

un Number: 357887, Event Number: 2565586471

Date: 2018-08-09 14:40:24 CEST

Search for a dark photon in resonant mono-photon signatures from Higgs boson decay

Date: 2018-08-09 14:40:24 CEST

Federica Piazza on behalf of the ATLAS Collaboration

stituto Nazionale di Fisica Nucleare

2022, Pie

Motivations and analysis overview

Motivations

- \bullet interactions
- Dark photon as the gauge boson of a new unbroken U(1) group of the Dark Sector (arxiv:2005.01515)
- It can interact with SM sector through higher than 4-dimensional operators via messenger exchange
 - Loop of messenger fields can allow $H \to \gamma \gamma_D$ or $H \to \gamma_D \gamma_D$ (Higgs portal)
 - BSM BR up to few % allowed by present constraints (arxiv:2206.05297)

This analysis:

- Dark-photon from (gg, qq) ZH, $H \rightarrow \gamma \gamma_d$
- Clean final state $\ell \ell + \gamma + E_T^{miss}$ (γ_d undetected)
- <u>New</u> analysis in ATLAS, using full Run 2 dataset
- γ_D masses: 0, 1, 10, 20, 30, 40 GeV

Dark Matter can be part of a Dark Sector, potentially interacting with the Standard Model Sector through "portal"

Analysis selections and strategy

- Discriminant variables: BDT output score Training input variables: E^{miss}_T significance, m_T(γ, E^{miss}_T), photon p_T, m_{II}, m_{II}, <u>I Ē^{miss}_T + p^γ_T I - p^I_T</u>
- Main backgrounds through data-driven techniques

Background	Contributions	Estimate
Fake E ^{miss}	$Z\gamma$, $Z\gamma$ + jets, $Z\gamma\gamma$, $ZH(\gamma\gamma)$, gg/VBF $H(Z\gamma)$	Data-driven with ABCI Shape from MC
$\mathbf{e} ightarrow \gamma$	$VV, VVV, \ell^+ \ell^- Vt, VVt\overline{t}$	Pure data-driven base on $\mathbf{e} \rightarrow \gamma$ fake-rate
$\nabla \nabla \gamma$	$Z(\ell^{+}\ell^{-})Z(\nu\bar{\nu})\gamma,$ W ⁺ (\ell^{+}\nu)W ⁻ (\ell^{-}\bar{\nu})\gamma	MC rescaled by data i
Тор	tW γ , t $\overline{t}\gamma$, t \overline{t} , single top	Pure MC, with 20% sy from data/bkg in top \
Wγ	Wy with jet $\rightarrow \ell$	Pure MC
Higgs	$t\bar{t}H(Z\gamma), VH(Z\gamma)$	Pure MC

Data-driven estimates

- R from MC: takes into account possible correlatio
- N_X = observed data in region X, after subtraction of
- Uncertainties: statistical uncertainty of data in the uncertainty of R coefficient from MC statistics

Electrons faking photons: Yields in probe-e CRs rescaled by fake rate

- Probe-e CR : replace the photon with an electron in the analysis regions
- Fake rate from signal+bkg fit of invariant mass in ee and $e\gamma$ final states from Z decay

channel	R'
	R'_{MC} R'_{data}
ee	1.09 ± 0.11 1.16 ± 0.06
$\mu\mu$	$1 15 \pm 0.11 1.18 \pm 0.05$
	1.10 ± 0.00

Uncertainties: uncertainty on the fake-rate, statistics in probe-e CR, 100% uncertainty on $jet \rightarrow e$ subtraction

Data-driven estimates

- R from MC: takes into account possible correlation between the 2 variables
- N_X = observed data in region X, after subtraction of non-fake E_T^{miss} backgrounds
- Uncertainties: statistical uncertainty of data in the B, C and D regions and the uncertainty of R coefficient from MC statistics

Electrons faking photons: Yields in probe-e CRs rescaled by fake rate

- Probe-e CR : replace the photon with an electron in the analysis regions
- Fake rate from signal+bkg fit of invariant mass in ee and $e\gamma$ final states from Z decay
- \bullet

Closure in A' for R value				
channel	R'			
	R'_{MC}	$R'_{\rm data}$		
ee	1.09 ± 0.11	1.16 ± 0.06		
$\mu\mu$	1.15 ± 0.11	1.18 ± 0.05		

