HH/HY and VH Resonant Searches in ATLAS and CMS

Adelina D’Onofrio
on behalf of ATLAS and CMS Collaborations

INFN Roma Tre

Higgs2022 - Pisa

11th November 2022
Physics Motivations

Gluon-gluon fusion (ggF) resonant mode allows to probe heavy resonances produced through quark and gluon interactions

- Production of a heavy spin 0 resonance X:
 - Can be e.g. a Randall-Sundrum radion or the 2HDM heavy CP-even Higgs boson
 - Narrow width (compared to experimental resolution) assumed as a signal benchmark
- Production of a heavy spin 2 resonance G^x_{KK} (or X in CMS convention)
 - Spin-2 Kaluza-Klein gravitons with model-dependent width (3%-20% of m_X)
- Resonant production of HH in association with a vector boson

New heavy resonances decaying into SM Higgs boson and a vector boson

- These resonances are assumed to be either a new heavy vector boson (Z'/W'), or a heavy CP-odd scalar boson A
- A generic two-Higgs-doublet model (2HDM)
- Heavy Vector Triplet (HVT) [arXiv:1402.4431]

X heavy particle decaying to the SM Higgs boson and a scalar particle

- (Y in CMS convention or S in ATLAS convention)
- Results are interpreted in the context of the next-to-minimal supersymmetric standard model (NMSSM) and also in an extension of the SM with two additional singlet scalar fields (TRSM)

VBF HH resonant production not covered in this talk, bonus reference

Disclaimer: covering only a limited set of analyses, focussing on the most recent ATLAS and CMS results, for more details refer to ATLAS and CMS public pages.

The non-resonant HH analyses covered in the presentation by Jason, Nicola, and resonant HH (ATLAS) by Bill.
Experimental Overview

HH decay modes

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>WW</th>
<th>ττ</th>
<th>ZZ</th>
<th>WW</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>33%</td>
<td>25%</td>
<td>7.4%</td>
<td>3.1%</td>
<td>0.26%</td>
</tr>
<tr>
<td>WW</td>
<td>25%</td>
<td>4.6%</td>
<td>2.5%</td>
<td>1.2%</td>
<td>0.10%</td>
</tr>
<tr>
<td>ττ</td>
<td>7.4%</td>
<td>2.5%</td>
<td>0.39%</td>
<td>0.34%</td>
<td>0.029%</td>
</tr>
<tr>
<td>ZZ</td>
<td>3.1%</td>
<td>1.2%</td>
<td>0.34%</td>
<td>0.076%</td>
<td>0.013%</td>
</tr>
<tr>
<td>WW</td>
<td>0.26%</td>
<td>0.10%</td>
<td>0.029%</td>
<td>0.013%</td>
<td>0.0005%</td>
</tr>
</tbody>
</table>

HY decay modes

- **ATLAS**
 - HH to $bb\gamma\gamma$ final state: *Phys. Rev. D 106 (2022) 052001*
 - HH to $bb\pi\pi$ final state: *arXiv:2209.10910*
 - HH to $bbbb$ final state: *Phys. Rev. D 105 (2022) 092002*
 - Combination: *ATLAS-CONF-2021-052*

- **CMS**
 - HH to multilepton final state: *arXiv:2206.10268*
 - HH/HY to $bb\gamma\gamma$ final state: *CMS-PAS-HIG-21-011*

VH decay modes

- **ATLAS**
 - Semi-leptonic VH search: *arXiv:2207.00230*
 - Vhh search: *arXiv:2210.05415*
 - Generic search for Y to XH: *ATLAS-CONF-2022-045*

- **CMS**
 - All hadronic VH search: *arXiv:2210.00043*
 - HY to $bbbb$ final state: *arXiv:2204.12413*

- **Extended Higgs sector**
 - Search for new particles in an extended Higgs sector with four b quarks in the final state: *arXiv:2203.00480*
HH to $b\bar{b}\gamma\gamma$ search - **ATLAS**

Candidate event HH to $b\bar{b}\gamma\gamma$

Two reconstructed photons ($\gamma\gamma$) coming from a Higgs candidate

Two reconstructed bottom quark jets ($b\bar{b}$) coming from a Higgs candidate

4 body mass = 625 GeV

Fully reconstructable final state
HH to $b\gamma\gamma$ search - **ATLAS**

- Di-photon triggers used to allow to probe low m_X values, lepton veto

Object Selection
- Excellent $m_{\gamma\gamma}$ resolution
- Tight and isolated, $m_{\gamma\gamma}$ in [105-160] GeV
- Large BR
- 2 b-jets, b-jets corrections applied
- Muon in jet + BCal

