

Higgs-Electroweak Portal to the Dark Sector

Lingfeng Li (Brown U.)

Nov. 10 2022 Higgs 2022, PISA

2110.10691 w/ H-C. Cheng and E. Salvioni

See also:

1803.03561 w/ H-C. Cheng, E. Salvioni and C. Verhaaren 1905.02198 w/ H-C. Cheng, E. Salvioni and C. Verhaaren

Irrelevant Portal to Hidden Valley

Irrelevent Portal Dark Pions

 $\boldsymbol{\omega}, \boldsymbol{M}, \boldsymbol{Y}, \boldsymbol{\widetilde{Y}}$: N×N mass/Yukawa matrixes

Irrelevent Portal Dark Pions (II)

$$\mathcal{L}_{EFT} = \frac{1}{2} \overline{\psi}_{R} \mathbf{Y}^{\dagger} \mathbf{M}^{-2} \mathbf{Y} \left[|H|^{2} i \not \!\!\!D + i \gamma^{\mu} H^{\dagger} D_{\mu} H \right] \psi_{R} + \text{h.c.}$$

$$+ \frac{1}{2} \overline{\psi}_{L} \widetilde{\mathbf{Y}}^{\dagger} \mathbf{M}^{-2} \widetilde{\mathbf{Y}} \left[|H|^{2} i \not \!\!\!D + i \gamma^{\mu} H^{\dagger} D_{\mu} H \right] \psi_{L} + \text{h.c.}$$

$$- \overline{\psi}_{L} \boldsymbol{\omega} \psi_{R} + \overline{\psi}_{L} \widetilde{\mathbf{Y}}^{\dagger} \mathbf{M}^{-1} \mathbf{Y} \psi_{R} |H|^{2} + \text{h.c.},$$

Dimension-6 Z portal couplings Dimension-5 Higgs portal coupling

$$\omega, \frac{Y\widetilde{Y}v^2}{M} \ll \Lambda \qquad \to \qquad (N^2 - 1) \text{ pNGBs}$$

In the special case $N_{flavor} = 1$, no isospin symmetry, thus no pNGBs, the dark sector has a heavy psdudoscalar (P), a vector (V) and a scalar (S) as ground states with comparable masses.

The Cartoon of Dark Spectrum

Two Flavor, Three Dark Pions

Z portal dark pion production

Dark pions rearrange into CP eigenstates (like K_S and K_L in the SM)

The π_1 and π_3 decay via Z portal, ALP-like (axion-like-particle) with large ALP decay constants:

$$f_a \sim \frac{M^2}{Y^2 f_{\hat{\pi}}}$$
 or $\frac{M^2}{\widetilde{Y}^2 f_{\hat{\pi}}} \sim 1 \text{ PeV}$

The same of the same of the same of the

Z portal dark pion decay

The π_2 mix with the Higgs since it's CP-even, with mixing angle:

$$s_{\theta}^{(2)} \sim 2\pi f_{\hat{\pi}}^2 \frac{v}{m_h^2} \frac{Y\widetilde{Y}}{M} \sim 10^{-6} \left(\frac{Y\widetilde{Y}/M}{10^{-2} \text{ TeV}^{-1}} \right) \left(\frac{f_{\hat{\pi}}}{\text{GeV}} \right)^2$$

 $J^{PC}=0^{--}$ Higgs portal dark pion production

Higgs portal dark pion decays

Dark Pion Decays (ALP-Like)

 $m_{\pi} > m_{\eta'}$: PPP modes (mostly SM $\pi^+\pi^-\pi^0$)

SM isospin suppressed modes

Elaborate discussions on indirect and ALP-type constraints in backup slides and the paper, e.g. flavor probes. See also Jure Zupan's talk.

