Measurements and Interpretations of Simplified Template Cross-Sections, differential and fiducial cross sections in $H \rightarrow \gamma\gamma$ decays with the ATLAS detector

Tom Schwarz
University of Michigan

On behalf of the ATLAS Collaboration

Nov 10th, 2022
Higgs 2022
Pisa, Italy
SM Higgs Production and Decay

Gluon-gluon fusion

Vector-boson fusion

$q \rightarrow V \rightarrow H$

Associated production with vector boson (VH)

Associated production with top quark pair (ttH)

Showing Full Run 2 Results in this Talk!

Decay modes:

- H → bb, BR ~58%
- H → ZZ, 3%
- H → WW, 22%
- H → ττ, 8%
- H → cc, 6%
- H → 4γ, 3%

Observed (5σ) production modes:
- Gluon gluon fusion, VBF (Run-1)
- ttH, VH (Run-2)

Observed (5σ) decay modes:
- To bosons: H → ZZ, H → WW, H → γγ
- To fermions: H → ττ, H → bb
STXS Measurements

- Analysis measures production cross-sections in the Simplified Template Cross-Sections (STXS) framework, in which Higgs production phase space is partitioned by production process, kinematics, and event properties.

- Provides strong sensitivity to the cross-sections of primary Higgs boson production modes: gluon-gluon fusion (ggF), vector-boson fusion (VBF), and associated production with a vector boson or top quark (VH or ttH).

- Events split into classes targeting 45 STXS regions (based on Stage 1.2 binning) using a multi class BDT. Only report on 28 regions.

- Additional classifier (BDT/NN) trained in each class to further separate events into 101 categories.

- A simultaneous fit to $M_{\gamma\gamma}$ is performed in each of the categories, where the distribution is modeled with analytic functions for both signal and background.
STXS Measurements

- Analysis measures production cross-sections in the Simplified Template Cross-Sections (STXS) framework, in which Higgs production phase space is parameterized by production process, kinematics, and event properties.

- Provides strong sensitivity to the cross-sections of primary Higgs boson production modes: gluon-gluon fusion (ggF), vector-boson fusion (VBF), and associated production with a vector boson or top quark (VH or tH).

- Events split into classes targeting 45 STXS regions (based on Stage 1.2 binning) using a multiclass BDT. Only report on 28 regions.

- Additional classifier (BDT/NN) trained in each class to further separate events into 101 categories.

- A simultaneous fit is performed in each of the categories, where the distribution is modeled with analytic functions for both signal and background.
$H \rightarrow \gamma \gamma$ STXS Measurements

- Analysis measures production cross-sections in the Simplified Template Cross-Sections (STXS) framework, in which Higgs production phase space is partitioned by production process, kinematics, and event properties.
- Provides strong sensitivity to the cross-sections of primary Higgs boson production modes: gluon-gluon fusion (ggF), vector-boson fusion (VBF), and associated production with a vector boson or top quark (VH or ttH).
- Events split into classes targeting 45 STXS regions (based on Stage 1.2 binning) using a multi class BDT. Only report on 28 regions.
- Additional classifier (BDT/NN) trained in each class to further separate events into 101 categories.
- A simultaneous fit to $M_{\gamma\gamma}$ is performed in each of the categories, where the distribution is modeled with analytic functions for both signal and background.
STXS Measurements

- Analysis measures production cross-sections (STXS) framework, in which Higgs production phase space is partitioned by production process, kinematics, and event properties.

- Provides strong sensitivity to the cross-sections of primary Higgs boson production modes: gluon-gluon fusion (ggF), vector-boson fusion (VBF), and associated production with a vector boson or top quark.

- Events split into classes targeting 45 STXS regions (based on Stage 1.2 binning) using a multiclass BDT. Only report on 28 regions.

- Additional classifier (BDT/NN) trained in each class to further separate events into 101 categories.

- A simultaneous fit to $M_{\gamma\gamma}$ in the 101 categories, where the distribution is modeled with analytic functions for both signal and background.
Analysis measures production cross-sections in the Simplified Template Cross-Sections (STXS) framework, in which Higgs production phase space is partitioned by production process, kinematics, and event properties.

Provides strong sensitivity to the cross-sections of primary Higgs boson production modes: gluon-gluon fusion (ggF), vector-boson fusion (VBF), and associated production with a vector boson or top quark (VH or ttH).

Events split into classes targeting 45 STXS regions (based on Stage 1.2 binning) using a multi class BDT. Only report on 28 regions.

Additional classifier (BDT/NN) trained in each class to further separate events into 101 categories.

A simultaneous fit to $M_{\gamma\gamma}$ is performed in each of the categories, where the distribution is modeled with analytic functions for both signal and background.
28 STXS Categories

93% Compatibility with SM
Interpretation of the STXS Results (κ Framework)

Note: $tHjb$ category sensitive to negative Kt
Interpretation in SMEFT used to set constraints on possible new physics.

• Using STXS results, individual Wilson coefficients (c_k) are measured while fixing others to zero.