Event Categorisation
- $m^{*}_{bb\gamma\gamma} = m_{bb\gamma\gamma} - m_{bb} - m_{\gamma\gamma} + 250$ GeV

MVA approach
- Single BDT for all signal hypotheses (mass dependent cut)

Modelling
- Simultaneous likelihood fit to all categories
- σ vs m_X
- Statistically limited with the current dataset

Spurious signal systematic uncert.
- Potential bias coming from the choice of the background modelling accounted for in systematic uncertainties

- ATLAS Preliminary
 - $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$
 - $m_{H} = 300$ GeV
 - $m_{b\gamma\gamma}$
 - $m_{\gamma\gamma}$
 - $m_{bb\gamma\gamma}$
 - m_{bb}
 - $m_{\gamma\gamma}$
 - $m_{bb\gamma\gamma} + 250$ GeV

- Event categorisation
 - Data
 - HH: Single Higgs
 - $\gamma\gamma$: Single Higgs
 - jet: Single Higgs
 - $\gamma\gamma$: Single Higgs
 - jet: Single Higgs
 - $m_{bb\gamma\gamma}$

- ATLAS Simulation
 - $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$
 - $m_{H} = 300$ GeV
 - $m_{b\gamma\gamma}$
 - $m_{\gamma\gamma}$
 - $m_{bb\gamma\gamma}$
 - m_{bb}
 - $m_{\gamma\gamma}$
 - $m_{bb\gamma\gamma} + 250$ GeV

Phys. Rev. D 106 (2022) 052001
HH/HY to $b\bar{b}\gamma\gamma$ search - CMS

Candidate event HH to $b\bar{b}\gamma\gamma$

Fully reconstructable final state
HH/HY to $b\bar{b}\gamma\gamma$ search - CMS

- Di-photon triggers used to allow to probe low m_X values, lepton veto

- Excellent $m_{\gamma\gamma}$ resolution
- Tight and isolated b-jets
- Large BR
- Energy corrections applied

Object Selection

- $70 < m_0 < 190$ (1200) GeV
- MVA approach
- Using b-jet ID, photon ID and kinematic variables

Event Categorisation

- Statistical analysis
 - σ vs $m_X - m_Y$
- Modelling discriminating variable
- Extract signal from 2D fit: m_Y vs m_{H1}, in windows of m_X

- Resonant m_X and m_Y hypotheses differ in kinematics
 - BDT is trained for six different mass ranges, based on boost factor $m_X/(m_{H1} + m_Y)$:
 - 3 ranges in m_X ($m_X < 500$ GeV, $500 < m_X < 700$ GeV and $m_X > 700$ GeV)
 - 3 ranges in m_Y ($m_Y < 300$ GeV, $300 < m_Y < 500$ GeV, and $m_Y > 500$ GeV)

- Statistically limited with the current dataset
Results: HH to $b\bar{b}\gamma\gamma$ final state

ATLAS
- X resonance decaying to HH
- Narrow width approximation
- Spin 0 hypothesis
- Upper limit on $\sigma(pp\rightarrow X\rightarrow HH)$

The expected limit on the cross section improves overall by a factor of 2-3 wrt the partial Run 2 analysis.

<table>
<thead>
<tr>
<th>Mass Hypothesis</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>640 fb</td>
<td>391 fb</td>
</tr>
<tr>
<td>Min</td>
<td>44 fb</td>
<td>46 fb</td>
</tr>
</tbody>
</table>

25 mass hypothesis for $251 < m_X < 1000$ GeV

CMS
- X resonance decaying to HH or SH (results in the next slide)
- Spin 0 (narrow width approximation) and spin 2 hypotheses

Upper limit on $\sigma(pp\rightarrow X\rightarrow HH) \times BR(HH \rightarrow b\bar{b}\gamma\gamma)$

<table>
<thead>
<tr>
<th>Spin</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>0.06 fb</td>
<td>0.06 fb</td>
</tr>
<tr>
<td>Min</td>
<td>0.78 fb</td>
<td>0.65 fb</td>
</tr>
</tbody>
</table>

These results exclude masses up to 600 GeV for spin 0 bulk radion signal at $\Lambda_R = 6$ TeV and up to 850 GeV for spin 2 bulk KK graviton signal with coupling factor $\kappa/M_{pl} = 0.5$.