Uncertainties: uncertainty on the fake-rate, statistics in probe-e CR, 100% uncertainty on $jet \rightarrow e$ subtraction

Validation of data-driven estimates

- in the VR (A' region of the ABCD method)

Federica Piazza

Top and VVy backgrounds

Top VR:

- background)

VVy CR:

- 3 muon-CR chosen to avoid high contamination from $\mathbf{e} \to \gamma$ or contribution from jet $\to \mathbf{e}$
- Due to poor statistics, CR included in the fit as a single-bin CR

Good data/background agreement observed in for the BDT input variables in both the top-VR and VVy-CR

• Same as SR, but at least 1 b-tagged jet, and $m_{\ell\ell}$ and $\Delta\phi(E_T^{miss}, II\gamma)$ cuts removed to increase statistics 20% discrepancy between data and MC expectations included as a systematic uncertainty (subdominant

Same as SR, but with 3 muons and a photon, and removing $\Delta \phi(\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}, \mathsf{II}\gamma)$ and $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$ cuts to increase statistics

Statistical analysis

- Binned maximum likelihood fit in SR + VVy CR on BDT score distributions
- Method validated in VR, and in low BDT SR (BDT < 0.5)

Federica Piazza

Constraint of systematics NPs: $G(x \mid 0, 1)$: gaussian with $\mu = 0$ and and $\sigma = 1$

> $G(\theta_i | 0, 1)$ j∈{syst}

 $N_{:}^{bkg}(\boldsymbol{\theta})$ $bkg \neq VV\gamma$

6 background templates + signal

- Fake MET: BDT shape from MC
- **Top:** pure MC
- Wy and Higgs: pure MC
- Signal: POI = BR(H $\rightarrow \gamma \gamma_d$)

Background-only fit

- Good data/background agreement already before fit
- Binned maximum-likelihood fit on SR+CR, assuming no signal
- Analysis dominated by statistical uncertainties

BDT bin	0 - 0.50	0.50 - 0.64	0.64 - 0.77
Total(statistical+systematic) uncertainty	3.1%	10%	12%
Statistical uncertainty	3.1%	9.9%	12%

In last BDT bin, main systematic contributions from fake E_T^{miss} background modelling ($\sim21~\%$) and muons/electrons/photons/jets energy scale and resolution (ranging from $\sim4~\%$ to $\sim16~\%$)

• No excess wrt SM expectations observed \rightarrow exclusion limits can be set

Exclusion limit

- Binned maximum-likelihood fit on SR+CR, with BR($H \rightarrow \gamma \gamma_D$) as POI
- CLs scan to derive the 95% CL upper limit
- The exclusion limits are provided on the BR($H\to\gamma\gamma_D$), assuming the SM Higgs boson gg/qq ZH production cross section

m_{γ_d} [GeV]	$BR(H \rightarrow \gamma \gamma_d)_{obs}^{95}$	$BR(H \rightarrow \gamma \gamma_d)_{exp}^{95}$
0	2.28	$2.82^{+1.33}_{-0.84}$
1	2.19	$2.71^{+1.28}_{-0.81}$
10	2.21	$2.73^{+1.31}_{-0.82}$
20	2.17	$2.69^{+1.29}_{-0.81}$
30	2.32	$2.87^{+1.36}_{-0.86}$
40	2.52	$3.11^{+1.48}_{-0.93}$

For massless γ_d

		Obs.	Exp.	
CMS	VBF	3.5%	2.8%	<u>JHEP03(2021)011</u>
CMS	ZH	4.6%	3.6%	<u>JHEP10(2019)139</u>
ATLAS	VBF	1.8%	1.7%	<u>CERN-EP-2021-137</u>
ATLAS	ZH	2.3%	2.8%	ATLAS-CONF-2022-064

Conclusions

- Search for dark photon in the $ZH, H \rightarrow \gamma \gamma_D$ process, using full Run 2 dataset
- New analysis in ATLAS
- No excess observed and 95% CL exclusion limits set on the $BR(H \rightarrow \gamma \gamma_D)$, for dark photon masses up to 40 GeV

