mathcal{L}_{VVH} = \mathcal{L}_{SM} + \frac{c_i}{\Lambda^2} \phi \tilde{V}_{\mu\nu} V^{\mu\nu} + \dots$$

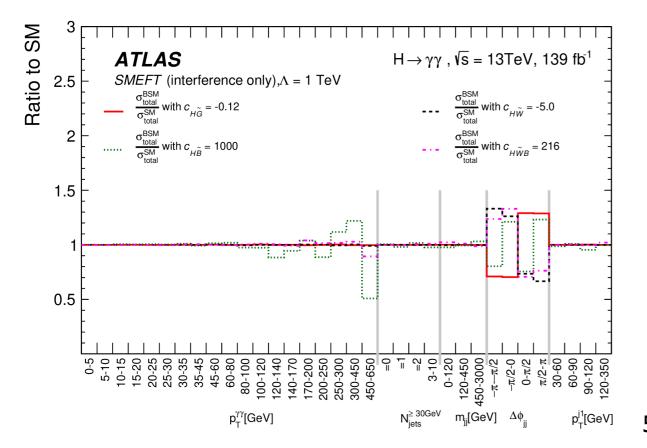
HVV couplings

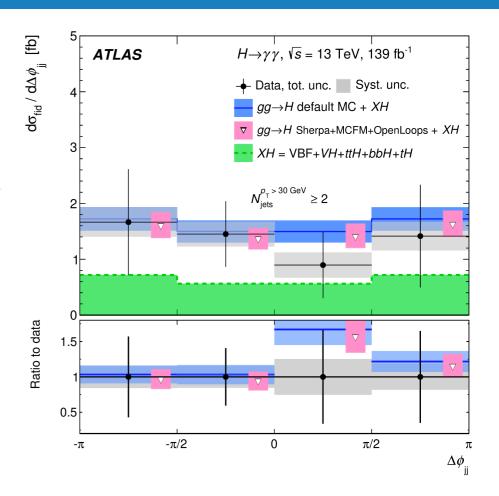
- Probing CP violation in HVV ($VV = WW, ZZ, Z\gamma, \gamma\gamma, gg$) interactions typically uses EFT approach
- Pure CPV effects appear in interference only terms

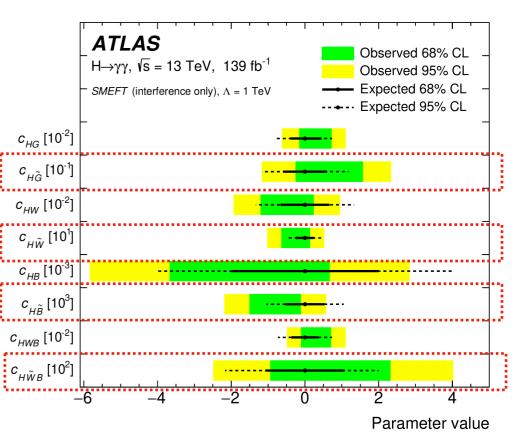
CP-even affecting only rates
$$\sigma \sim |\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + \frac{2Re\mathcal{M}_{SM}\mathcal{M}_{CP-odd}}{|\mathcal{M}_{CP-odd}|^2} + |\mathcal{M}_{CP-odd}|^2$$
 Pure CP-odd, causing shape changes to CP sensitive observables only

Interactions of Higgs and vector gauge bosons can be parameterized by:

$$\mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V}1}^2 \epsilon_{\text{V}1}^* \epsilon_{\text{V}2}^* + \frac{a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V}1}^2 \epsilon_{\text{V}1}^* \epsilon_{\text{V}2}^* + \frac{a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}}{a_3 \text{ anomalous CP-odd}}$$


 $a_2, \kappa_1, \kappa_2^{Z\gamma}$ anomalous CP-even


Today's menu

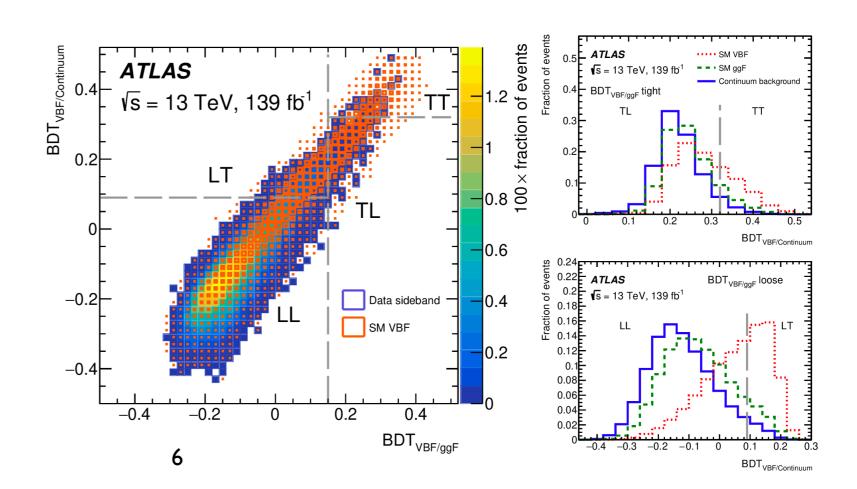

- ATLAS <u>HIGG-2019-13</u>: limits on HVV in $H \to \gamma \gamma$ using differential cross sections, <u>JHEP 08</u> (2022) 027
- ATLAS <u>HIGG-2020-08</u> : $H \rightarrow \gamma \gamma$ CP studies in VBF
- CMS <u>HIG-20-007</u>: Limits on HVV in VBF in $H \to \tau\tau$ channel, accepted in Phys. Rev. D
- CMS <u>HIG-19-009</u>: Limits on HVV using $H \rightarrow ZZ$ decays, <u>Phys. Rev. D 104 (2021) 052004</u>