Graphs

ATLAS Preliminary

Phys. Rev. D 106 (2022) 052001

CMS Preliminary

CMS-PAS-HIG-21-011
Results: HY to $b\bar{b}\gamma\gamma$ final state - CMS

Excess observed:
$M_X = 650$ GeV $M_Y = 90$ GeV
3.8σ local 2.6σ global
HH to $bb\tau\tau$ search - **ATLAS**

Candidate event HH to $bb\tau\tau$

4 body mass = 680 GeV

Good compromise between BR and clean final state
HH to $bb\tau\tau$ search - ATLAS

Complex trigger strategy using a mixture of hadronic single-/di-τ triggers and lepton/lepton+ τ triggers

- Single Tau Trigger & Di-Tau Trigger for $\tau_{\text{had}}\tau_{\text{had}}$, Single Lepton Trigger (SLT) and Lepton+Tau Trigger (LTT) in $\tau_{\text{lep}}\tau_{\text{had}}$

Object Selection

Hadronic and semi-leptonic

b-jets corrections applied

Compromise

MV A in 3 categories:
1. $\tau_{\text{had}}\tau_{\text{had}}$
2. $\tau_{\text{lep}}\tau_{\text{had}}$ (e/μ & opp. charged τ) LTT SLT
3. Control region for Z+HF (mll)

Event Categorisation

Backgrounds are estimated using a mix of simulation and control samples in data

Object Selection

Hadronic and semi-leptonic

b-jets corrections applied

Compromise

MV A in 3 categories:
1. $\tau_{\text{had}}\tau_{\text{had}}$
2. $\tau_{\text{lep}}\tau_{\text{had}}$ (e/μ & opp. charged τ) LTT SLT
3. Control region for Z+HF (mll)

Event Categorisation

Backgrounds are estimated using a mix of simulation and control samples in data

Neural Network (NN) to construct a discriminant, which is then fitted

NN is parameterized on mHH for optimal performance across the whole range

arXiv:2209.10910

HH and VH Resonant Searches - Higgs2022

Adele D’Onofrio - INFN Roma Tre - 11th November 2022
Results: HH to $b\tau\tau$ final state

ATLAS
- X resonance decaying to HH
- Narrow width approximation
- Spin 0 hypothesis

Upper limit on $\sigma(pp\rightarrow X\rightarrow HH)$

Mass hypothesis for $251 < m_X < 1600\text{GeV}$

The largest (very broad) excess is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma (2.0\sigma)$

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>900 fb</td>
<td>840 fb</td>
</tr>
<tr>
<td>Min</td>
<td>21 fb</td>
<td>12 fb</td>
</tr>
</tbody>
</table>

CMS
- (Not covered here) Semi-boosted analysis: JHEP11(2021)057
- NMSSM framework

Upper limit on $\sigma(pp\rightarrow X\rightarrow Hh_s)$

<table>
<thead>
<tr>
<th></th>
<th>CL$_{\text{exp}}$ (m(X)=320 GeV)</th>
<th>CL$_{\text{exp}}$ (m(X)=1000 GeV)</th>
<th>CL$_{\text{exp}}$ (m(X)=1600 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>986 fb</td>
<td>44 fb</td>
<td>117 fb</td>
</tr>
</tbody>
</table>
HH to $b\bar{b}b\bar{b}$ search - *ATLAS*

ATLAS Experiment

Candidate event HH to $b\bar{b}b\bar{b}$

Run: 350013
Event: 1556168518
2018-05-11 01:39:26 CEST

4 body mass = 1023 GeV

Highest BR but challenging backgrounds in the final state

Phys. Rev. D 105 (2022) 092002
HH to $bbbb$ search - **ATLAS**

- Largest BR, but large multi-jet backgrounds and challenging combinatorics
- 12 different b-jet & trigger settings for resolved (eff up to 80%), single jet trigger for boosted (eff ~80%)
- Resolved and boosted analyses, combined in the overlap region

