

Higgs physics at a muon collider

Luca Giambastiani, on behalf of the International Muon Collider Collaboration

> Higgs 2022 7-11 Nov. 2022

Why a muon collider

	Advantages	Disadvantages
e ⁺ e ⁻ colliders	All the center of mass energy available in the hard collision, no pile-up	Large synchrotron radiation losses
Hadron colliders	Low synchrotron radiation losses	Unknown fraction of E _{CM} available to colliding partons, pile-up from QCD events

Why a muon collider

	Advantages	Disadvantages
e ⁺ e ⁻ colliders	All the center of mass energy available in the hard collision, no pile-up	
Hadron colliders	Low synchrotron radiation losses	Unknown fraction of E _{CM} available to colliding partons, pile-up from QCD events

Muon collider has advantages from both e⁺e⁻ and hadron colliders:

• Clean collisions as in e⁺e⁻ colliders and energy frontier as in hadron colliders

Problem: Beam Induced Background (BIB)

• It is produced by the decay in flight of muons in circulating beams, and subsequent interactions

Features of a muon collider

Features of a muon collider

Features of a muon collider

- BIB produced mainly by decays of muons in circulating bunches, and subsequent interactions of decay products with surrounding material
 - \circ O(10⁸) BIB particles enter the detector at each bunch crossing
- Mitigated by the Machine Detector Interface (MDI): two nozzles made of tungsten and borated polyethylene
- Most BIB particles are out of time with respect to bunch crossing
- Current MDI optimized for 1.5 TeV muon collider
 - Preliminary studies on 3 TeV BIB shows that it's similar to the 1.5 TeV one

Higgs at a muon collider

- At multi-TeV energy, Higgs mainly produced by Vector Boson Fusion (VBF)
- ~500k events expected with 1 ab⁻¹@ 3 TeV
- **Higgs physics studies at 3 TeV** presented in this talk
 - o 1.5 TeV BIB included

The muons Smasher's guide, Rept.Prog.Phys. 85 (2022) 8, 084201

3 TeV Muon Collider Detector

- High hit multiplicity in tracking system due to BIB particles -> combinatorial problems
- Diffuse BIB background in calorimeters
- High hit multiplicity in the forward region of muon detectors
- Nozzles are fundamental to mitigate BIB, but also reduce acceptance

hadronic calorimeter 60 layers of 19-mm steel absorber + plastic scintillating tiles; 30x30 mm² cell size: 7.5 λ₁. electromagnetic calorimeter 40 layers of 1.9-mm W absorber + silicon pad sensors: 5x5 mm² cell granularity: \rightarrow 22 X₀ + 1 λ_1 . muon detectors → 7-barrel, 6-endcap RPC layers interleaved in the

superconducting solenoid (3.57T)

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
- 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 μm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

magnet's iron yoke;

30x30 mm² cell size.

Physics object reconstruction

- Particles reconstructed from tracking and calorimeter informations, clustered with $k_{\tau}(\Delta R=0.5)$ to make jets
 - Requirement on number of hits in each track applied in track selections
 - Large threshold (2 MeV) applied to calorimeter hits
 - Timing cuts on tracking and calo hits
 - \circ Further suppress fake jets with a requirement on the number of tracks ($N_{trk} > 0$)

Physics object reconstruction

2203.07964

$\sigma(\mu^+\mu^- -> Hvv) \times BR(H->bb)$

- Signal μμ->(H->bb)X and background μμ->qqX (q=b,c) generated with Whizard+Pythia8
 - Background mainly from Z->bb and Z->cc
- Two jets with a Secondary Vertex tag are required. Background from light jets considered negligible
- S = 59500, B = 65400 in 1 ab⁻¹
- Signal yield from template fit to pseudo-experiments using invariant mass
- Statistical relative uncertainty on

$$\sigma \times BR = 0.75\%$$

$\sigma(\mu^+\mu^- > Hvv) \times BR(H->WW^*)$

- 1 Muon + 2 jets final state
- Signal and backgrounds (with and without Higgs) simulated with Whizard+Pythia8
- Cuts on two BDTs to select signal vs backgrounds
- S=2 430, B=2 600 in 1 ab⁻¹

xp/Np(N/L)

$\frac{\Delta\sigma}{}=$	$\frac{\sqrt{S+B}}{2}$	→ 2.9%
σ	S	

Event $\frac{\mu^+\mu^- \to H\nu\overline{\nu} \to WW^*\nu\overline{\nu} \to gg\mu\nu\nu\overline{\nu}}{\mu^+\mu^- \to H\nu\overline{\nu} \to WW^*\nu\overline{\nu} \to gg\mu\nu\nu\overline{\nu}}$