ATLAS: CPV from $H \rightarrow \gamma \gamma$ differential cross-sections

- EFT interpretation of the $H \to \gamma \gamma$ differential cross-section measurement using full Run-2 data using the SMEFT Warsaw basis
 - Using unfolded cross-section measurements as input
 - ullet Signal is extracted from fit to $m_{\gamma\gamma}$ distributions
- Using simultaneous fit of five observable $(p_T^{\gamma\gamma}, N_{jet}, m_{jj}, \Delta\phi_{jj}, p_T^{j1})$ and their correlations
 - ullet Pure CPV sensitivity from signed $\Delta\phi_{jj}$ (rapidity ordered)
- Limits set on $c_{H\tilde{G}}, c_{H\tilde{W}}, c_{H\tilde{B}}$ and $c_{H\tilde{W}B}$

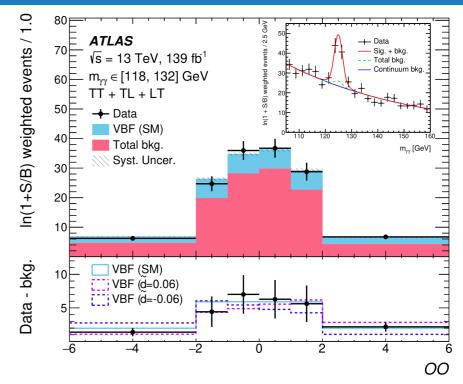
ATLAS: CPV in VBF using $H \rightarrow \gamma \gamma$

- ullet EFT interpretations using VBF enriched region in the $H o \gamma \gamma$ channel
- Using two EFT bases: HISZ and SMEFT Warsaw basis to model CP violating effects
 - HISZ basis: settling limit on \tilde{d} parameter $\tilde{d} = -\frac{m_W^2}{\Lambda^2} c_{\tilde{W}W}, \quad \tilde{d}_B = -\frac{m_W^2}{\Lambda^2} tan^2 \theta_W c_{\tilde{B}B}$

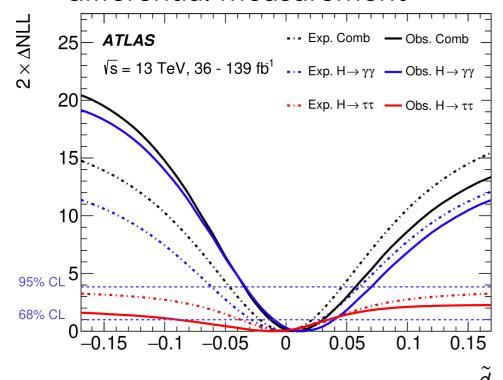

$$\tilde{d} = -\frac{m_W^2}{\Lambda^2} c_{\tilde{W}W}, \qquad \tilde{d}_B = -\frac{m_W^2}{\Lambda^2} tan^2 \theta_W c_{\tilde{B}B}$$

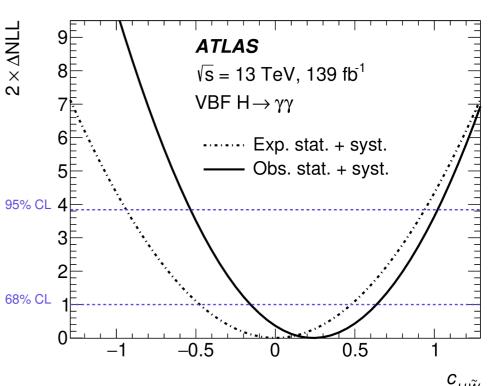
• SMEFT Warsaw basis: setting limits on $c_{H\tilde{W}}$:

$$\mathcal{L}_{\text{SMEFT}}^{\text{CP-odd}} \supset \frac{c_{H\tilde{W}}}{\Lambda^2} H^{\dagger} H W_{\mu\nu}^{I} W^{\mu\nu I}$$


- Using optimal observable $(\mathcal{O}\mathcal{O})$ as CP-sensitive observable
 - $\mathcal{O}\mathcal{O}$ mean is 0 in the SM, deviation from 0 is a sign of BSM
- Increasing VBF signal purity using 2 BDTs: VBF vs ggF and VBF vs irreducible background

$$OO = \frac{2Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$$

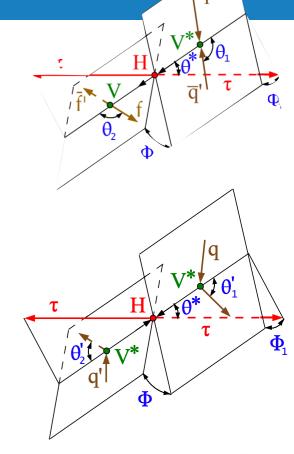


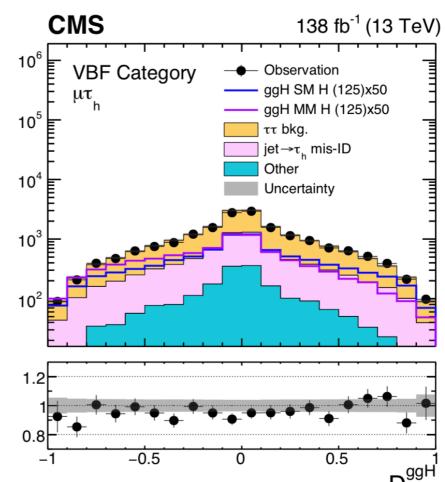

ATLAS: CPV in VBF using $H \rightarrow \gamma \gamma$ (2)

