To Profile or To Marginalize: A SMEFT Case Study

Nina Elmer

ITP, Universität Heidelberg

Collaborators:

Emma Geoffray, Michel Luchmann, Ilaria Brivio, Sebastian Bruggisser, Tilman Plehn (Heidelberg University)

arXiv: 2208.08454

Updated SMEFT global analysis

- Updated global SMEFT analysis in Higgs and EW sector
 - Added μ Yukawa correction + chromomagnetic operator
 - Added new measurements: high invariant mass distributions + Higgs
- Using the SFitter framework for global analysis
- New ways to construct likelihoods: marginalization
 - Previously used: profiling

Where will we probably find a water molecule?

Where will we probably find a water molecule?

Which object contains most likely a water molecule?

Higher marginal probability: $\int_{T} p(T|M) = \int_{T} \mathcal{L}(M|T) \frac{P(T)}{P(M)}$

Where will we probably find a water molecule?

Which object contains most likely a water molecule?

Higher marginal probability: $\int_{T} p(T|M) = \int_{T} \mathcal{L}(M|T) \frac{P(T)}{P(M)}$ Where is the water molecule most likely located?

Higher profiled likelihood: $\max_{\mathcal{T}} \mathcal{L}(M|\mathcal{T})$

Today's Agenda

- 1. Profiling and marginalization
 - For the old data set
 - For the new data set
- 2. Comparing both data sets
- 3. Conclusion

Today's Agenda

1. Profiling and marginalization

- For the old data set
- For the new data set
- 2. Comparing both data sets
- 3. Conclusion

Observables included in the old data set

- Low kinematics constrain non-kinematically enhanced operators [Butter et al.: 1604.03105 | Biekötter, Corbett, Plehn: 1812.07587]
 - Higgs measurements at LHC (275)
 - Di-boson measurements at LHC (43)
 - Electroweak Precision Observables at LEP (14)
- High kinematics constrain kinematically enhanced operators
 - VH resonance search by ATLAS: 1712.06518

No big difference for the old data set

They are the same - aren't they?

- Comparable results for both methods
- Small shifts in the peak

The rather small impact of theory uncertainites

- Consider different distributions for theory and statistical uncertainties
- Systematic uncertainties are always Gaussian distributed
- $\rightarrow\,$ Little to no impact on the overall distribution

Correlations are "game changers"

- Correlating systematic uncertainties
- Correlations have an impact on the peak
- $\rightarrow\,$ Responsible for shifting the distribution

Today's Agenda

1. Profiling and marginalization

- For the old data set
- For the new data set
- 2. Comparing both data sets
- 3. Conclusion

Observables included in the new data set

- Low kinematics constrain non-kinematically enhanced operators [Butter et al.: 1604.03105 | Biekötter, Corbett, Plehn: 1812.07587]
 - Higgs measurements at LHC (275) + new Higgs (36)
 - Di-boson measurements at LHC (43)
 - Electroweak Precision Observables at LEP (14)

- High kinematics constrain kinematically enhanced operators

- VH resonance search by ATLAS: ATLAS-CONF-2021-026 and 2007.05293
- VV resonance search by ATLAS: 2004.14636
- ZH resonance search by CMS: 2102.08198
- Higgs p_T analysis by ATLAS: ATLAS-CONF-2019-029

Differences for the new data set

For the new data set

WW as one of a driving measurements

- Data set includes high kinematic distributions
- Driving measurement in linked coefficients
- Originally used for resonance searches

The problem with two modes

- Clear difference between both methods
- Because of the two mode structure
- Likelihood peaks are not on same level

For the new data set

The unexpected volume effect

- Peak structure appears with higher dimensional fits
- Need enough dimensions to accommodate underfluctuations
- More coefficients ⇒ larger volume effect
 Strengthen limits on coefficients (marginal case only)

Today's Agenda

- 1. Profiling and marginalization
 - For the old data set
 - For the new data set
- 2. Comparing both data sets
- 3. Conclusion

Comparing the results of both data sets

Comparing the results of both data sets

Today's Agenda

- 1. Profiling and marginalization
 - For the old data set
 - For the new data set
- 2. Comparing both data sets
- 3. Conclusion

Different methods - different questions

- Different questions \Rightarrow different methods \Rightarrow different results
- Choosing a method means choosing a question
- $\rightarrow\,$ They are not the same, but you might not see it at a first look
 - Results might look similar for highly-Gaussian data set
 - Results can look completely different for another data set

SFitter - our tool of choice

- Choose between profiling and marginalization
- Strong uncertainty treatment
- Includes high kinematic distributions
- $\rightarrow\,$ First SMEFT tool to combine these abilities

Backup slides

Influence of WW measurement on two modes

Interplay of f_{GG} and f_{tG}