 $\mu^{+}\mu^{-} \longrightarrow qq\mu\nu$ $\mu^{+}\mu^{-} \longrightarrow qqll$

 $\mu^+\mu^- \rightarrow \rightarrow qq\nu\nu$

 $\mu^+\mu^- \to H \to WW^* \to qqqq$

 $\mu^+\mu^- \to H \to bb$

 $\mu^+\mu^- \to H \to \tau\tau$

Expected Events

 2430 ± 150

 2600 ± 1300

< 100 C.L. = 68%

< 100 C.L. = 68%

< 10 C.L. = 68%

< 150 C.L. = 68%

< 4 C.L. = 68%

http://hdl.handle.net/20. 500.12608/28559

$\sigma(\mu^+\mu^- -> Hvv) \times BR(H-> ZZ^*)$

- 2 muons + 2 jets final state
- Signal generated with MG5+Pythia8, while inclusive $\mu^+\mu^- > vv$ $\mu^+\mu^-$ jj background (excluding signal) is generated with Whizard+Pythia8
- BDT used to select signal vs background

Resolution obtained with cut-based approach and with fit of

BDTs, giving the same result

$\sigma(\mu^+\mu^- -> Hvv) \times BR(H->\mu^+\mu^-)$

- Signal and backgrounds generated with MG5+Pythia8
- BIB not used (low impact in muon chambers)
- $10^{\circ} < \theta_{\mu} < 170^{\circ}, p_{T}^{\mu} > 5 \text{ GeV: reject hits from BIB}$
- Selection cuts on two BDTs trained to discriminate signal from the backgrounds
- Uncertainty on signal yield obtained from unbinned maximum likelihood fit to dimuon invariant mass

Process	Expected events with	
$105 < m_{\mu\mu} < 145 \text{ GeV}$	1 ab ⁻¹	
$[1]\mu^+\mu^- \to H\nu_\mu\bar{\nu}_\mu,$		
$H o \mu^+ \mu^-$	24.2	
$[1]\mu^{+}\mu^{-} \to H\mu^{+}\mu^{-},$		
$H o \mu^+ \mu^-$	1.6	
$\mu^+\mu^- o \mu^+\mu^- \nu \bar{\nu}_{\mu}$	636.5	
$\mu^+\mu^- \rightarrow \mu^+\mu^-\mu^+\mu^-$	476.4	
$[tl]\mu^{+}\mu^{-} \to t\bar{t} \to W^{+}W^{-}b\bar{b},$		
$W^{\pm} o \mu^{\pm} \nu_{\mu} (\bar{\nu}_{\mu})$	1.1	

Relative uncertainty on $\sigma = 38\%$

https://doi.org/10.22323/1.398.0579

$\sigma(\mu^+\mu^- > Hvv) \times BR(H->\gamma\gamma)$

- Signal and backgrounds generated with MG5+Pythia8
- Preliminary result: No BIB at the moment and some minor bkg still missing
- Used a BDT to perform signal vs. background separation
- Cut on BDT output to maximize $S/\sqrt{(S+B)}$

Process	σ (fb)	Events
$\mu\mu \to H\nu\nu, H \to \gamma\gamma$	0.9025 ± 0.0026	707
μμ o ννγγ	81.98 ± 0.27	30168
$\mu\mu o ll\gamma\gamma$	4.419 ± 0.016	2678
$\mu\mu o ll\gamma$	159.0 ± 0.6	4738
$\mu\mu o\gamma\gamma$	60.15 ± 0.03	59933

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \longrightarrow 8.9\%$$

$\sigma(\mu^+\mu^- -> HHvv) \times BR(H->bb)^2$

- Signal and backgrounds (H+bb and 4b) generated with Whizard+Pythia8
- Simulation performed without BIB but b-tagging efficiency in the presence of BIB is used to weight events
- Selection requirements:
 - \circ 4 jets, at least 3 of them with $p_T > 20$ GeV, and at least 2 must contain a secondary vertex
 - O Jet paired to minimize $M = \sqrt{(m_{ij} m_H)^2 + (m_{kl} m_H)^2}$
 - \circ S = 50. B = 432 in 1 ab⁻¹
- BDT trained for sig-vs-bkg discrimination, fit on BDT output to find resolution
 - \circ $\Delta \sigma / \sigma$ of 30% is found

Signal	Cross section [fb]
$\mu^+\mu^- o HH uar u$	0.8
Physics background	Cross section [fb]
$\mu^+\mu^- o bar b bar b uar u$	3.3
$\mu^+\mu^- o bar b H uar u$	1.7
(signal included)	