- ullet Measurement performed in 6 $\mathcal{O}\mathcal{O}$ bins
- Pure CPV sensitivity using the shape of the $\mathcal{O}\mathcal{O}$ observable (VBF normalisation is float in the fit)
- Limits extracted from NLL curves scanning different BSM couplings

- Results are combined with $H \to \tau\tau$ (Phys. Lett. B 805 (2020) 135426) results providing most stringent existing limits on CP violation in HVV couplings
 - ullet Significant improvement (~factor 5) with respect to same limits on $c_{H\tilde{W}}$ from differential measurement

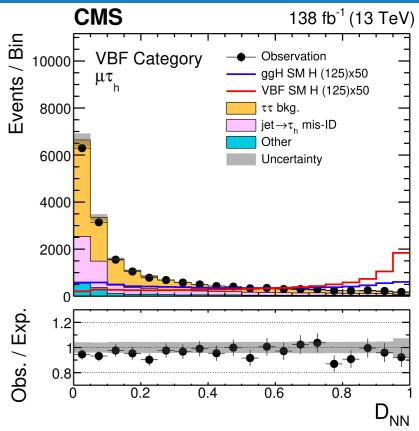
CMS: CPV in HVV using $H \to \tau \tau$

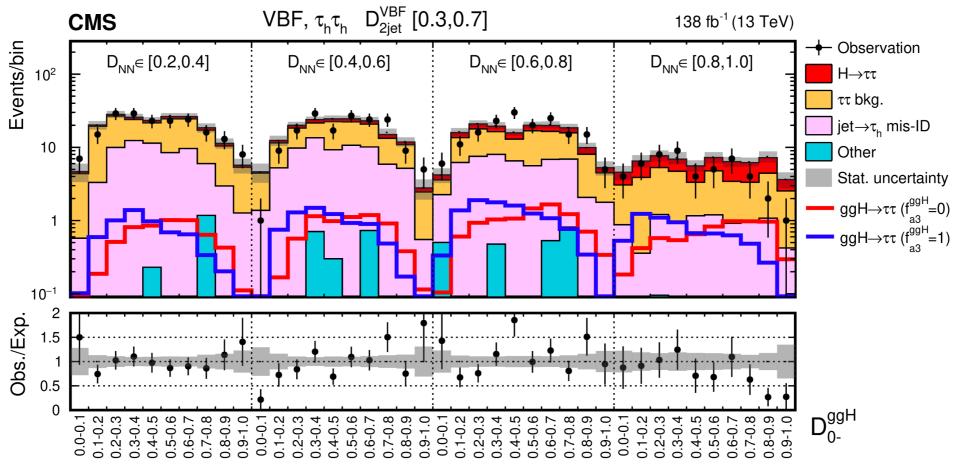

- Using $H \to \tau \tau$ channel to probe CPV using kinematics of jets from the initial state (VBF and ggF)
- ullet Two approaches used to relate ZZ and WW couplings
 - Approach 1: $a_i^{ZZ} = a_i^{WW}, \kappa_1^{ZZ} = \kappa_1^{WW}$
 - Approach 2 (SMEFT): SU(2) X U(1)
- Effect on cross-section parametrized as:


$$f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \operatorname{sgn}\left(\frac{a_i}{a_1}\right)$$

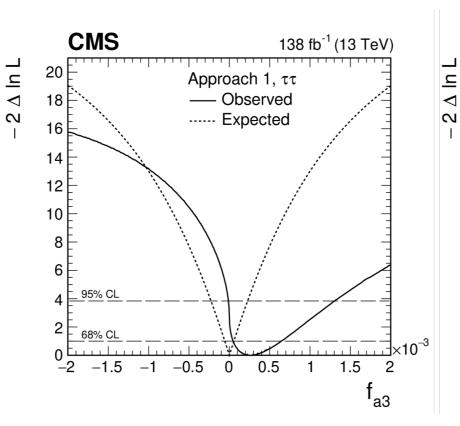
- Measuring 4 fractions: $f_{a2}, f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$
 - And one fraction for gluons $f_{a3}^{ggH} f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sgn}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$
- Using matrix element variables (MELA) to exploit production and decay information:

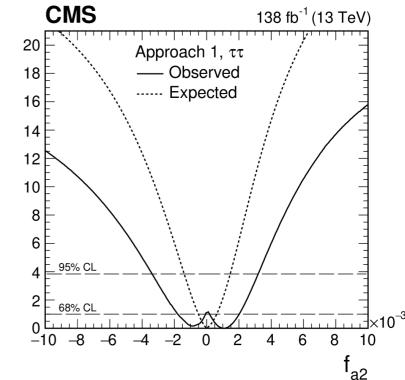
$$\mathcal{D}_{\text{BSM}} = \frac{\mathcal{P}_{\text{SM}}(\vec{\Omega})}{\mathcal{P}_{\text{SM}}(\vec{\Omega}) + \mathcal{P}_{\text{BSM}}(\vec{\Omega})}'$$


$$\mathbf{\Omega}^{\mathrm{assoc}} = \{\theta_1^{\mathrm{VBF}}, \theta_2^{\mathrm{VBF}}, \theta^{*\mathrm{VBF}}, \Phi^{\mathrm{VBF}}, \Phi_1^{\mathrm{VBF}}, q_1^{2,\mathrm{VBF}}, q_2^{2,\mathrm{VBF}}\}$$