Resolved
(251 GeV – 1.5 TeV) 4 b-tagged $b\bar{b}$

Boosted
(900 GeV – 3 TeV) VR
track-jets for b-tagging, topo cluster jets for large R jets with $\Delta R = 1.0$

b-jets corrections applied

Object Selection
- Resolved
 (251 GeV – 1.5 TeV) 4 b-tagged $b\bar{b}$, 4 jets, $\Delta R = 0.4$
- Boosted
 (900 GeV – 3 TeV) VR
 track-jets for b-tagging, topo cluster jets for large R jets with $\Delta R = 1.0$
 b-jets corrections applied

BDT to pair jets from Higgs (65-100% eff)
- $4b$ category is used for signal hypotheses with $m(X/G^*_X) \leq 3$ TeV
- $2b$ category is used for signal hypotheses with $m(X/G^*_X) \geq 2$ TeV
- For resonance masses in the range 900 GeV–1.5 TeV, the resolved and boosted channels are fitted simultaneously

Event Categorisation
- Resolved
 - $4b$ category is used for signal hypotheses with $m(X/G^*_X) \leq 3$ TeV
- Boosted
 - $2b$ category is used for signal hypotheses with $m(X/G^*_X) \geq 2$ TeV

Background Modelling
- Dominated by multi-jet + tt
- Data-driven multi-jet & MC-driven tt
- Fit m_{H^+} spectrum to search for a resonant bump

Statistical analysis
- Phys. Rev. D 105 (2022) 092002

Adele D’Onofrio - INFN Roma Tre - 11th Novembre 2022
Results: HH to $b\bar{b}b\bar{b}$ final state

ATLAS
- Narrow width approximation for spin 0 search
- Widths ranging from 3% to 20% spin 2 hypothesis

Upper limit on $\sigma(pp\rightarrow X\rightarrow HH)$

Mass hypothesis for $251 < m_X < 5000$ GeV
- For signal masses up to 3 TeV, the limits are computed using asymptotic formulae
- At higher masses the limits are computed by sampling pseudo-experiments

The largest excess is observed at a resonance mass of 1.1 TeV, with a local (global) significance of $2.3\sigma (0.4\sigma)$ for spin 0 signal and a local (global) significance of $2.5\sigma (0.8\sigma)$ for spin 2 signal

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Obs. (fb)</th>
<th>Exp. lim. (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>9.74</td>
<td>5.12</td>
</tr>
<tr>
<td>1100</td>
<td>3.37</td>
<td>2.20</td>
</tr>
<tr>
<td>1200</td>
<td>2.80</td>
<td>1.72</td>
</tr>
<tr>
<td>1300</td>
<td>3.24</td>
<td>1.10</td>
</tr>
<tr>
<td>1500</td>
<td>1.46</td>
<td>0.53</td>
</tr>
<tr>
<td>2000</td>
<td>0.47</td>
<td>0.42</td>
</tr>
<tr>
<td>2500</td>
<td>0.26</td>
<td>0.46</td>
</tr>
<tr>
<td>3000</td>
<td>0.29</td>
<td>0.31</td>
</tr>
</tbody>
</table>

CMS
- (Not covered here) Semi-boosted analysis: CMS-B2G-20-004
- Narrow width approximation for spin 0 search
- Spin 2 hypothesis

Upper limit on $\sigma(pp\rightarrow X\rightarrow HH) \times \text{BR}(HH\rightarrow b\bar{b}b\bar{b})$

Mass hypothesis for $1000 < m_X < 3000$ GeV

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Obs. (fb)</th>
<th>Exp. lim. (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>4.4</td>
<td>3.47</td>
</tr>
<tr>
<td>1100</td>
<td>2.13</td>
<td>2.12</td>
</tr>
<tr>
<td>1200</td>
<td>1.42</td>
<td>1.54</td>
</tr>
<tr>
<td>1300</td>
<td>1.76</td>
<td>1.20</td>
</tr>
<tr>
<td>1500</td>
<td>1.37</td>
<td>0.83</td>
</tr>
<tr>
<td>2000</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>2500</td>
<td>0.18</td>
<td>0.28</td>
</tr>
<tr>
<td>3000</td>
<td>0.19</td>
<td>0.31</td>
</tr>
</tbody>
</table>
HY to $b\bar{b} b\bar{b}$ search - *CMS*

Candidate event HH to $b\bar{b} b\bar{b}$

Highest BR but challenging backgrounds in the final state
HY to $bbbb$ search - CMS

- Large BR, but large multi-jet backgrounds and challenging combinatorics
- Hadronic triggers

