

Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS

Higgs 2022: November 7th - 11th Pisa, Italy

Jason Veatch on behalf of the ATLAS Collaboration CSU East Bay

Higgs Self-Coupling

Measuring ****

The Higgs potential: $V(\Phi) = \mu^2 \Phi^* \Phi + \lambda |\Phi^* \Phi|^2$

 λ has not yet been measured directly

 $\lambda \neq \lambda^{SM}$ could indicate new physics

HH Production

ggF

- The "triangle" diagram involves Higgs boson selfcoupling
 - The coupling modifier κ_{λ} is defined as λ/λ^{SM}
- The "box" diagram interferes destructively, resulting in a small cross-section (~31 fb)

VBF

- Sensitive to κ_{λ}
- Gives access to the HHVV coupling (κ_{2V} is the coupling modifier)
- Smaller cross-section than gluon-gluon fusion (~1.72 fb)
- Unique signature of two forward jets

ATLAS HH Searches

HH Decay Modes Available ATLAS results

- The small HH cross-section means multiple final states must be used
- Search channels chosen due to BR and clean final states (low background)

		bb	ww	ττ	ZZ	YY
- 4b: <u>ATLAS-CONF-2022-035</u>	bb	34%				
- bbWW(2I) (not shown): Phys. Lett. B 801 (2020) 135145	WW	25%	4.6%			
bbττ: <u>Submitted to JHEP</u>	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Partial Run 2 results (not shown):

JHEP 05 (2019) 124 and Eur. Phys. J. C 78 (2018) 1007

bbyy A clean signature

Phys. Rev. D 106 (2022) 052001

bbγγ Signature

- A clean channel with low background
 - H→γγ decay gives a unique signature and excellent mass resolution
- Low BR of 0.26% statistically limited
- Event selection:
 - 2 photons with 120 GeV $\leq m_{\gamma\gamma} \leq 130$ GeV
 - Exactly 2 b-tagged jets
 - ► No e/µ in event

bbγγ Analysis regions

• Split analysis into low- and high-mass regions to target SM and BSM couplings

bbyy Multivariate techniques

- Use Boosted Decision Trees (BDTs) to distinguish signal from background
 - Combination of 2 BDTs (trained against continuum and single Higgs bkgs)
 - Split into loose- and tight-BDT categories

bbyy Signal extraction

- $m_{\gamma\gamma}$ distribution fit in each category and signal strength allowed to float

bbγγ Results

- Limits set on μ_{SM} and κ_{λ}

Run: 351223 Event: 1338580001 2018-05-26 17:36:20 CEST

bbtt Signature

- Moderately large BR with relatively low background
- Fake-τ background difficult to model
- Split analysis based on τ decay modes (τ_{had}τ_{had} and τ_{lep}τ_{had})
- Event selection:
 - Exactly 2 b-tagged jets
 - Either 2 hadronic τ or 1 hadronic τ and 1 e/ μ
 - $m_{\tau\tau} > 60$ GeV using <u>Missing Mass Calculator</u>

bbtt Background estimate

bbtt Multivariate techniques

- BDTs and NNs used to distinguish signal from background
- MVA score used as final signal/background discriminant

bbtt Results

Submitted to JHEP

M

4b Filenty of signal

THE R. S.

4b Signature

- Largest branching ratio
- Large QCD background
- Event selection:
 - 4 b-tagged jets
 - Forward jets used to split into ggF and VBF regions
 - Cut on HH and ttbar sensitive variables (X_{HH} and X_{Wt})
 - $|\Delta \eta_{HH}|$ and X_{HH} categories to improve κ_{λ} and κ_{2V} sensitivity

4b Analysis strategy

- Jets paired to minimize ΔR for p_T-leading dijet system ullet
- Data-driven background estimates •
 - Data from 2b region reweighted to 4b SR (defined in m_{H1}-m_{H2} plane)
- m_{HH} used as final discriminant •

Jason Veatch - CSU East Bay

4b Results

• Limits set on μ_{SM} , κ_{λ} , and κ_{2V}

µ_{SM} < 5.4 observed (8.1 expected)

Combinations

HH Combination Signal strength

- Statistically combining channels increases sensitivity
- Combination of the three most sensitive HH channels

HH Combination

HH Combination

K₂v

Jason Veatch - CSU East Bay

HH+H Combination

• Single Higgs boson production is also sensitive to λ through loop corrections, e.g.,

• Additional constraints can be achieved by combining HH and H searches

Concluding Remarks

- Searching for HH is one of the most active areas of particle physics research
- No single "golden channel" parallel searches and combination are necessary
- Higgs boson pair production offers insight into the Higgs mechanism
 - Excellent for heavy resonance searches see <u>Bill's talk</u> and <u>Adele's plenary talk</u>
- EFT interpretations available see Giacinto's talk
- Promising HL-LHC projections see <u>Caterina's talk</u>
- Also see Nicola's plenary talk
- Many more exciting results expected in the near future...

Thank you for your attention

Backup Slides

The Higgs Potential Open Questions

Vacuum Stability Are we in a local or a global minimum?

Shape of the Higgs Potential

u-Ginzburg Higgs Nami

Phys. Rev. D 101, 075023 (2020)

The Early Universe

- Electroweak baryogenesis can lead to *O*(1)
 Higgs self-coupling modifications
- Some inflation models modify the shape of the Higgs potential (Higgs couplings to gravity)

The HH Cross-Section

 The HH cross-section is ~1000 times smaller than that of single Higgs boson production

Non-resonant HH Production HH invariant mass distribution

- The two ggF diagrams contribute to different kinematic regions
- Modifications to κ_{λ} would modify the cross-section and the m_{HH} distribution

arXiv:1910.00012

bbγγ VBF analysis regions

• Split analysis into low- and high-mass regions to target SM and BSM couplings

bbtt Fake-т background estimate

Submitted to JHEP

4b ggF and VBF categories

4b X_{Wt} and X_{HH}

$$X_{Wt} = \sqrt{\left(\frac{m_W - 80.4 \,\text{GeV}}{0.1 \, m_W}\right)^2 + \left(\frac{m_t - 172.5 \,\text{GeV}}{0.1 \, m_t}\right)^2}$$

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \, m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \, m_{H2}}\right)^2}$$

Single Higgs Corrections

Summary Of All Channels As of July 2021

HH Combination

Kv-K₂v

<u>2211.01216</u>