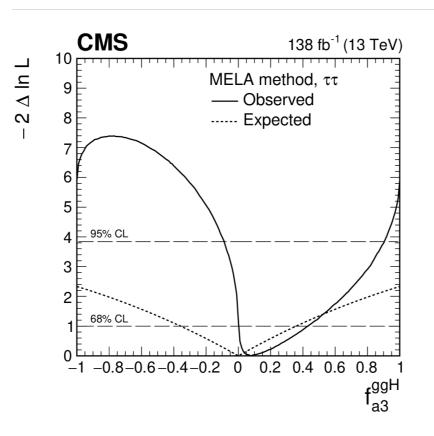
CMS: CPV in HVV using $H \rightarrow \tau\tau$ (2)

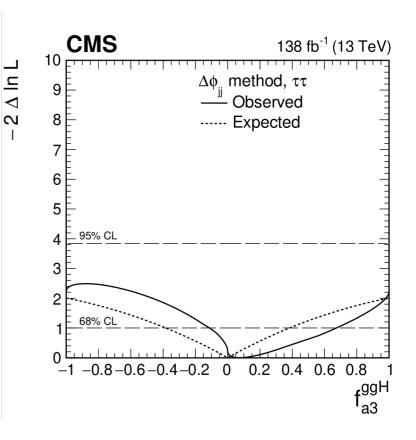

- Using 4 most sensitive $\tau\tau$ channels: $h_{\tau}h_{\tau}$, $h_{\tau}\mu$, $h_{\tau}e$, $e\mu$
- Analysis probing ggH and VBF+VH
- ullet A DNN is used to separate signal and background in the VBF category, output score D_{NN}
- Events split in 3 categories and fitted distributions are built from 3 or 4 CP sensitive NN variables
 - ullet Complementary measurement using signed $\Delta\phi_{jj}$



CMS: CPV in HVV using $H \rightarrow \tau\tau$ (3)

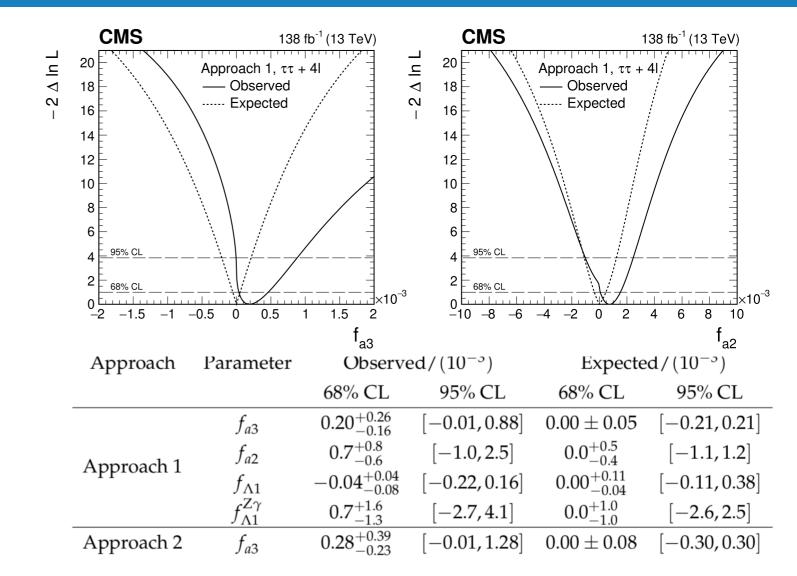
- Limits are set via scans of NLL curves
- Results for HVV
 parameters in Approach 1
 - For VBF and ggH

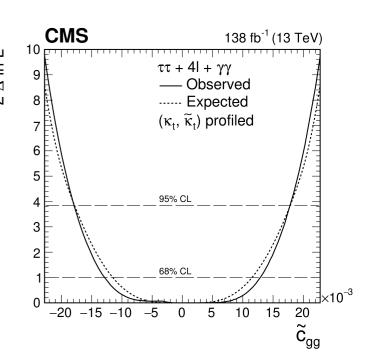




 Compatible limits between MELA and

 $\Delta\phi_{jj}$


 Significant improvement in sensitivity using MELA


CMS: CPV in HVV combinations

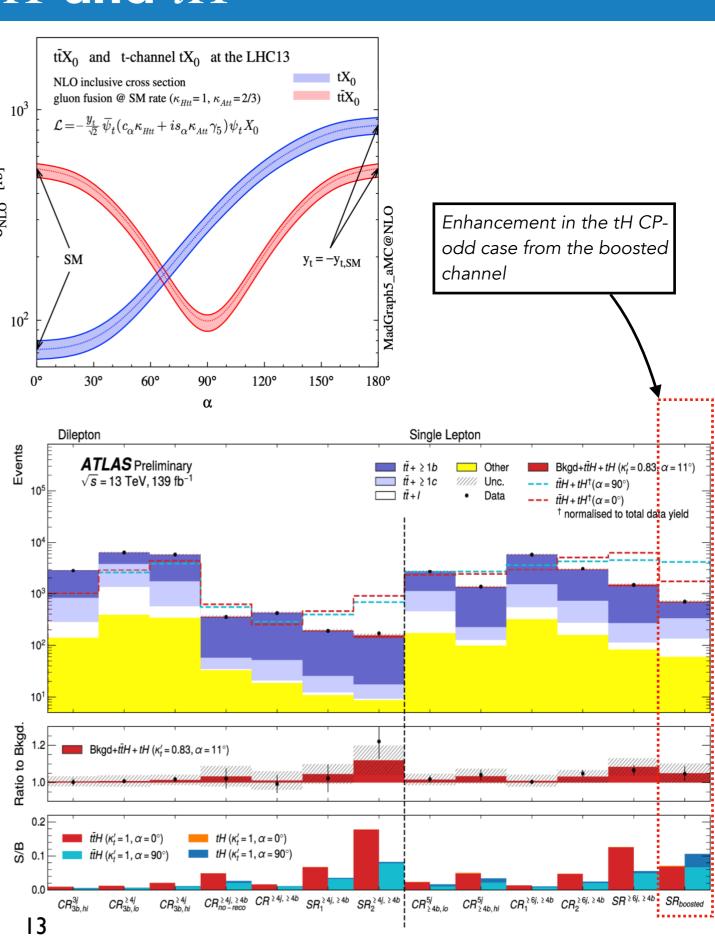
- Combination with limits from previous $H \rightarrow ZZ$ results (Phys. Rev. D 104 (2021) 052004)
 - Combination results in improvement up to 40%
 - Pure CP-odd scenario is excluded with a observed (expected) significance of 2.4 (1.8) σ
 - $H \rightarrow ZZ$ observed (expected) measurement of $c_{H\tilde{W}} = -0.23^{+0.51}_{-0.52} \ (0.00^{+1.11}_{-1.11})$