Trilinear coupling

- Generation (WHIZARD) and simulation of HH from trilinear coupling only
- Two MLPs are used: HH vs 4b and HH from trilinear only vs total HH
- Simulated HH events with different λ_3 hypothesis, resolution on λ_3 obtained from a likelihood scan
 - Stat. uncertainty of ~20% @ 68% CL is found

Comparison with CLIC

Measurement	Statistical precision		
	1.4 TeV 1.5 ab ⁻¹	3 TeV 2.0 ab ⁻¹	
$\sigma(\mathrm{H}\mathrm{u}_{\mathrm{e}}\bar{\mathrm{u}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\bar{\mathrm{b}})$	0.4%	0.3%	
$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to \mu^+\mu^-)$	38%	25%	
$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to \gamma\gamma)$	15%	10%*	
$\sigma(H \nu_e \bar{\nu}_e) \times BR(H \to WW^*)$	1.0%	0.7%*	
$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to ZZ^*)$	5.6%	3.9%*	

Measurement	Statistical precision 350 GeV 500 fb ⁻¹
$\sigma(ZH) \times BR(H \to b\bar{b})$	0.86%
$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$	5.1%
$\sigma(\mathrm{H} \iota_{\! \! \! b} \bar{\iota}_{\! \! \! b}) \times \mathit{BR}(\mathrm{H} \to b \bar{b})$	1.9%
$\frac{\Delta[\sigma(\mathrm{HH}\nu_{\mathrm{e}}\bar{\nu}_{\mathrm{e}})]}{\sigma(\mathrm{HH}\nu_{\mathrm{e}}\bar{\nu}_{\mathrm{e}})} = 44\% \text{ at } 1.4 \mathrm{Te}$	eV, 20% at 3 TeV

 $\Delta \lambda/\lambda = 54\%$ at $\sqrt{s} = 1.4$ TeV, 29% at $\sqrt{s} = 3$ TeV

	Collider @ 3 TeV
	•
H->WW	2.9%
H->ZZ	17%
H->bb	0.75%
Η->μμ	38%
Н->үү	8.9%
HH->4b	30%
λ_3	20%

Differences:

H->bb from combined measurement of hadronic Higgs decays

H->ZZ* with llqq final state, and $I = \{e, \mu, \tau\}$

H->WW* with qqqq and llqq final state, and I = $\{e, \mu\}$

Higgs physics at the CLIC electron–positron linear collider, Eur. Phys. J. C (2017) 77:475

Comparison with FCC-ee

$\sqrt{s} \; (\mathrm{GeV})$	2	40	30	65
Luminosity (ab^{-1})	5		1	.5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}$ H	HZ	$\nu\overline{\nu}$ H
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$\mathrm{H} \rightarrow \mathrm{W}^+ \mathrm{W}^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} o \mathrm{ZZ}$	± 4.4		± 12	± 10
$\mathrm{H} ightarrow \gamma \gamma$	± 9.0		± 18	± 22
$\mathrm{H} \to \mu^+ \mu^-$	± 19		± 40	

1	Collider @ 3 TeV
H->WW	2.9%
H->ZZ	17%
H->bb	0.75%
Η->μμ	38%
Η->γγ	8.9%
HH->4b	30%
λ_3	20%

Sensitivity on trilinear coupling λ : 42% in global (Higgs+EW) fit, 12% when alone

Conclusions

- The Muon Collider is very different from electron-positron and hadron colliders, with new very interesting features
- Muons in beams decay and produce BIB. Full simulation is essential to evaluate the impact of the BIB on physics measurements and understand how to deal with it
- A huge effort is on-going to design the MDI, the detector and the reconstruction algorithms
- This talk demonstrates that Higgs physics at Muon Collider is possible, by using a detailed simulation of the experiment

Comparison with fast sim studies

Fulls	sim	Fast s	sim
H->WW	2.9%	H->WW	1.7%
H->ZZ	17%	H->ZZ	11%
H->bb	0.75%	H->bb	0.76%
Η->μμ	38%	Η->μμ	40%
Η->γγ	8.9%	Η->γγ	6.1%
HH->4b	30%		
$\lambda_3^{}$	20%	λ_3 (95% CL)	25%

Differences:

H->bb from combined measurement of hadronic Higgs decays

H->ZZ* with llqq final state, and $I = \{e, \mu, \tau\}$

H->WW* with qqqq and llqq final state, and I = $\{e, \mu\}$

- High precision Higgs from high energy muon colliders, JHEP 08 (2022), 185
- Electroweak couplings of the Higgs boson at a multi-TeV muon collider, Phys.Rev.D 103 (2021) 1,013002

BIB in muon chambers

First layer endcap

Effects of nozzles on BIB

Figure 11. Comparison of number and energy spectra of the BIB: with nozzles (Y) in solid red line and without nozzles (N) in dotted black line.

Muon Collider roadmap

