Search for Lepton-Flavour-Violating Decays of the Higgs Boson

Kieran Amos on behalf of the ATLAS Collaboration

Higgs 2022

09/11/2022

<□> <舂> <≧> <≧> <≧> <≧> ○<⊘

- Lepton flavour conserved in the SM.
- Lepton Flavour Violation (LFV) is evident in neutrino oscillations. Can LFV processes also occur in charged lepton sector?
- Higgs boson LFV decays expected in several SM extensions (SUSY, 2HDM, composite Higgs...).
- This talk is on the results of the ATLAS search for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ decays at 138 fb⁻¹. Link to Conf note.

Analysis Introduction

- Search for evidence of Higgs boson decay with charged lepton flavour violation (LFV) with two separate signals, $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ and two separate analysis methods, **MC-template** and **Symmetry**.
- All major production modes are considered as signal (ggH, VBF, WH, ZH)

- Lep-Lep Final states $e\tau_{\mu}$ and $\mu\tau_{e}$ with one electron and one muon.
- Ordering based on p_T of leptons in Higgs frame (new to this analysis).
- Two different methods:
 - MC-template method
 - Symmetry method

- Lep-Had Final states $e\tau_{had}$ and $\mu\tau_{had}$ with one lepton and one hadronic tau.
- One analysis method:
 - MC-template method

Lep-Lep	Lep-Had			
Baseline				
$1e$ and 1μ , Opposite sign	$1e$ or 1μ and			
No tau-had	1tau-had with Opposite sign			
No b-jets				
VBF				
$N_{ m jets} \geq 2$				
Non-VBF				
fail VBF selection				

- See Backup for detailed cuts.
- VBF region enhances sensitivity to VBFH production mode using jet kinematics.
- 2 Final states \times 2 regions = 4 SRs per analysis method.
- Additional CRs dependent on the analysis (see next slides).

Background Estimation - Lep-Lep MC Template Method

- Top and $Z \rightarrow \tau \tau$: Normalisation factors (NF) extracted separately for VBF and non-VBF from 1-bin CRs.
- CRs included in fit to constrain background yields.
- 2-POI CRs shared for $e\tau$ and $\mu\tau$.
- Z → µµ: NF from CR at pre-fit level together with norm. unc.
- Diboson: Dedicated Validation region.
- SM $H \rightarrow \tau \tau$ and $H \rightarrow WW$ from MC.
- Fakes: Data-driven estimate for $j \rightarrow \ell$, $\gamma \rightarrow e$, $\tau_{had} \rightarrow \ell$.

- $Z \rightarrow au au$: different NF for VBF and non-VBF in the fit.
- **Top**: NF shared with lep-lep for categories where the MC-template is used for lep-lep. Otherwise Top normalization fixed from MC and corresponding theory uncertainties included.
- In 2-POI fit NFs are common for $e\tau_{had}$ or $\mu\tau_{had}$.
- $Z \rightarrow \mu \mu$: uncertainties on the normalisation are extracted from dedicated VR.
- Diboson, SM Higgs, others: estimated from MC.
- Fakes: estimate of $j \to \tau_{had}$ with fake-factor. Main sources are W+jets and multijets.

Background Estimation - Symmetry Lep-Lep Method

- Data-driven method where main backgrounds in each channel are estimated using data yields from the other channel.
 - SM processes are symmetric w.r.t. prompt $e \leftrightarrow \mu$ exchange.
 - LFV H decays break this symmetry.
 - Data of each of the two channels (eτ_μ and μτ_e) can serve as background prediction for the other channel.
 - The Symmetry method measures the difference of LFV signal strengths: $(\mathcal{B}(H \to \mu \tau) - \mathcal{B}(H \to e \tau))$. If one of the signal is assumed to be zero, then it becomes an absolute measurement.

Detector effects induce asymmetries, contribute differently to each channel:

- Misidentified background events
- Different efficiencies for *e* and μ in reconstruction, identification...

Signal Region

・ロト ・四ト ・ヨト ・ヨー シタマー

- MVAs used to enhance sensitivity. Scores used as final discriminant.
- Symmetry Lep-Lep: NNs trained with Keras.
- MC-Template: BDTs trained with TMVA.
- Separate training for non-VBF and VBF and for $e\tau_{had}$ and $\mu\tau_{had}$ but combined across $e\tau_{\mu}$, $\mu\tau_e$.