Object Selection

- Boosted event topology: X and Y reconstructed as large-radius jets (R=0.8)

Event Categorisation

1. ParticleNet convolutional graph neural network for H/Y \rightarrow bb vs. QCD jet classification for large-R jets
2. Mass de-correlation with dedicated training techniques \rightarrow no mass sculpting

Background Modelling

- Background dominated by multi-jet and < 10% tt
- Modeling of QCD bkg from data and of tt from simulation
 - Data control regions for validation & to improve data/MC agreement

Statistical analysis & Results

- 2D fit to reconstruct m_X and m_Y of signal candidates
HH to multi lepton search - *CMS*

Candidate event HH

arXiv:2206.10268
HH to multi lepton search - CMS

- Reasonable BR, very good at low mass
- Combination of lepton and tau triggers

HH → VVVV, HH → VVττ and HH → ττττ final states

1. Seven channels with multiple l = e, μ, τ
2. Signal extraction on BDT classifier output:
 - Parametrized BDT on resonant mass for spin 0/spin 2 scenarios
 - 19 resonant masses in range 250 – 1000 GeV

Signal extraction
- Fit to 7 BDT outputs/year for given mass
- Two control regions/year for WZ/ZZ backgrounds included
- No signal yet → Asymptotic limits

Event Categorisation

HH (1 pb) → X (13 TeV)

- Observed (expected) limits on \(\sigma(pp \rightarrow X \rightarrow HH) \): 0.18 to 0.90 (0.08 to 1.07) pb

Results
X to HH search - Summary - ATLAS

Upper limit on \(\sigma(pp \to X \to HH) \)

\[\sigma(X \to HH) \]

- \(b\bar{b}\gamma\gamma \) dominates the sensitivity at low \(m_X \)
- \(bbb\bar{b} \) dominates the sensitivity for high values of \(m_X \)
- \(b\bar{b}\tau\tau \) dominates the sensitivity for medium values of \(m_X \)
Vhh & VH searches
Vhh search - ATLAS

- First analysis targeting Vhh final state. Two signal scenarios are considered:
 1. BDT categorisation
 2. Fit on BDT output

Event Categorisation & Fit strategy

Results & Interpretations

1. **VH, H—>hh results**
 - No significant excess.
 - Largest deviation:
 - WH at 315 GeV: local (global) significance 2.5 (1.3) σ.
 - ZH at 550 GeV: local (global) significance 2.7 (1.3) σ.

Object Selection

- 0L, 1L, 2L channels targeting vvbvbv, lvbvbv, llbvbv final states
- Lepton triggers

0 & 2 Leptons

- $\ell^+ \ell^-$ hypothesis
- Data points and fitted distributions

1Lepton

- ℓ^+ hypotesis
- Data points and fitted distributions

HH and VH Resonant Searches - Higgs2022

ArXiv:2210.05415
Vhh search - ATLAS

First analysis targeting Vhh final state. Two signal scenarios are considered:

2. A to ZH, H→hh
 - Narrow width A boson
 Largest deviation: \((m_A, m_H) = (800, 300)\) Local: 3.6 \(\sigma\) Global: 1.6 \(\sigma\)
 - Large-width (20\%) A boson
 Largest deviation: \((m_A, m_H) = (420, 320)\) Local: 3.8 \(\sigma\) Global: 2.8 \(\sigma\)

3. A to ZH results are interpreted as constraints in the 2HDM parameter space
 - \(m_A\) – mass of the A boson.
 - \(m_H\) – mass of the heavy H boson.
 - \(\tan \beta\) – ratio of the vacuum expectation values of the two doublets.
 - \(\cos(\beta - \alpha)\) – with \(\alpha\) as the mixing angle of H and h.
VH search - **ATLAS**

Object Selection

Analysis Strategy

Results

ATLAS

\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

\(Z' \) combined (0L+2L) limit

- 95% CL limit
- Observed limit
- Expected limit
- Expected \(\pm 1 \) s.d.
- Expected \(\pm 2 \) s.d.
- HVT Model A, \(g_3 = 1 \)
- HVT Model B, \(g_3 = 3 \)
- Expected limit (0L)
- Expected limit (2L)

ATLAS

\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

\(W' \) combined (0L+1L) limit

- 95% CL limit
- Observed limit
- Expected limit
- Expected \(\pm 1 \) s.d.
- Expected \(\pm 2 \) s.d.
- HVT Model A, \(g_3 = 1 \)
- HVT Model B, \(g_3 = 3 \)
- Expected limit (0L)
- Expected limit (1L)

arXiv:2207.00230

HVT and 2HDM Interpretations
(All had.) VH search - **CMS**

- This search covers also VV channels, not discussed here

Object Selection

- Tagging (2q) final states (w. bb category) using DeepAK8 tagger

Analysis Strategy

- QCD model adapts to data, uses MC-based gaussian kernel templates with increased statistics

Results

Most stringent limits on V' up to 4.8 TeV.