Dark Pion from SM FCNC

Although suppressed by CKM and loop, still relevant since $\Gamma_{B,K}$ are suppressed by $(M_W)^{-4}$ in SM.

$$\mathcal{L}_{\mathrm{eff}} \sim \bar{d}_{L\alpha} d_{L\beta} \bar{\psi}' \psi', \qquad \alpha < \beta \qquad \bar{\psi} \qquad \qquad \bar{d}_{\alpha} \qquad \bar{\psi} \qquad \qquad \bar{d}_{\alpha} \qquad \bar{\psi} \qquad \bar{d}_{\alpha} \qquad \bar{\psi} \qquad \bar{d}_{\alpha} \qquad \bar{\psi} \qquad \bar{d}_{\alpha} \qquad \bar{\psi} \qquad \bar{d}_{\alpha} \qquad \bar{d}_{\alpha}$$

The four-fermion interaction then followed by the factorization

Finite terms introduces a numerical

$$\langle \hat{\pi}_{a} X | \mathcal{H}_{\text{eff}} | B \rangle = \langle \hat{\pi}_{a} | \langle X | \mathcal{H}_{\text{eff}} | 0 \rangle | B \rangle = \frac{ig^{2}}{64\pi^{2}} V_{ts}^{*} V_{tb} \langle X | \bar{s}_{L} \gamma_{\mu} b_{L} | B \rangle \frac{p_{\hat{\pi}}^{\mu}}{f_{a}^{(a)}} \left[\frac{m_{t}^{2}}{m_{t}^{2}} \left(\log \frac{M^{2}}{m_{t}^{2}} - 2 \right) + 3 \right]$$

$$\text{BR}(B^{\{+,0\}} \to \{K^{+} \hat{\pi}_{b}, K^{*0} \hat{\pi}_{b}\}) \approx \left\{ 0.92, 1.1 \} \times 10^{-8} \left(\frac{10^{3} \text{ TeV}}{f_{a}^{(b)}} \right)^{2} \{\lambda_{K\hat{\pi}}^{1/2}, \lambda_{K^{*\hat{\pi}}}^{3/2} \}$$

Experimentally achievable if dark pions are LLP

Current FCNC Bounds (B,K decay)

The bound as long as the experimental Ecm > the BB/KK thresholds Limits coming from LHC, ee colliders and beam dump experiments.

Probing f_a ~ PeV already Reaching O(8-60) PeV for future experiments

$${
m BR}(K^+ o \pi^+ \hat{\pi}^{(b)}) \approx 3.9 \times 10^{-11} igg(rac{10^3 {
m TeV}}{f_a^{(b)}} igg)^2 \lambda_{\pi \hat{\pi}}^{1/2} \quad {
m Kaon FCNC + LLP mode probes} \ {
m f_a \sim PeV also. \ [NA48/2 \ 1612.04723]}$$

f_a ~ PeV also. [NA48/2 1612.04723]

EW Scale Phenomenology @ LHC

[P. Schwaller, D. Stolarski and A. Weiler, 1502.05409] [CMS, 1810.10069]

Dimuon displaced vertexes (DV) are sharp signals

Fully inclusive searches rely on multiplicity of LLP tracks.

Example: Dimuon Search @ LHCb

Most straightforward strategy: if dark pion decays to dimuon largely, simply count the number of displaced dimuon vertexes. $f_a^{(1)} [PeV]$

Two peaks from benchmark pion width ratio 1:37 Lin

Limits from the CMS data scouting [CMS, CMS-PAS-EXO-20-014]

Summary

- Dark mesons are common and well motivated. From simple UV structures, there will be rich phenomenology.
- ➤ Easily long-lived. Dedicated calculations below the cc threshold.
- Phenomenology from current data shows that an Ma few TeV is achievable. Bright future prospects.
- > Open fields (alternative portals, cosmology...) remain to be fully explored.

Backup Slides

Motivating Scenario I: Neutral Naturalness

Top partners gauged under hidden SU(3) to avoid strong bounds

Folded SUSY

Twin Higgs

[G. Burdman, Z. Chacko, H.S. Goh and R. Harnik, 0609152]

[Z. Chacko, H.-S. Goh, and R. Harnik, 0506256]

See also Tripled Top (TT) model

[H-C. Cheng, LL, E. Salvioni, and C. Verhaaren, 1803.03561]

Motivating Scenario II: Relaxion

The hidden SU(3) confinement generates the necessary backreaction potential [P. W. Graham, D. E. Kaplan, and S. Rajendran, 1504.07551].