- Combination with $H \to ZZ$ and $H \to \gamma\gamma$ (Phys. Rev. Lett. 125 (2020) 061801), results for \tilde{c}_{gg} and f_{a3}^{ggH}
- Combination results in improvement factor 30%

Parameter	Observed		Expected	
	68% CL	95% CL	68% CL	95% CL
$f_{a3}^{ m ggH}$	$0.07^{+0.32}_{-0.07}$	[-0.15, 0.89]	0.00 ± 0.26	_
$f_{\it CP}^{ m Htt}$	$0.03^{+0.17}_{-0.03}$	[-0.07, 0.51]	0.00 ± 0.12	[-0.49, 0.49]

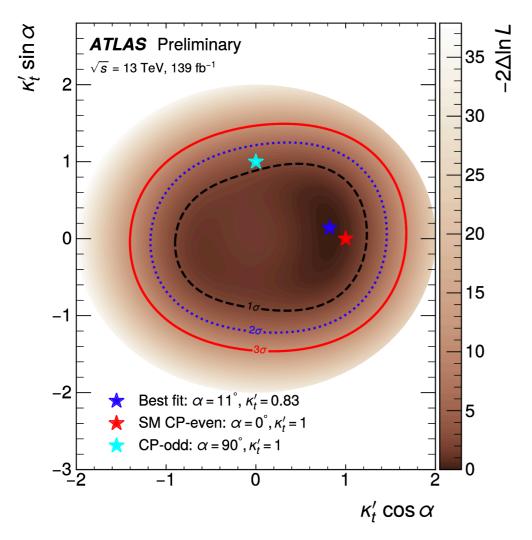
Hff couplings

- Higgs Yukawa couplings can be generically decomposed to CP-even (κ_f) and CP-odd ($\tilde{\kappa}_f$) contributions: $\mathscr{L}_{Y,f} = -\frac{m_f}{v} \bar{\psi}_f(\kappa_f + i \gamma^5 \tilde{\kappa}_f) H \psi_f$
- Fraction of CP violation in these Yukawa interactions then be parameterised using a CP-mixing angle α $f_{CP}^{Hff} = \frac{\left|\tilde{\kappa}_f\right|^2}{\left|\tilde{\kappa}_f\right|^2 + \left|\kappa_f\right|^2} = \sin^2(\alpha)$
- CP violation in Yukawa interactions is probed via top quarks and tau leptons
 - $H \rightarrow \tau\tau$: sensitivity to the CP mixing angle can be probed through spin correlations
 - ullet Higgs-Top: Access via $t\bar{t}H$ and tH production modes
 - Using CP-sensitive observables constructed using MVA techniques

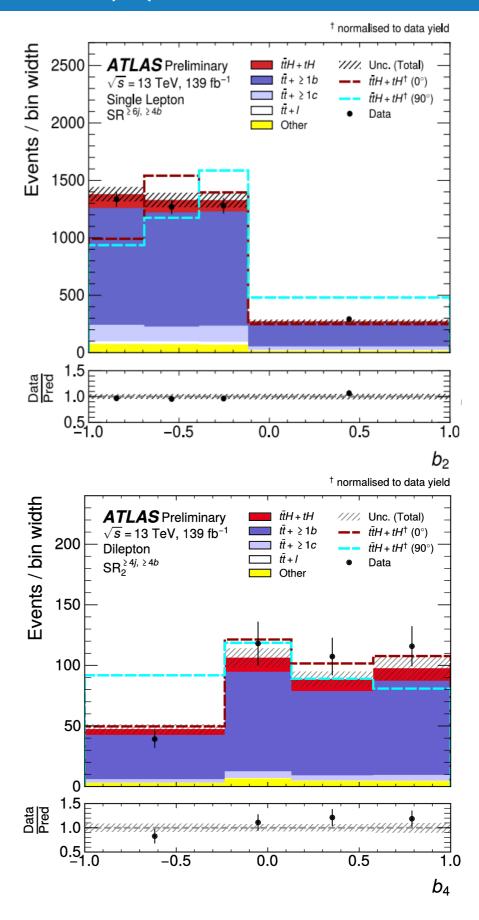

Today's menu

- ullet ATLAS <u>CONF-2022-016</u>: CP studies in tar t H and tH events with H o bar b
- CMS <u>HIG-21-006</u>: CP analysis in $t\bar{t}H$, tH multi-lepton and combination with other channels
- ATLAS CONF-2022-032: CP studies of $H \to \tau \tau$ decays
- CMS <u>HIG-20-006</u> : CP studies of $H \rightarrow \tau \tau$ decays