In general: Each MVA linear combination of individual MVAs trained on selected backgrounds.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

9/13

Example (MC Lep-Lep):

- LFV vs $Z\tau\tau+H\tau\tau+Z\ell\ell$
- LFV vs Top+VV+HWW
- LFV vs Fakes

Selection of MVA Distributions

MC Lep-Had

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Statistical Analysis Overview

- MVA output used as final discriminant for signal strength μ extraction.
- Two different signal parametrisations:

Method	Channel	Category	Region	1 POI fit	2 POI fit
MC-template	lt.	non-VBF	$\begin{array}{l} {\rm SR} \\ Z \to \tau \tau \ {\rm CR} \\ {\rm Top-quark} \ {\rm CR} \end{array}$	\$ \$ \$	√ √ √
	_E	VBF	$\begin{array}{l} {\rm SR} \\ Z \to \tau \tau \ {\rm CR} \\ {\rm Top-quark} \ {\rm CR} \end{array}$		\$ \$ \$
MC-template	$\ell\tau_{\rm had}$	non-VBF VBF	SR SR	√ √	√ √
Symmetry	$\ell\tau_{\ell^{'}}$	non-VBF VBF	SR SR	\checkmark	

1-POI

- Independent fits in eτ and μτ channels (for example set B(H → eτ) = 0 when measuring B(H → μτ))
- non-VBF: MC-LepLep + MC-LepHad
- VBF: Symmetry-LepLep + MC-LepHad

2-POI

- No assumption needed on branching ratios.
- The two signals are fitted simultaneously in the two channels
- non-VBF + VBF: MC-LepLep + MC-LepHad

2-POI results

 $\mathcal{B}(H \to e\tau)$

 $\mathcal{B}(H \to \mu \tau)$

- Observed (expected) limits at 95% CL are 0.19(0.11)% and 0.18(0.09)%) for $\mathcal{B}(H \to e\tau)$ and $\mathcal{B}(H \to \mu \tau)$ respectively
- \Rightarrow 1.6 σ excess for $\mathcal{B}(H \rightarrow e\tau)$ and 2.5 σ for $\mathcal{B}(H \to \mu \tau)$
- \Rightarrow Compatible with SM branching value of 0 to 2.2σ

1.4

Conclusion

- Presented the results of a search for $H \to e\tau$ and $H \to \mu\tau$ decays with the ATLAS detector at 138 fb⁻¹
- Two categories, Lep-Lep and Lep-had and two regions, VBF-enhanced and non-VBF
- Two different analysis methods: MC-Template and Symmetry(Lep-Lep only)
- Results quoted as 1-POI fits for independent $\mathcal{B}(H \to e\tau)$ and $\mathcal{B}(H \to \mu\tau)$ measurements and combined 2-POI measurement.
- Comparison to previous $36 \, \text{fb}^{-1}$ analysis:
 - **Observed Limits** improved by a factor of 2.4(1.5) for $H \rightarrow e\tau (H \rightarrow \mu \tau)$
 - Expected Limits improved by a factor of 3.1(4.1) for $H \rightarrow e\tau(H \rightarrow \mu\tau)$

Backup

<ロ > < 団 > < 臣 > < 臣 > ミ の < で 14/13

Detailed Event selection

Selection	$\ell au_{\ell'}$	$\ell au_{ m had}$				
	exactly $1e$ and 1μ , OS	exactly 1ℓ and $1\tau_{had-vis}$, OS				
	$ au_{ m had}$ -veto	$ au_{ m had}{ m Tight~ID}$				
Rasalina		Medium eBDT ($e\tau_{had}$)				
Dasenne	<i>b</i> -veto	<i>b</i> -veto				
	$p_{\rm T}^{\ell_1} > 45 (35) {\rm GeV} {\rm MC}$ -template (Symmetry method)	$p_{\rm T}^{\ell} > 27.3 {\rm GeV}$				
	$p_{\rm T}^{\ell_2} > 15 {\rm GeV}$	$p_{\rm T}^{\tau_{\rm had-vis}} > 25 {\rm GeV}, \eta^{\tau_{\rm had-vis}} < 2.4$				
	$30 \mathrm{GeV} < m_{\ell_1 \ell_2} < 150 \mathrm{GeV}$	$\sum \cos \Delta \phi(i, E_{\rm T}^{\rm miss}) > -0.35$				
	$r = \frac{1}{2}$	$i=\ell, \tau_{\rm had-vis}$				
	$0.2 < p_{\rm T}^{\rm dack}(\ell_2 = e) / p_{\rm T}^{\rm cluster}(\ell_2 = e) < 1.25 ({\rm MC-template})$	$ \Delta\eta(\ell, \tau_{\rm had-vis}) < 2$				
	track a_0 significance requirement (see fext)					
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$					
	Baseline					
VDE	≥ 2 jets, $p_{\rm T}^{\rm j_1} > 40$ GeV, $p_{\rm T}^{\rm j_2} > 30$	0 GeV				
VDF	$ \Delta \eta_{jj} > 3, m_{jj} > 400 \text{ GeV}$					
	Baseline plus fail VBF categori	sation				
non-VBF	-	veto events if				
	-	$90 < m_{\rm vis}(e, \tau_{\rm had-vis}) < 100 { m GeV}$				