• A simultaneous measurement of all SMEFT parameters is also performed (see paper).

 ➡ A principal component analysis is being performed to identify sensitive directions for the simultaneous measurement.

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_k \frac{c_k}{\Lambda^2} O_k$$
Interpretation of the STXS Results (SM EFT)

$\mathcal{L} = \mathcal{L}_{SM} + \sum_k \frac{c_k}{\Lambda^2} O_k$

ATLAS

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$H \rightarrow \gamma\gamma$, $m_H = 125.09$ GeV, $\Lambda = 1$ TeV

0 means SM
Fiducial Cross-Sections

• Fiducial measurements of $H \rightarrow \gamma\gamma$ observables allow for a more model independent comparison with predictions by measuring fiducial phase space that closely matches the available analysis phase space - minimizing extrapolations.

• Results can constrain couplings not directly accessible (such as c_H) and can be applied to Wilson coefficient in SM EFT
Differential Fiducial Cross-Sections

\(H \rightarrow \gamma \gamma, \ \sqrt{s} = 13 \text{ TeV}, \ 139 \text{ fb}^{-1} \)

ATLAS

- Data, tot. unc.
- Syst. unc.
- \(gg\rightarrow H \) default MC + \(XH \)
- \(gg\rightarrow H \) SCETlib\(q_T + XH \)
- \(gg\rightarrow H \) RadiSH+NNLOJET + \(XH \)
- \(gg\rightarrow H \) ResBos2 + \(XH \)
- \(gg\rightarrow H \) LHCHWG \([008.07743] + XH \)
- \(XH = VBF+VH+ttH+bbH+tH \)

ATLAS

\(H \rightarrow \gamma \gamma, \ \sqrt{s} = 13 \text{ TeV}, \ 139 \text{ fb}^{-1} \)

- Data, tot. unc.
- Syst. unc.
- \(gg\rightarrow H \) default MC + \(XH \)
- \(gg\rightarrow H \) Sherpa+MCFM+OpenLoops + \(XH \)
- \(gg\rightarrow H \) NNLOJET + \(XH \)
- \(gg\rightarrow H \) GoSam+Sherpa + \(XH \)
- \(gg\rightarrow H \) STWZ, BLPTW + \(XH \)
- \(XH = VBF+VH+ttH+bbH+tH \)

\(\rho_{\gamma\gamma}^\text{ATLAS} \) vs. \(p_T^{\gamma\gamma} \) [GeV]

\(\sigma_{\text{fid}}^\text{ATLAS} \) vs. \(N_{\text{jets}} \)

13
Fiducial Cross-Sections

- Interpretation in SMEFT used to set constraints on possible new physics.

- Using fiducial differential results, individual Wilson coefficients (c_k) are measured while fixing others to zero.
A model independent search for new physics examines 22 final states categorized by objects produced in association with \(H \rightarrow \gamma \gamma \).

Signal regions can roughly be classified into six groups: events with heavy flavor jets; events with high jet multiplicity or larger \(H_T \); events with large \(E_T^{\text{miss}} \); events with leptons; events with additional photons; and events with top quarks.

No significant excess above SM observed and limits on production cross-sections placed at 95% CL.

Detector efficiencies are reported for all 22 signal regions which are used to convert detector-level cross section limits to particle-level cross-section constraints.
Model-independent Search in $H \rightarrow \gamma\gamma$

- An example using an Ewk SUSY production model to demonstrate how to derive constraints on a given BSM model

- In this process, a chargino and neutralino pair decay to a final state W boson, Higgs, and two undetectable neutralinos (so large E_{T}^{miss}).

- The $E_{T}^{\text{miss}} > 100$ GeV signal region for this analysis placed a 95% CL limit at the detector level of 0.4 fb.

- Accounting for detector efficiency (0.68 reported in paper), the particle level limit on the BSM cross-section is 0.59 fb at 95% CL, which would exclude the considered SUSY model ($\sigma = 1.05 \text{ fb}$ at particle level).
Model-independent Search in $H \rightarrow \gamma\gamma$

- An example using an Ewk SUSY production model to demonstrate how to derive constraints on a given BSM model.

- In this process, a chargino and neutralino pair decay to a final state W boson, Higgs, and two undetectable neutralinos (so large E_T^{miss}).

- The $E_T^{\text{miss}} > 100$ GeV signal region for this analysis placed a 95% CL limit at the detector level of 0.4 fb.

- Accounting for detector efficiency (0.68 reported in paper), the particle level limit on the BSM cross-section is 0.59 fb at 95% CL, which would exclude the considered SUSY model ($\sigma = 1.05 \, fb$ at particle level).
Conclusions

- SM Higgs physics in the $H \rightarrow \gamma\gamma$ channel have been probed in a variety of ways - simplified template cross sections, fiducial measurements, full phase space differential measurements.

- Interpretations of the results have been performed in the κ framework and in SM Effective Field Theory.

- All measurements/interpretations are consistent with the SM.

- However, the results are mostly dominated by statistical uncertainties, so future runs will probe deeper into Higgs properties.