Also, first VBF limits (no exclusion) on all-hadronic search - see backup.

Up to 60% better sensitivity than 2016+2017 analysis
Generic search for Y to XH - **ATLAS**

Analysis Strategy

Tested signals with \(m_Y\) between 1.5 and 6 TeV and \(m_X\) between 65 and 3000 GeV

Results

- **ATLAS Preliminary**
 \(\sigma = 13\) TeV, 139 fb\(^{-1}\)
 - Expected CLs

- **56\% WP \((\sqrt{s}=13\) TeV, 139 fb\(^{-1}\)**
 - Observed CLs

Object Selection

\[D_{Hbb} = \ln \frac{p_{\text{Higgs}}}{f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{top}}) \cdot p_{\text{multijet}}}\]

X/H Candidate Large-R Jet Selection

- X-Tagging
- H-Tagging & Background Estimation

- **Anomaly**
 - Two-prong (merged)
 - Two-prong (resolved)

All hadronic final state

ATLAS-CONF-2022-045

Adele D’Onofrio - INFN Roma Tre - 11th Novembre 2022
Extended Higgs sector searches $bbbb$ - CMS

The analysis is restricted to the case where the mass ratio of the resonance and the scalar bosons is such that each pair of b quarks is reconstructed as a single large-radius jet.

These are the first limits on this process, and range between 30 and 1 fb for a ϕ mass in the range 25-100 GeV and an X mass in the range 1-3 TeV.
Conclusions

- Full Run 2 results presented for ATLAS and CMS
- HH/HY and Vh searches presented
- Great complementarity among the channels
- No significant excess observed
- Stay tuned for Legacy Run 2 results
- Run 3 just started!!!
Back - up Slides
HH to $b\bar{b}γγ$ search - ATLAS

- At least 2 photons: Identified (Tight WP)
- Calo- and Track-isolated within a cone of $ΔR = 0.2$ $E_T^{\text{ISO}} < 0.065 \cdot E_T$ and $p_T^{\text{ISO}} < 0.05 \cdot E_T$
- 105 GeV < $m_{γγ}$ < 160 GeV
- $E_T/m_{γγ}$ > 0.35 and 0.25
- $γγ$ vertex

- Less than 6 central jets
- PFlow jets, anti-kt R=0.4, tight JVT applied
- Exactly 2 b-jets
 - DL1r 77% WP, b-jet energy corrections applied

BDT Input Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon-related kinematic variables</td>
<td></td>
</tr>
<tr>
<td>$p_T^{\gamma\gamma}$</td>
<td>Transverse momentum and rapidity of the diphoton system</td>
</tr>
<tr>
<td>$Δφ_{γγ}$ and $ΔR_{γγ}$</td>
<td>Azimuthal angle and $ΔR$ between the two photons</td>
</tr>
<tr>
<td>Jet-related kinematic variables</td>
<td></td>
</tr>
<tr>
<td>$m_{b\bar{b}}, p_T^{b\bar{b}}$ and $γ_{b\bar{b}}$</td>
<td>Invariant mass, transverse momentum and rapidity of the b-tagged jets system</td>
</tr>
<tr>
<td>$Δφ_{b\bar{b}}$ and $ΔR_{b\bar{b}}$</td>
<td>Azimuthal angle and $ΔR$ between the two b-tagged jets</td>
</tr>
<tr>
<td>N_{jets} and N_{b-jets}</td>
<td>Number of jets and number of b-tagged jets</td>
</tr>
<tr>
<td>H_T</td>
<td>Scalar sum of the p_T of the jets in the event</td>
</tr>
<tr>
<td>Diphon+di-jet-related kinematic variables</td>
<td></td>
</tr>
<tr>
<td>$m_{bbγγ}$</td>
<td>Invariant mass of the diphoton plus b-tagged jets system</td>
</tr>
<tr>
<td>$ΔX_{γγ,b}\bar{b}$, $Δφ_{γγ,b\bar{b}}$ and $ΔR_{γγ,b\bar{b}}$</td>
<td>Distance in rapidity, azimuthal angle and $ΔR$ between the diphoton and the b-tagged jets system</td>
</tr>
<tr>
<td>Missing transverse momentum variables</td>
<td></td>
</tr>
<tr>
<td>E_{miss}</td>
<td>Missing transverse momentum</td>
</tr>
</tbody>
</table>