For massless γ_d

		Obs.	Exp.
CMS	VBF	3.5%	2.8%
CMS	ZH	4.6%	3.6%
ATLAS	VBF	1.8%	1.7%
ATLAS	ZH	2.3%	2.8%

Federica Piazza

Federica Piazza

Background-only fit

$k_{VV\gamma} = 1.35 \pm 0.38$

	~~ ~ ~ ~ ~				77 0 0 0 0 0 0 0		
BDT bin	SR 0 - 0.50	SR 0.50 - 0.64	SR 0.64 - 0.77	SR 0.77 - 0.88	SR 0.88 - 0.96	SR 0.96 - 1	CR 0 - 1
Observed	910	84	59	72	42	6	32
Exptected SM background	$1 \qquad 910 \pm 29$	85.5 ± 8.7	59.9 ± 7.3	69.7 ± 7.8	41.6 ± 6.1	7.3 ± 2.0	31.4 ± 5.4
Fake E_T^{miss}	800 ± 34	72.1 ± 8.3	45.7 ± 6.5	53.2 ± 7.1	27.9 ± 6.1	2.0 ± 1.9	$2.1^{+3.5}_{-2.1}$
$e \rightarrow \gamma$	21.5 ± 2.4	3.33 ± 0.65	3.75 ± 0.77	6.4 ± 1.2	5.7 ± 1.5	1.47 ± 0.26	1.24 ± 0.07
$VV\gamma$	44 ± 12	5.3 ± 1.6	5.8 ± 1.7	6.4 ± 1.8	5.7 ± 1.9	3.30 ± 0.97	27.3 ± 6.4
$t\bar{t}, t\bar{t}\gamma$, single t	42 ± 15	4.3 ± 1.5	3.4 ± 1.2	3.6 ± 1.2	2.13 ± 0.80	0.50 ± 0.18	0.63 ± 0.22
$W\gamma$	3.3 ± 1.5	0.39 ± 0.18	1.18 ± 0.55	_	0.04 ± 0.02	_	_
$t\bar{t}H, VH$	0.15 ± 0.02	0.03 ± 0.01	0.04 ± 0.01	0.06 ± 0.01	0.09 ± 0.03	0.02 ± 0.01	$0.17\substack{+0.18 \\ -0.17}$
Pre-fit background	900 ± 120	90 ± 35	65 ± 27	53 ± 24	35 ± 22	7.8 ± 4.4	24 ± 4.7
Pre-fit Fake E_T^{miss}	800 ± 110	77 ± 33	51 ± 23	41 ± 21	23 ± 19	$3.2^{+4.0}_{-3.2}$	$1.8^{+3.2}_{-1.8}$
Pre-fit $e \rightarrow \gamma$	21.4 ± 2.6	3.62 ± 0.89	4.1 ± 1.3	5.3 ± 1.8	5.4 ± 1.9	1.52 ± 0.27	1.24 ± 0.07
Pre-fit $VV\gamma$	32.7 ± 6.8	4.3 ± 1.2	4.8 ± 1.7	3.9 ± 1.5	4.1 ± 1.6	2.56 ± 0.65	20.21 ± 3.29
Pre-fit $t\bar{t}, t\bar{t}\gamma$, single t	43 ± 17	4.7 ± 1.9	3.7 ± 1.7	3.0 ± 1.4	2.0 ± 1.0	0.52 ± 0.22	0.65 ± 0.23
Pre-fit $W\gamma$	3.3 ± 1.5	0.42 ± 0.21	1.28 ± 0.69	_	0.04 ± 0.02	_	_
Pre-fit $t\bar{t}H$, VH	0.15 ± 0.03	0.03 ± 0.01	0.04 ± 0.01	0.05 ± 0.02	0.08 ± 0.03	0.03 ± 0.01	$0.15^{+0.18}_{-0.15}$

13

Background-only fit: post-fit uncertainties

Impact of grouped systematic uncertainties evaluated as the impact, on background yields, of refitting with the set of NPs associated to the systematics of interest set to constant values $\pm 1\sigma$