If the potential comes from the dark sector, the model avoids strong CP bounds. [O. Antipin and M. Redi, 1508.01112][H. Beauchesne, E. Bertuzzo and, G. Grilli di Cortona, 1705.06325]

Motivating Scenario III: Asymmetric Dark Matter

The (mirror) baryon number stabilizes the dark matter [D. E. Kaplan, M. Luty and K. M. Zurek, 0901.4117]

The large elastic Xsec allowed between dark matter particles may help solve the so called small scale crisis in cosmology. [X. Chu, C. Garcia-Cely, H. Murayama, 1901.00075] [J. Terning, C. Verhaaren, K. Zora, 1902.08211]

HEP-ph/ex Motivation: Long-Lived Particles (LLPs)

Many recent efforts/ proposals to search for LLPs

e.g. [J. Alimena et al, 2203.05502]

[J. L. Feng et al, 2203.05090]

One of the perhaps most interesting and challenging scenario: Emerging/semivisible jets made of many dark hadrons. [P. Schwaller, D. Stolarski and A. Weiler, 1502.05409] [T. Cohen, M. Lisanti, H.K. Lou, 1503.00009]

Alternative Tripled Top (TT) Model

Arbitrarily light A few TeV

The superpotential: $W'_{Z_3} = y_t(Q_A H u_A^c + Q_B H u_B^c + Q_C H u_C^c) + \omega(u_B' u_B^c + u_C' u_C^c) + M(Q_B Q_B'^c + Q_C Q_C'^c)$

A, B & C: 3 sectors charged under different SU(3),

The soft breaking term:

A few TeV (\approx M) $V_{\rm s} = \widetilde{m}^2 \left(|\widetilde{Q}_A|^2 + |\widetilde{u}_A^c|^2 \right) - \widetilde{m}^2 \left(|\widetilde{u}_B^c|^2 + |\widetilde{u}_C^c|^2 \right) \ .$

A Folded SUSY-like spectrum realized in 4D

For details of the original model, see [H-C.Cheng, LL, E.Salvioni and C. Verhaareen 1803.03561] 1803.03651 1905.03772 20xy.ijklm

Alternate Tripled Top (TT) Model & Accidental SUSY

$$W'_{Z_3} = y_t(Q_A H u_A^c + Q_B H u_B^c + Q_C H u_C^c) + \omega(u_B' u_B^c + u_C' u_C^c) + M(Q_B Q_B'^c + Q_C Q_C'^c)$$
$$V'_s = \widetilde{m}^2(|\widetilde{Q}_A|^2 + |\widetilde{u}_A^c|^2) - \widetilde{m}^2(|\widetilde{Q}_B|^2 + |\widetilde{Q}_C|^2)$$

1803.03651 1905.03772 20xy.ijklm

Dark hadrons:

Pseudoscalar, Vector and Scalar

One flavor Dark QCD- No Dark Pions

Indirect/Precision Constraints

$$M \gtrsim 0.9 \,\mathrm{TeV} \, Y^2 \Big(\frac{N_d N}{6}\Big)^{1/2}$$

From EW oblique parameter T < O(10⁻³)

$$M \gtrsim 0.8 \,\mathrm{TeV} \, Y \Big(\frac{N_d N}{6}\Big)^{1/4}$$

From Z invisible decay width <~2 MeV

$$M \gtrsim 0.4 \text{ TeV} \left(\frac{N_d \text{Tr}(\boldsymbol{Y} \boldsymbol{Y}^{\dagger} \boldsymbol{Y} \boldsymbol{Y}^{\dagger})}{3 \times 10^{-4}} \right)^{1/2}$$

From Higgs invisible decay BR < 13%

$$M \gtrsim 1.5 \text{ TeV } YY$$

From electron EDM if CP is violated maximally

Dark Pion Decays (ALP-Like)

ALP with arbitrary flavor diagonal couplings, a step forward from [D. Aloni, Y. Soreq and M. Williams, 1811.03474],