2 BDTs to separate signal vs continuum and single Higgs backgrounds, scores combined in BDT$_{\text{tot}}$

$$BDT_{\text{tot}} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \sqrt{\left(\frac{BDT_{\text{loose}} + 1}{2}\right)^2 + \left(\frac{BDT_{\text{singleH}} + 1}{2}\right)^2}$$
HH to $bb\gamma\gamma$ search - ATLAS

- Fit $m_{\gamma\gamma}$ distribution to a double-sided Crystal Ball (for both single Higgs backgrounds and di-Higgs signal)
- Continuum $\gamma\gamma$ background modelled as exponential function in $m_{\gamma\gamma}$
- Potential bias coming from the choice of the background modelling accounted for in systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Nonresonant analysis HH</th>
<th>Resonant analysis $m_X = 300$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon energy resolution</td>
<td>Norm. + Shpe</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>Normalization</td>
<td>< 0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Flavor tagging</td>
<td>Normalization</td>
<td>< 0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factorization and renormalization scale</td>
<td>Normalization</td>
<td>0.3</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Parton showering model</td>
<td>Norm. + Shpe</td>
<td>0.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Heavy-flavor content</td>
<td>Normalization</td>
<td>0.3</td>
<td>< 0.2</td>
</tr>
<tr>
<td>$B(H\rightarrow \gamma\gamma, bb)$</td>
<td>Normalization</td>
<td>0.2</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Spurious signal</td>
<td>Normalization</td>
<td>3.0</td>
<td>3.3</td>
</tr>
</tbody>
</table>
HH/HY to $b\phi\gamma\gamma$ search - **CMS**

Event pre-selection

<table>
<thead>
<tr>
<th>Variable</th>
<th>Requirement</th>
<th>Variable</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>leading photon p_T</td>
<td>$m_{\gamma\gamma}/3$</td>
<td>p_T</td>
<td>> 25 GeV</td>
</tr>
<tr>
<td>subleading photon p_T</td>
<td>$m_{\gamma\gamma}/4$</td>
<td>$\Delta R_{\gamma\gamma}$</td>
<td>> 0.4</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>$</td>
<td>< 2.5</td>
</tr>
<tr>
<td>$m_{\gamma\gamma}$</td>
<td>100–180 GeV</td>
<td>n_{jets}</td>
<td>> 1</td>
</tr>
<tr>
<td>tfH discriminant</td>
<td>≥ 0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Event selection

- **$M_X < 500$ GeV**
 - CAT 0 = 0.63–1.0
 - CAT 1 = 0.33–0.63
 - CAT 2 = 0.17–0.33
- **$M_X = [500–700]$ GeV**
 - CAT 0 = 0.60–1.0
 - CAT 1 = 0.35–0.60
 - CAT 2 = 0.18–0.35
 - MX > 700 GeV
 - CAT 0 = 0.40–1.0
 - CAT 1 = 0.29–0.40
 - CAT 2 = 0.13–0.29
- **$M_X > 700$ GeV**
 - CAT 0 = 0.50–1.0
 - CAT 1 = 0.30–0.50
 - CAT 2 = 0.21–0.30

Modelling discriminating variable

- Fit m_ϕ distribution to a double-sided Crystal Ball (for both single Higgs backgrounds and di-Higgs signal)
- Non-resonant background from envelope-method
- Resonant background from gaussian model
Backgrounds are estimated using a mix of simulation and control samples in data:

- **Top with real τ_{had}**: Use MC simulation
- **Top/multijet with fake τ_{had}**: Use a “fake factor” method to extrapolate from control regions
 - Inverting the τ_{ID} and/or other cuts for samples enriched in “fakes”
- **$Z + \text{heavy flavor}$**: Use MC simulation, but correct it using a data control region with $Z \rightarrow \ell\ell$ selection
- **Other small backgrounds (single Higgs, diboson, etc.)**: Use MC simulation
HH to $b\bar{b}b\bar{b}$ search - ATLAS