BDT bin	0 - 0.50	0.50 - 0.64	0.64 - 0.77	0.77- 0.88	0.88 - 0.96	0.96 - 1
Total(statistical+systematic) uncertainty	3.1%	10%	12%	11%	15%	28%
Statistical uncertainty	3.1%	9.9%	12%	11%	14%	16%
Fake $E_{\rm T}^{\rm miss}$ shape	0.17%	1.2%	0.15%	0.76%	2.4%	21%
Jet E scale and resolution	0.09%	4.3%	2.6%	1.1%	0.65%	16%
Electron, photon E scale and resolution	0.04%	0.60%	1.0%	0.21%	1.7%	7.4%
Muon E scale and resolution	0.08%	0.10%	0.28%	0.67%	1.3%	4.2%
Fake E_{T}^{miss} data-driven	0.52%	0.29%	0.04%	0.04%	0.29%	3.3%
$E_{\rm T}^{\rm miss}$ soft term scale and resolution	0.27%	0.10%	0.50%	0.35%	0.33%	0.85%
Top normalization	0.07%	0.09%	0.14%	0.13%	0.07%	0.42%
Electrons faking photons data-driven	0.03%	0.10%	0.12%	0.12%	0.06%	0.34%
Reweighting of $\langle \mu \rangle$ in MC simulation	0.07%	0.09%	0.28%	0.33%	0.20%	0.23%
Flavour tagging eff.	0.02%	0.15%	0.13%	0.11%	0.07%	0.20%
Photon ID/iso/reco eff.	0.00%	0.10%	0.12%	0.11%	0.08%	0.17%
Muon trigger/ID/iso/reco eff.	0.01%	0.15%	0.10%	0.06%	0.07%	0.16%
Electron trigger/ID/iso/reco eff.	0.01%	0.18%	0.09%	0.13%	0.11%	0.15%
Theoretical top	0.09%	0.04%	0.03%	0.17%	0.17%	0.46%
Theoretical $W\gamma$	0.03%	0.13%	0.10%	0.15%	0.09%	0.44%
Theoretical $VV\gamma$	0.03%	0.10%	0.12%	0.08%	0.08%	0.35%
Theoretical Higgs	0.01%	0.10%	0.14%	0.08%	0.07%	0.22%
Theoretical fake $E_{\rm T}^{\rm miss}$	0.06%	0.13%	0.15%	0.28%	0.36%	0.31%

14

MC samples

Process	Generator	ME Order	PDF	Parton Shower	Tune
		Signal samples			
$ZH, H \rightarrow \gamma \gamma_d$	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.245	AZNLO
		SM background samp	les		
$V\gamma^{QCD}$	Sherpa v2.2.8	NLO (up to 2 jets), LO (up to 3 jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa
$V\gamma^{EWK}$	MadGraph5_aMC@NLO [v2.6.5]	LO	NNPDF2.3LO	Рутніа 8.240	A14
Z^{QCD}	Sherpa v2.2.1	NLO (up to 2 jets), LO (up to 4 jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa
Z^{EWK}	Sherpa v2.2.1	NLO (up to 2 jets), LO (up to 4 jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa
Single <i>t</i> -quark/ <i>tt</i>	Powheg Box v2	NLO	NNPDF2.3LO	Рутніа 8.230	A14
$t\bar{t}$ (V, VV), $Wt\gamma$	MadGraph5_aMC@NLO [v2.2.3]	NLO	NNPDF2.3LO	Рутніа 8.210	A14
SM Higgs	Powheg Box v2	NNLO	PDF4LHC15	Рутніа 8.230	AZNLO
$VV\gamma$	Sherpa v2.2.11	NLO (0 jets), LO (up to 3 jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa
VV/VVV	Sherpa v2.2.2	NLO (0 jets), LO (up to 3 jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO	Sherpa

Federica Piazza

Trigger & overlap removal

Period	Electron	Muon		
	Single-lept	on		
2015	$p_{\rm T} > 24, 60, 120 \; {\rm GeV}$	$p_{\rm T} > 20, 50 {\rm ~GeV}$		
2016-2018	<i>p</i> _T > 26, 60, 140 GeV	$p_{\rm T} > 26, 50 {\rm ~GeV}$		
	Di-lepton			
2015	$p_T^1, p_T^2 > 12 \text{ GeV}$	$p_T^1 > 18 \text{ GeV}, p_T^2 > 8 \text{ GeV}$ $p_T^1, p_T^2 > 10 \text{ GeV}$		
2016, 2018	$p_T^1, p_T^2 > 17 \text{ GeV}$	$p_T^1 > 22 \text{ GeV}, p_T^2 > 8 \text{ GeV}$ $p_T^1, p_T^2 > 14 \text{ GeV}$		
2017, 2018	$p_T^1, p_T^2 > 24 \text{ GeV}$	$p_T^1 > 22 \text{ GeV}, p_T^2 > 8 \text{ GeV}$ $p_T^1, p_T^2 > 14 \text{ GeV}$		