A.1
$$a \rightarrow \gamma \gamma$$

A.2
$$a \to \pi^+\pi^-\gamma$$

A.3
$$a \to \pi^{+}\pi^{-}\pi^{0}$$

A.4
$$a \rightarrow 3\pi^0$$

A.5
$$a \to \pi^0 \pi^0 \eta, \pi^+ \pi^-$$

A.6
$$a \to \pi^0 \pi^0 \eta', \pi^+ \pi$$

A.7
$$a \to \eta \eta \pi^0$$

A.8
$$a \to K^0 \overline{K}^0 \pi^0$$

A.9
$$a \to K^+K^-\pi^0$$

A.10
$$a \to K^{+} \overline{K}^{0} \pi^{-}, K^{-} K^{0} \pi^{-}$$

A.11
$$a \to \omega \omega, \phi \phi, K^{*+}K^{*-}, K^{*0}\overline{K}^{*v}$$

A.12
$$a \to \pi^+\pi^-\omega$$

A.8
$$a \to K^+K^-\pi^0$$

A.9 $a \to K^+K^-\pi^0$
A.10 $a \to K^+\overline{K}^0\pi^-, K^-K^0\pi^-$
 $\mathcal{L}_a = \frac{1}{2}(\partial_{\mu}a)^2 - \frac{1}{2}m_a^2a^2 - \frac{\partial_{\mu}a}{f_a}\sum_f c_f \bar{f}\gamma^{\mu}\gamma_5 f$

Dark Pion Decays (ALP-Like, III)

The dominant mode $\pi^+\pi^-\pi^0$ comes from the $\rho\pi\pi$ coupling

$$\mathcal{M} = \mathcal{M}_{\text{ChPT}} + \mathcal{M}_{\text{VMD}} + \mathcal{M}_{\sigma} + \mathcal{M}_{f_0} + \mathcal{M}_{f_2}$$

$$\mathcal{M}_{VMD} = \frac{\langle a\pi_0 \rangle}{f_a} \Big\{ g^2 f_\pi \Big[(2m_{12}^2 + m_{23}^2 - m_a^2 - 3m_\pi^2) BW_\rho(m_{23}^2) \Big\} \Big\}$$

$$+ (2m_{12}^2 + m_{13}^2 - m_a^2 - 3m_\pi^2) BW_\rho(m_{13}^2) \mathcal{F}_V(m_a) - \frac{1}{2f_\pi} (3m_{12}^2 - m_a^2 - 3m_\pi^2) \Theta(m_{\eta'} - m_a) \bigg\},\,$$

Higgs Portal Decays

Higgs portal decay follows [M. W. Winkler, 1809.01876]

Lingfeng Li (Brown U.) arXiv: 2110.10691

Hadronic Exclusives

Symmetries of the Dark Pion Model

Depending on forms of $\omega, M, Y, \widetilde{Y}$, the symmetry of the model varies. We consider 3 benchmarks:

Symmetries possessed			Decay portals		
$\widetilde{\boldsymbol{Y}} = 0$	exact $U(1)$	exact CP	$\hat{\pi}_1$	$\hat{\pi}_2$	$\hat{\pi}_3$
√	×	×	Z	Z	\overline{Z}
×	√	×	stable	stable	Z,h
×	,	✓	Z	h	Z
		The Higgs portal is suppressed			

The U(1) subgroup of the SU(2) isospin is exact if everything is diagonal

The CP is conserved in the dark sector if all couplings are real.

if either \mathbf{Y} or $\widetilde{\mathbf{Y}} = 0$

Dark Pion as Long-lived Particles

Lingfeng Li (Brown U.) arXiv: 2110.10691

LLP in the Z Portal Dominance

cc, tt, and bb thresholds

Dark Chiral perturbation Theory

Dark ChpT describe more complicated interaction patterns and dark isospin breaking. Useful at E<<m_Z $U=\exp\left(i\frac{\sigma_a\hat{\pi}^a}{f_{\hat{\pi}}}\right)$

$$\mathcal{L}_{\hat{\pi}}^{(2)} \supset \frac{f_{\hat{\pi}}^2}{4} \text{Tr}[(D^{\mu}U)^{\dagger}D_{\mu}U] + \frac{\hat{B}_0 f_{\hat{\pi}}^2}{2} \text{Tr}[U\widehat{\boldsymbol{m}}_{\psi'}^{\dagger} + \widehat{\boldsymbol{m}}_{\psi'}U^{\dagger}] \qquad \widehat{\boldsymbol{m}}_{\psi'} = \boldsymbol{m}_{\psi'} - \boldsymbol{B}h$$

$$D_{\mu}U = \partial_{\mu}U - i\frac{g_Z}{2}(\mathbf{A}U - U\widetilde{\mathbf{A}})Z_{\mu}$$