- Largest BR, but large multi-jet backgrounds and challenging combinatorics
- 12 different b-jet & jet triggers for resolved, single jet trigger for boosted
- Resolved and boosted analyses, combined in the overlap region

Object Selection

1. b-tag using variable-radius subjets constructed from their associated tracks
2. At very high resonance masses, even these get merged.
3. Most of the procedure follows the resolved strategy closely

Event Categorisation

- Learn in CR
- Predict in SR

**Boosted (900 GeV – 3 TeV) VR track-jets for b-tagging, topo cluster jets for large R jets with $\Delta R=1.0$

Background Modelling

- Bkg dominated by multi-jet + up to 30% $t\bar{t}$
- Data-driven multi-jet & MC-driven $t\bar{t}$ (data-driven corrections in 2/3 b region)

Statistical analysis

- fit m_{HH} spectrum to search for a resonant bump

HH and VH Resonant Searches - Higgs2022

Adele D’Onofrio - INFN Roma Tre - 11th November 2022
HH to $bbbb$ search - ATLAS

- Largest BR, but large multi-jet backgrounds and challenging combinatorics
- 12 different b-jet & jet triggers for resolved (eff up to 80%), single jet trigger for boosted (eff ~80%)
- Resolved and boosted analyses, combined in the overlap region

1. 4b signal region (based on the H candidate masses)
2. 2b category for bkg estimate
3. BDT to pair jets from Higgs (65-100% eff)

Resolved
(251 GeV – 1.5 TeV) 4 b-tagged $\Delta R=0.4$ jets
b-jets corrections applied

Object Selection

Background Modelling

Bgection Categorisation

Resolved

Phys. Rev. D 105 (2022) 092002
HY to $bbbb$ search - CMS

- Large BR, but large multi-jet backgrounds and challenging combinatorics
- Hadronic triggers

1. ParticleNet convolutional graph neural network for $H/Y \rightarrow bbb$ vs. QCD jet classification for large-R jets
2. Mass de-correlation with dedicated training techniques \rightarrow no mass sculpting

Event Categorisation
HH Combination - CMS

Resonant HH comb with 2016 data (~36 fb⁻¹)

- No significant excess found

Upper limit on $\sigma(pp \rightarrow X \rightarrow HH)$

spin 0 resonance

spin 2 resonance
Searches in the $b\bar{b}b\bar{b}$ final state

<table>
<thead>
<tr>
<th></th>
<th>Resolved (2+2 jets)</th>
<th>Boosted (1+1 jets)</th>
<th>Semi-resolved (2+1 jets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ggF \rightarrow YH$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS</td>
<td>–</td>
<td>138 fb$^{-1}$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900 GeV to 4 TeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[CMS-B2G-21-003]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Submitted to Phys. Lett. B</td>
<td></td>
</tr>
<tr>
<td>$ggF \rightarrow HH$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS</td>
<td>126-139 fb$^{-1}$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>251 GeV - 5 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Phys. Rev. D 105 (2022) 092002]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ggF \rightarrow HH$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS</td>
<td>36 fb$^{-1}$</td>
<td>138 fb$^{-1}$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>260 GeV to 1.2 TeV</td>
<td>1-3 TeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[JHEP 08 (2018) 152]</td>
<td>[CMS-B2G-20-004]</td>
<td></td>
</tr>
<tr>
<td>$VBF \rightarrow HH$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS</td>
<td>126 fb$^{-1}$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>260 GeV to 1 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[JHEP 07 (2020) 108]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HH/HY to multi lepton search - CMS

HH/HY to multi lepton search - CMS

HH → Multilepton 138 fb⁻¹ (13 TeV)

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>4τₜ</th>
<th>1ℓ + 3τₜ</th>
<th>2ℓss</th>
<th>2ℓ + 2τₜ</th>
<th>3ℓ</th>
<th>3ℓ + 1τₜ</th>
<th>4ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solid (dashed) lines: observed (median expected) limits

HH → Multilepton 138 fb⁻¹ (13 TeV)

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>4τₜ</th>
<th>1ℓ + 3τₜ</th>
<th>2ℓss</th>
<th>2ℓ + 2τₜ</th>
<th>3ℓ</th>
<th>3ℓ + 1τₜ</th>
<th>4ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solid (dashed) lines: observed (median expected) limits