ATLAS: CP violation in $t\bar{t}H$ and tH

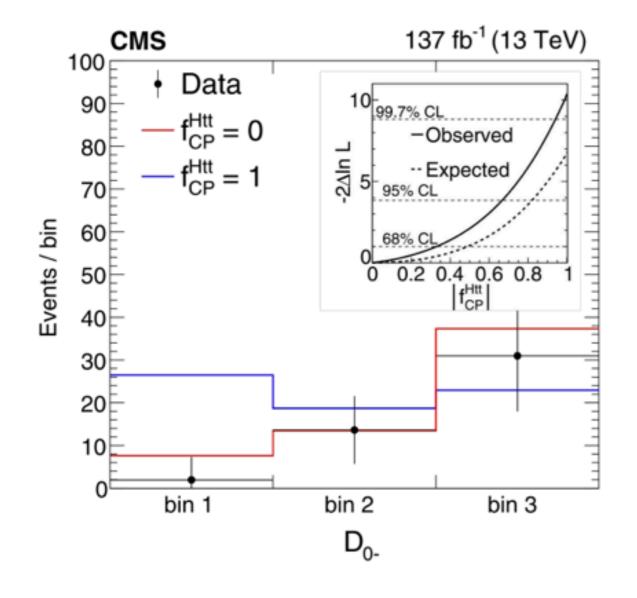

- Explore CP violation in Higgs top coupling CP using $t\bar{t}H$ and tH production modes
 - $t\bar{t}H$ is symmetric around zero whereas tH is sensitive to relative sign
- BDTs used for reconstructing Higgs boson candidate
 - exploit angular and kinematic differences in events caused by CP effects
- Control regions (CRs) to constrain $t\bar{t} + \geq 1b$ and $t\bar{t} + \geq 1c$
- Sensitivity to α and κ_t from CP-sensitive observables:

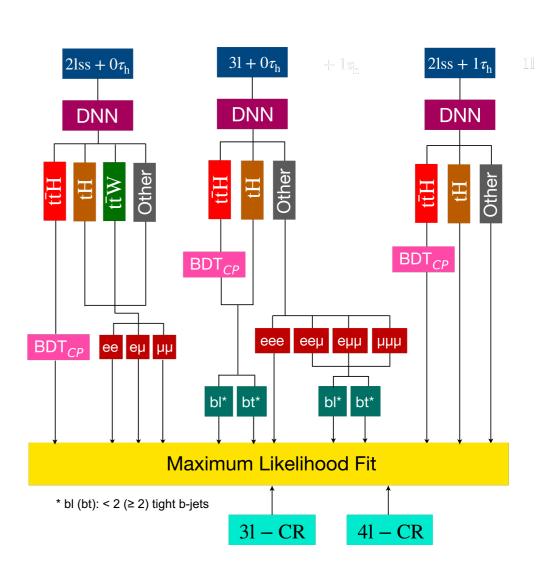
$$b_2 = \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1||\vec{p}_2|}, \text{ and } b_4 = \frac{p_1^z p_2^z}{|\vec{p}_1||\vec{p}_2|},$$



ATLAS: CP violation in $t\bar{t}H$ and tH (2)

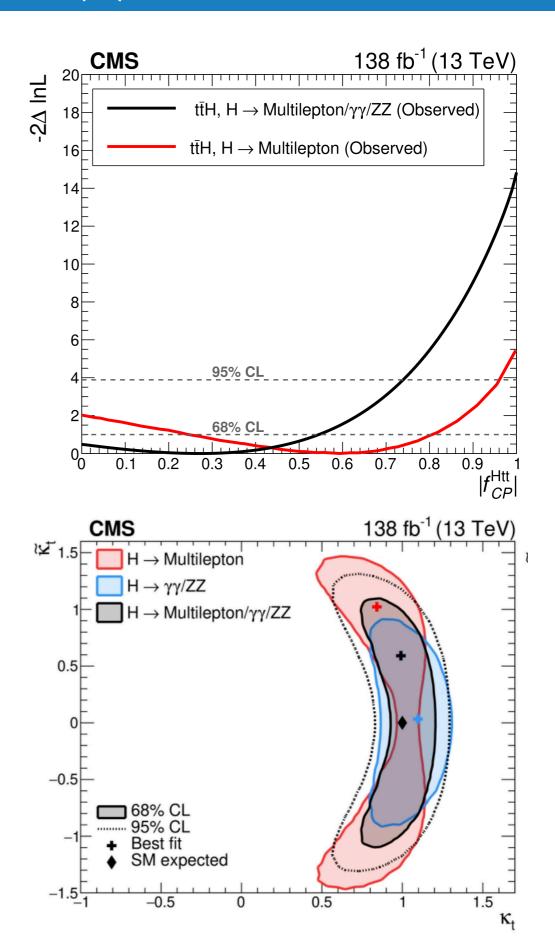
- Limits on CPV (κ_t and α) parameters extracted from simultaneous fit to all regions
 - In addition to CP sensitive observables
- Limits on $\alpha = 11^{+56}_{-77} \circ \text{ and } k'_t = 0.83^{+0.3}_{-0.46}$
 - Uncertainty dominated by background modelling ($tt + \ge 1b$)
- ullet Results compatible with limits from $H o \gamma \gamma$, Phys. Rev. Lett. 125 (2020) 061802