Uncertainty Sources

1 POI	Impact ($\times 10$	²) on observed
Source of uncertainty	$\hat{B}(H \rightarrow e\tau)$	$\hat{B}(H \rightarrow \mu \tau)$
Flavour tagging	0.010	0.003
Misidentified background $(\ell \tau_{had})$	0.021	0.015
Misidentified background $(\ell \tau_{\ell'})$	0.029	0.016
Jet and E_T^{miss}	0.011	0.010
Electrons and muons	0.003	0.005
Luminosity	0.006	0.006
Hadronic τ decays	0.009	0.009
Theory (signal)	0.008	0.006
Theory $(Z + jets processes)$	0.009	0.011
Theory (top-quark processes)	0.003	0.003
$Z \rightarrow \ell \ell$ normalisation	0.002	0.006
Symmetric background estimate	0.002	0.001
Background sample size	0.042	0.023
Total systematic uncertainty	0.053	0.038
Data sample size	0.030	0.028
Total	0.061	0.047
POL	Impact (×1)	²) on obcomind
2101	$1 \operatorname{IIIIDaC}_{0} 1 \land 1 \land 1 \land$	/ / OH ODSCIVEU
Source of uncertainty	$\hat{\mathcal{B}}(H \rightarrow e\tau)$	$\hat{\mathcal{B}}(H \to \mu \tau)$
Source of uncertainty Flavour tagging	$\hat{B}(H \rightarrow e\tau)$ 0.007	$\hat{\mathcal{B}}(H \rightarrow \mu \tau)$ 0.003
Source of uncertainty Flavour tagging Misidentified background $(e\tau_{\text{bad}})$	$\hat{\mathcal{B}}(H \rightarrow e\tau)$ $\hat{\mathcal{B}}(H \rightarrow e\tau)$ 0.007 0.021	$\hat{\mathcal{B}}(H \rightarrow \mu \tau)$ 0.003 0.003
Source of uncertainty Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(e\tau_n)$	$\begin{array}{c c} \text{impact } (\times 10^{\circ}) \\ \hline \\ \hat{B}(H \rightarrow e\tau) \\ \hline \\ 0.007 \\ 0.021 \\ 0.058 \end{array}$	$\begin{array}{c c} \hat{\mathcal{B}}(H \to \mu \tau) \\ \hline 0.003 \\ 0.003 \\ 0.003 \\ \hline \end{array}$
Source of uncertainty Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(e\tau_{\mu})$ Misidentified background $(\mu \tau_{had})$	$\begin{array}{c c} & \text{Impact (\times16]}\\ & \hat{\mathcal{B}}(H \to e\tau) \\ \hline & 0.021 \\ & 0.058 \\ & 0.006 \end{array}$	$\begin{array}{c c} \hat{\mathcal{B}}(H \to \mu \tau) \\ \hline & 0.003 \\ 0.003 \\ 0.003 \\ 0.015 \\ \hline \end{array}$
Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(\mu\tau_{had})$ Misidentified background $(\mu\tau_{ad})$	$\begin{array}{c c} & \text{Impact (A10)} \\ & \hat{\mathcal{B}}(H \to e\tau) \\ \hline \\ & 0.007 \\ & 0.021 \\ & 0.058 \\ & 0.006 \\ & 0.009 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(e\tau_{r})$ Misidentified background $(\mu\tau_{had})$ Misidentified background $(\mu\tau_{e})$ Jet and E_{miss}^{miss}	$\begin{array}{c c} \text{Impact (AR)}\\ \hat{\mathcal{B}}(H \to e\tau) \\ \hline 0.007 \\ 0.021 \\ 0.058 \\ 0.006 \\ 0.009 \\ 0.012 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Florour of uncertainty Flavour tagging Misidentified background $(e\tau_{hal})$ Misidentified background $(\mu\tau_{hal})$ Misidentified background $(\mu\tau_{c})$ Jet and E_{T}^{mis} Electrons and muons	$\begin{array}{c c} \text{impact } (\land \mathbf{R} \\ \hat{\mathcal{B}}(H \to e\tau) \\ \hline \\ 0.007 \\ 0.021 \\ 0.008 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.013 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flavour tagging Misidentified background $(c\tau_{had})$ Misidentified background $(c\tau_{r_{h}})$ Misidentified background $(\mu\tau_{had})$ Misidentified background $(\mu\tau_{e})$ Jet and E_{T}^{miss} Electrons and muons Luminosity	$\begin{array}{c c} \minpace (\times 10^{-3}) \\ \hat{\mathcal{B}}(H \to e\tau) \\ \hline 0.007 \\ 0.021 \\ 0.021 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.013 \\ 0.007 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Flavour tagging Hisidentified background $(e\tau_{hal})$ Misidentified background $(e\tau_{\mu})$ Misidentified background $(\mu\tau_{had})$ Misidentified background $(\mu\tau_e)$ Let and E_{mis}^{mis} Electrons and muons Luminosity Hadronic τ decays	$\begin{array}{c} \inf_{\vec{B}} \operatorname{part}\left(\langle A t \\ \vec{B}(H \to e\tau) \right) \\ \hline \vec{B}(H \to e\tau) \\ 0.007 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.0058 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.007 \\ 0.009 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flowour of uncertainty Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(\mu\tau_{had})$ Misidentified background $(\mu\tau_{e})$ Jet and E^{miss}_{mis} Electrons and muons Luminosity Hadronic τ decays Theory (signal)	$\begin{array}{c} \inf_{\hat{\mathcal{B}}(H \to e\tau)} \\ \hline \hat{\mathcal{B}}(H \to e\tau) \\ \hline 0.007 \\ 0.021 \\ 0.021 \\ 0.025 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.013 \\ 0.007 \\ 0.009 \\ 0.007 \end{array}$	$\begin{array}{c c} \hat{B}(H \rightarrow \mu \tau) \\ \hline \hat{B}(H \rightarrow \mu \tau) \\ \hline 0.003 \\ 0.003 \\ 0.003 \\ 0.015 \\ 0.011 \\ 0.009 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.007 \\ \hline \end{array}$
Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(e\tau_{r_{r}})$ Misidentified background $(\mu\tau_{had})$ Jet and E_{max}^{max} Electrons and muos Luminosity Hadronic τ decays Theory (signal) Theory (signal)	$ \begin{array}{c} \text{Impact } (\wedge \pi) \\ \hat{\mathcal{B}}(H \to e\tau) \\ \hline \\ 0.007 \\ 0.021 \\ 0.058 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.013 \\ 0.007 \\ 0.009 \\ 0.007 \\ 0.007 \\ 0.007 \\ \end{array} $	$ \begin{array}{c} \begin{array}{c} 0 & 0.084 \mbox{-}-$
Flovour tagging Wisidentified background $(e\tau_{hal})$ Misidentified background $(\mu\tau_{hal})$ Misidentified background $(\mu\tau_{hal})$ Misidentified background $(\mu\tau_{e})$ tet and E_{mis}^{mis} Electrons and muons Luminosity Hadronic τ decays Theory (signal) Theory ($Z \rightarrow l\bar{e}$ to processes) $Z \rightarrow l\ell$ normalisation $(e\tau)$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \hat{\mathcal{B}}(H \to \mu \tau) \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$
Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(e\tau_{r_{\mu}})$ Misidentified background $(\mu\tau_{r_{had}})$ Misidentified background $(\mu\tau_{e})$ Jet and E_{m}^{miss} Electrons and muons Luminosity Hadronic τ decays Theory (signal) Theory ($Z + jets$ processes) $Z \rightarrow \ell \ell$ normalisation $(e\tau)$	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	$ \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \hat{\mathcal{B}}(H \to \mu \tau) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
To a conce of uncertainty layour tagging lisidentified background $(e\tau_{nal})$ lisidentified background $(\mu\tau_{nal})$ lisidentified background $(\mu\tau_{nal})$ lisidentified background $(\mu\tau_{nal})$ lisidentified background $(\mu\tau_{nal})$ latornic τ decays heory (<i>z</i> + jets processes) $t \rightarrow \ell \ell$ normalisation $(e\tau)$ $t \rightarrow \ell R$ normalisation $(\mu\tau)$ background sample size	$ \begin{array}{c} \ \vec{B}(H \to e \tau) \\ \vec{B}(H \to e \tau) \\ 0.007 \\ 0.021 \\ 0.058 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.013 \\ 0.007 \\ 0.009 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.0007 \\ 0.0001 \\ 0.002 \\ 0.037 \end{array} $	$ \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \mathcal{B}(H \to \mu \tau) \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$
Flavour tagging Misidentified background $(e\tau_{had})$ Misidentified background $(e\tau_{r_{h}})$ Misidentified background $(\mu\tau_{e})$ Jet and E_{miss}^{miss} Electrons and muons Luminosity Hadronic τ decays Theory (Z + jets processes) Z $\rightarrow \ell \ell$ normalisation $(\mu\tau)$ Background sample size Total systematic uncertainty	$ \begin{array}{c} \text{Index} (\circ A \\ \vec{B}(H \rightarrow e \tau) \\ 0.007 \\ 0.021 \\ 0.058 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.013 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.0037 \\ \hline \end{array} $	$ \begin{vmatrix} \hat{\beta} (H \to \mu \tau) \\ \hat{\beta} (H \to \mu \tau) \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.001 \\ 0.001 \\ 0.009 \\ 0.005 \\ 0.009 \\ 0.005 \\ 0.009 \\ 0.009 \\ 0.0009 \\ 0.0009 \\ 0.0009 \\ 0.0009 \\ 0.0009 \\ 0.0009 \\ 0.0009 \\ 0.0023 \\ 0.0036 \\ \end{vmatrix} $
Source of uncertainty Flavour tagging Misidentified background $(e\tau_{nal})$ Misidentified background $(\mu\tau_{ral})$ Misidentified background $(\mu\tau_{ral})$ Jet and $E_{\rm miss}^{\rm miss}$ Electrons and muons Luminosity Hadronic τ decays Theory (<i>iggal</i>) Theory (<i>Z</i> + jets processes) $Z \rightarrow \ell \ell$ normalisation $(e\tau)$ $Z \rightarrow \ell \ell$ normalisation $(\mu\tau)$ Background sample size Total systematic uncertainty Data sample size	$ \begin{array}{c} \text{In place } (\times \text{ a } \varepsilon) \\ \hat{B}(H \rightarrow e \tau) \\ 0.007 \\ 0.021 \\ 0.058 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.013 \\ 0.007 \\ 0.009 \\ 0.007 \\ 0.009 \\ 0.007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0037 \\ \hline \end{array} $	$ \begin{array}{c} 1 & 0.0 \ $