Case Study: Z Portal Dominance

$$-\mathcal{L}_{UV} = \overline{Q}_L \mathbf{Y} \psi_R H + \overline{Q}_R \widetilde{\mathbf{Y}} \psi_L H + \overline{Q}_L \mathbf{M} Q_R + \overline{\psi}_L \boldsymbol{\omega} \psi_R + \text{h.c.},$$

Higgs invisible decay width constraints irrelevant

$$Y = \begin{pmatrix} y_{11} & y_{12} e^{i\alpha} \\ y_{21} & y_{22} \end{pmatrix}$$

For N=2 case, contains a free CP phase

$$\Gamma_{\hat{\pi}_2} \approx \sin^-\theta_{12} \Gamma_{\hat{\pi}_1}$$

Phenomenology @ the EW Scale

$$1.8 \times 10^{-4} \left(\frac{N_d \text{Tr}(\boldsymbol{Y} \boldsymbol{Y}^{\dagger} \boldsymbol{Y} \boldsymbol{Y}^{\dagger}) + (\boldsymbol{Y} \to \boldsymbol{\tilde{Y}})}{3} \right) \left(\frac{1 \text{ TeV}}{M} \right)^4$$

Usually dominates the phenomenology because of large stastics:

> 10¹¹ Z Bosons @ HL-LHC

Higgs portal only relevant when both $\mathbf{Y},\ \widetilde{\mathbf{Y}}$ are large

$$\sigma_Z \approx 55 \text{ nb}$$

$$\sigma_h \approx 49 \text{ pb}$$

Example: Dimuon Search @ LHCb

Another benchmark with 1 GeV dark pions

 $au_{\hat{\pi}_1} \, [\mathrm{cm}]$

Lingfeng Li (Brown U.) arXiv: 2110.10691

 10^{2}

10³

10⁴

Allowed by current FCNC bounds

Further Opportunities @ LHC

LLP oriented triggers? [Y. Gershtein and S. Knapen, 1907.00007, D. Linthrone and D. Stolarski, 2103.08620]

Dark Photon Mass [GeV]

TeV Scale Phenomenology @ LHC

Direct production of heavy EW doublets:

$$\hat{\sigma}(u\bar{d} \to Q_u \bar{Q}_d) = \frac{N_d}{N_c} \frac{\pi \alpha_W^2}{6\hat{s}} \frac{\hat{s}^2}{(\hat{s} - m_W^2)^2} \left(1 - \frac{4M^2}{\hat{s}}\right)^{1/2} \left(1 + \frac{2M^2}{\hat{s}}\right)$$

⇒Diboson + emerging jet signals

If dark pions are invisible, similar with SUSY electroweakino searches.

Estimated limit: M>1.3 TeV @ HL-LHC

Prospect at Future Colliders

Indirect/Intensity (EWPT), Shifting the T parameter:

$$\widehat{T} \simeq \frac{N_d}{16\pi^2} \sum_{i=1}^{N} \frac{v^2}{3M_i^2} \left(y_i^4 + \widetilde{y}_i^4 + \frac{1}{2}y_i^2\widetilde{y}_i^2\right)$$

S

Direct search in H/Z decays:

(VERY conservative) limits on exotic Z → dark shower decays but with a DIFFERENT model.

Prospect at Future Colliders (II)

Energy-frontier searches:

- VBF pair production
- s-channel pair production
- Indirect, non-resonance modulations
- **>** ...

Ueda, [2009.13790].

Intensity-frontier approach: searching in the beam dump: K. Asai, S. Iwamoto, Y. Sasaki and D. Ueda, [2105.13768].

Comments on Cosmology

Our vanilla dark pion model is not strongly constrained by astrophysical/cosmological observations. χ

If isospin is exact, all dark pions are stable. N>2 case, reducing number density from WZW interactions (SIMP DM-like): [Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J. G. Wacker,1411.3727] +......

Need extra mediators to keep the dump the entropy generated.

The DM possibilities are still wide open with non-minimal dark components.

e.g., asymmetric baryonic DM or dark mesino/glueballino (dark R-hadrons) in SUSY UV completions.