14

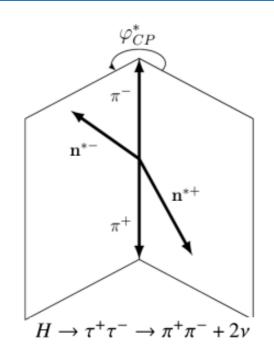
CMS: CP violation in $t\bar{t}H$ and tH (1)

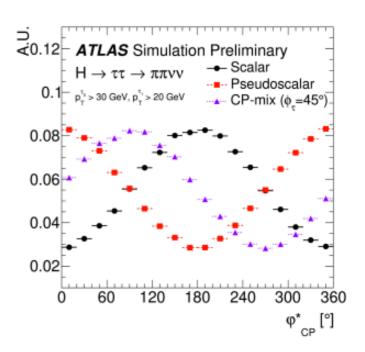
- ullet Explore CP violation in Higgs top coupling CP using $t \overline{t} H$ and t H production
 - Combing information from different multiple Higgs decays: $\gamma\gamma$, ZZ, WW, $\tau\tau$, bb
 - With top quark decaying leptonically or hadronically,
 - final states characterized by the presence of at least two leptons
- Using MVA based classification for signal and background discrimination and for CPeven and CP-odd scenarios



CMS: CP violation in $t\bar{t}H$ and tH (2)

- Extracting 2D limits on κ_t and $\tilde{\kappa}_t$ coupling modifiers
- No deviations from SM predictions:
 - Measured $|f_{CP}^{Htt}|$ = 0.59 with an interval of (0.24, 0.81) at 68% CL

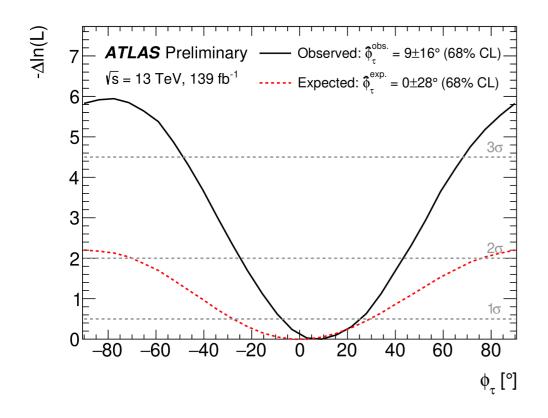

- Combination with ggH as top quark has leading contributions to ggH effects couplings
 - Assuming ggH loop is dominated by top quark



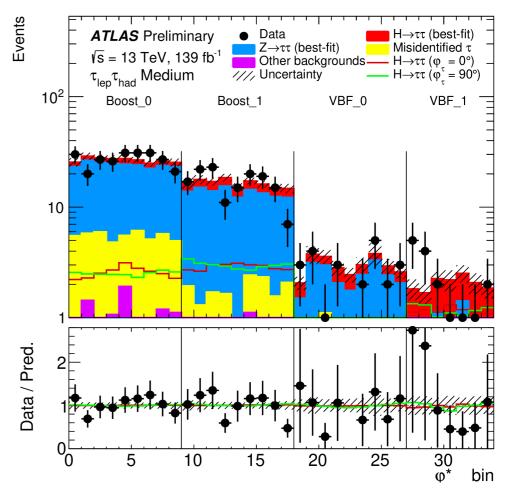
ATLAS: CP violation in $H \rightarrow \tau \tau$

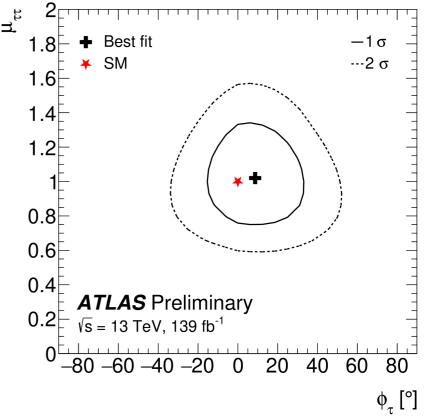
- Sensitivity to CPV from measurement of angle between τ lepton decay planes: ϕ_{CP}
 - ullet Using ϕ_{CP}^* as proxy (due to neutrinos)

- Measurement performed in 24 signal categories and 10 control regions
 - Targeting different decay modes
- Angle reconstruction relies on exploring track impact parameters and π^0 decays
 - ullet Decay plane reconstruction using ho plane method for π^0 and IP method for other decays