MVA Input Variables

37 . 11	$\ell \tau_{had}$		$\ell \tau_{e'}$ MC-te	mplate	$\ell \tau_{\ell'}$ Sym	netry	
variable	non-VBF	VBF	non-VBF	VBF	non-VBF	VBF	
m _{coll}	1	~	~	~	~	~	
$m_{\rm vis}$	~	\checkmark	✓	√	 ✓ 	√	
$m_{\rm MMC}$			 ✓ 	√	 ✓ 	~	
$m_T(\tau, E_T^{\text{miss}})$	~	~			 ✓ 	~	
$m_T(\ell_H, E_T^{\text{miss}})$	1	\checkmark			1	~	
$m_T(\ell_1, E_T^{\text{miss}})$			1	~			
$m_{\mathrm{T}}(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$			1	1			
Emiss	1	1	1	1	1	1	
$p_T(\ell_H)$	1	1					
$p_{T}(\tau)$	1	1					
$p_{T}(\ell_{\tau})/p_{T}(\ell_{1})$			~	1			
$p_T^{\text{rest}}(\ell_H)$			~	1	1	~	
$p_{T}^{rest}(\ell_{\tau})$			 ✓ 	1	 ✓ 	~	
p_{T}^{tot}			1	1	 ✓ 	~	
$p_T(\ell_H)/E_T^{miss}$					 ✓ 	~	
$p_T(\tau)/p_T(\ell_H)$					~	√	
$\sum p_{T}$					~	√	
$\Delta R(\ell_H, \tau)$	√	~	 ✓ 	√	1	~	
$\Delta \eta(\ell_H, \tau)$	~	\checkmark			✓	~	
$\Delta \phi(\ell_H, \tau)$	~				 ✓ 		
$\Delta \phi(\ell_{\tau}, E_T^{miss})$			~	~	 ✓ 	~	
$\Delta \phi(\ell_H, E_T^{\text{miss}}) - \Delta \phi(\tau, E_T^{\text{miss}}) $	1						
$\Delta \alpha$			✓	√	 ✓ 	√	
$\Delta \Phi \left(\ell_H, E_T^{\text{miss}} \right)$		~	✓	1	1	~	
$\Delta d_{2}(l_{1}, l_{2})$			1	1	1		
$a^{\ell_{\tau}}$							
$n(\tau_{0}, \cdot)$	1						
m	•			1		1	
$N_{intr}(p_{-}>30GeV)$		~					
$ \Delta \eta_{ii} $		1				√	
$\Delta R(\mathbf{j},\mathbf{j})$				~		~	
$ \Delta \eta_{ii} \cdot \eta_{i_i} \cdot \eta_{i_i}$				~			
$p_{T}(j_1)$						~	
$p_T(j_2)$						\checkmark	
$\Delta \phi(j_1, E_T^{miss})$				~		√	
$\Delta \phi(j_2, E_T^{miss})$				1		~	
η -centrality(ℓ_H)				1		✓ _	~ ~
η -centrality (ℓ_{τ})		< C	₽▶ ◀♬	▶ √	E ▶ < E	▶√ 🗐 🗄	4) Q (