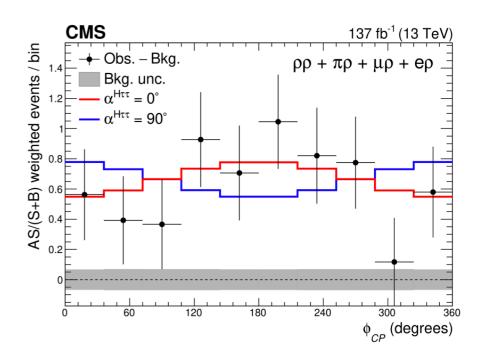


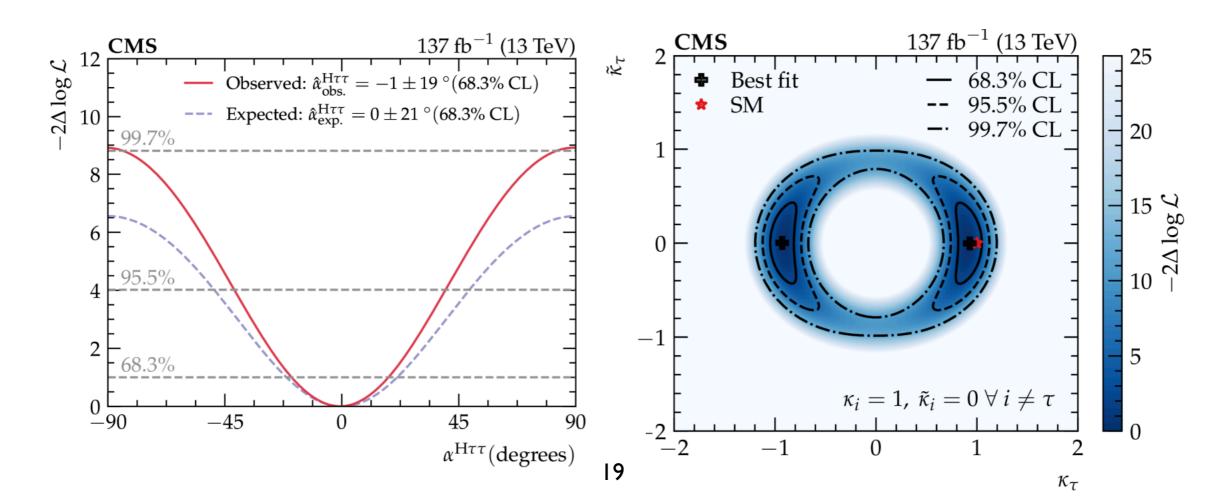
$$d\Gamma_{H\to\tau^+\tau^-}\approx 1-b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^*-2\phi_\tau)$$


Decay channel	Decay mode combination	Method	Fraction in all τ lepton pair decays
$ au_{ m lep} au_{ m had}$	ℓ-1p0n	IP	8.1%
	ℓ-1p1n	IP- $ ho$	18.3%
	ℓ-1pXn	IP- ho	7.6%
	ℓ-3p0n	$IP-a_1$	6.9%
$ au_{ m had} au_{ m had}$	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	IP- $ ho$	6.0%
	1p1n-1p1n	ρ	6.7%
	1p0n-1pXn	IP- $ ho$	2.5%
	1p1n-1pXn	ho	5.6%
	1p1n-3p0n	ρ - a_1	5.1%


ATLAS: CP violation in $H \rightarrow \tau\tau$ (2)

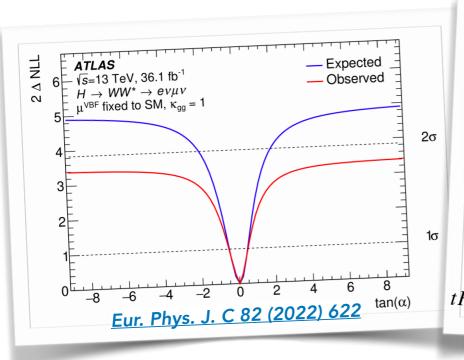
- CP mixing angle is extracted from simultaneous fit to all regions
 - Exploiting shape only information by floating signal strength
 - Constraining dominant background ($Z \to \tau \tau$) from dedicated control regions
- Limits are statistically limited with leading systematic uncertainty from jet calibration
- \bullet Best fit value for $\phi_{\tau} = 9 \pm 16$ ° (compatible with SM)
- \bullet Pure CP odd ($\phi=90^{\circ}$) excluded at 3.4 sigma

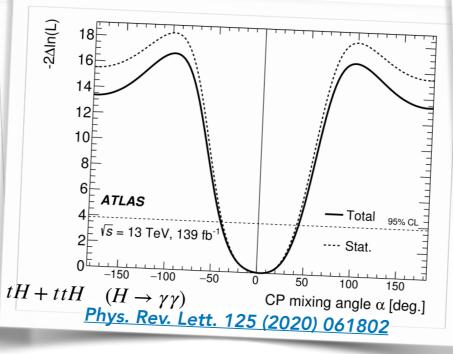

18

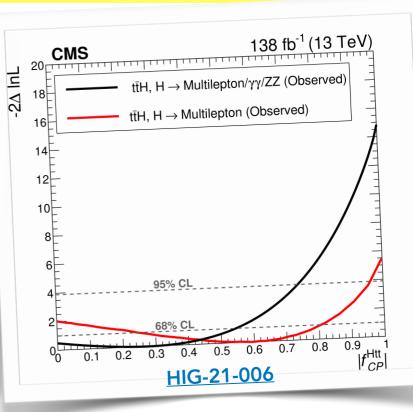


CMS: CP violation in $H \rightarrow \tau \tau$

- Using transverse spin correlations of tau leptons to probe CP mixing angle
- Using Acoplanar angle (same as ATLAS)
- Using NN to separate Signal to background
- Most backgrounds estimated using data control regions
- Considering different final states: $eh_{\tau} + \mu h_{\tau} + h_{\tau} h_{\tau}$


$$\alpha^{H\tau\tau} = -1 \pm 19 \text{ (stat)} \pm 1 \text{ (syst)} \pm 2 \text{ (bin-by-bin)} \pm 1 \text{ (theo)}^{\circ}$$




Summary

- Search for CP violation in the Higgs sector is very active area of research by both experiments
- Measurements probe setting constraints on anomalous couplings of fermionic and boson couplings
- Measurement performed in all main decay channels probing CPV effects in the production and decay
- All limits are compatible with SM predictions
- Stringent limits set on CPV HVV, HGG and Htt and $H\tau\tau$ couplings
- Pure CP-odd couplings excluded by multiple measurement at $\geq 3\sigma$

Stay tuned for more Run-2 measurement and combination and for Run-3!