Region	Channel	NTrees	MaxDepth	MinNodeSize	Shrinkage
non-VBF	$e\tau_{had}, \mu\tau_{had}$	500	7	1	0.05
VBF	$e\tau_{had}$	300	10	1	0.01
	$\mu \tau_{had} BDT_1$	300	8	1	0.009
	$\mu \tau_{had} BDT_2$	300	6	1	0.0095
non-VBF, VBF	$\ell \tau_{\ell'}$	750	8	2.5	0.1

Hyperparameter	Value			
** *	non-VBF NN	$V\!B\!F_{Z\to\tau\tau}$ NN	$VBF_{\text{Top-quark}}$ NN	VBF_{misID} NN
# nodes in 1st layer	512	128	128	128
# hidden layers	2	4	3	4
# output layers	3	2	2	2
L2 weight reg. param.	0.000048	0.000292	0.000094	0.000356
leaky ReLU slope below 0	0.080537	0.019614	0.062515	0.084219
optimiser	SGD	Adam	Adam	Adam
learning rate	0.025810	0.000142	0.000215	0.003507
batch size	128	128	512	1024
epochs	100	100	100	100

MVA Strategy

Symmetry Lep-Lep	MC-Template Lep-Lep	MC-Template Lep-Had
 NNs trained with Keras 	BDTs with TMVA	BDTs with TMVA
 Separate training for non-VBF and VBF, but common for eτ_μ and μτ_e 	 Separate training for non-VBF and VBF but common for eτ_μ and μτ_e 	 Separate training for non-VBF and VBF and for eτ_{had} and μτ_{had}
non-VBF	non-VBF and VBF	non-VBF $e au_{had}$
1 Multiclassifier NN with 3 output nodes. Signal output node used for fit.	 3 BDTs, combined linearly. LFV vs Zττ+Hττ+Zℓℓ LFV vs Top+VV+HWW LFV vs Fakes 	 3 BDTs, combined linearly. LFV vs Zττ LFV vs Fakes LFV vs Rest of bkgs
3 MVAs. Scores combined linearly. • LFV vs. $Z\tau\tau+H\tau\tau+MC$ fakes • LFV vs. Top+VV+HWW • LFV vs. Fakes		VBF and non-VBF $\mu \tau_{had}$ 2 BDTs, combined linearly for non-VBF $\mu \tau_{had}$ and quadraticaly for VBF • LFV vs $Z\tau\tau$ • LFV vs Rest of bkgs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

₹.

Additional MVA Distributions

MC Lep-Had

MC Lep-Lep

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1-POI results

μτ_e 0.17 (exp) 0.22 (obs)

μτ 0.10 (exp) 0.19 (obs)

0.09 (exp) 0.16 (obs)

μτ

0.4 0.6 0.8

 $\hat{B}(H \rightarrow \mu \tau) = 0.05^{+0.09}_{-0.09}$ %

 $\hat{B}(H \rightarrow \mu \tau) = 0.10^{+0.05}_{-0.05}$ %

 $\hat{B}(H \rightarrow u\tau) = 0.08^{+0.02}$

1.4 1.2 95% CL upper limit on $B(H \rightarrow \mu \tau)$ in % • Observed (expected) limits at 95% CL are 0.23(0.12)% and 0.16(0.09)%) for $\mathcal{B}(H \rightarrow e\tau)$ and $\mathcal{B}(H \to \mu \tau)$ respectively

3