Remove	Keep	Matching criteria
jet	electron	$\Delta R < 0.2$
jet	muon	number of tracks < 3 and ΔR < 0.2
jet	photon	$\Delta R < 0.4$
electron	jet	$0.2 < \Delta R < 0.4$
electron	muon	shared same ID track
electron	electron	shared same ID track, electron with lower $p_{\rm T}$ removed
muon	jet	$0.2 < \Delta R < 0.4$
muon	electron	muon with calorimeter deposits and shared ID track
photon	electron	$\Delta R < 0.4$
photon	muon	$\Delta R < 0.4$

Cutflow

Channel	ee	2	$\mu\mu$		
Selection	Yields	$\epsilon \times A [\%]$	Yields	$\epsilon \times A [\%]$	
Filter efficiency	396.3	100	396.3	100	
Preselections	101.1 ± 0.5	25.5	101.1 ± 0.5	25.5	
Trigger	100.7 ± 0.5	25.4	100.7 ± 0.5	25.4	
<i>ee</i> or $\mu\mu$ channel	38.0 ± 0.3	9.6	45.3 ± 0.3	11.4	
Veto extra photons	37.9 ± 0.3	9.6	45.2 ± 0.3	11.4	
Veto extra leptons	37.8 ± 0.3	9.5	45.2 ± 0.3	11.4	
Leading lepton p_T	37.8 ± 0.3	9.5	45.2 ± 0.3	11.4	
Photon p_T	36.8 ± 0.3	9.3	44.1 ± 0.3	11.1	
\mathbf{E}_T^{miss}	22.6 ± 0.2	5.7	26.5 ± 0.3	6.7	
m_{ll}	21.7 ± 0.2	5.5	25.2 ± 0.2	6.3	
$m_{ll\gamma}$	21.7 ± 0.2	5.5	25.1 ± 0.2	6.3	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\ell\ell\gamma})$	19.3 ± 0.2	4.9	22.4 ± 0.2	5.7	

- Boosted Decision Tree (BDT) with XGBoost classifier:
 - Input variables in order of importance (no gain from including more variables)
 - $m_T(\gamma, E_T^{miss})$,
 - photon p_T
 - m_{lly,}

 $m_{\rm T} =$

- m∥, $|\overrightarrow{E}_{T}^{miss} + \overrightarrow{p}_{T}^{\gamma}| - p_{T}^{\parallel}$ • P_{T}^{\parallel} • $E_{T}^{miss} \text{ significance}$
- Optimization of BDT hyperparameters based on Randomized + Grid search
- 5-fold cross-validation (SKLearn::StratifiedKFold)
- Kolmogorov-Smirnov test implemented: no overtraining observed
- BDT results consistent among different dark-photon masses

$$= \sqrt{2E_{\rm T}^{\rm miss} p_{\rm T}^{\gamma} [1 - \cos[\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\gamma})]]}$$

$e \rightarrow \gamma$ background

• Fake rate
$$F_{e \rightarrow \gamma} = \frac{N_{e\gamma}}{N_{ee}}$$

- obtained from signal+bkg fit in invariant mass using a Z(ee) data sample ${ \bullet }$
- Bkg modelled by DSCB+exp(pol3)

Federica Piazza

Uncertainties:

• For each N_Z , uncertainty to account for impact of "bad" fits: $\sigma_{fit} = |\Delta N_{peak}| - |\sigma_{N_{peak}}| \text{ with } \Delta N_{peak} = N_{peak}^{fit} - N_{peak}^{hist}$

• Assign
$$\sigma_{N_Z} = \sqrt{\sigma_{fit}^2 + N_Z}$$
 and propagate it to fake-rate

• Add in quadrature uncertainty from closure with MC:

•
$$\delta_{MC}^{rel} = \frac{J_{e \to \gamma}}{f_{e \to \gamma}^{fit}} - 1$$
 from MC

•
$$\sigma_{glob}^{rel} = \sqrt{\langle (\delta_{rel}^{MC})^2 \rangle}$$

19

$$\begin{split} \mathcal{L}_{MS}^{I} &= \lambda_{S} S_{0} \left(\tilde{H}^{\dagger} S_{L}^{U} S_{R}^{U} + H^{\dagger} S_{L}^{D} S_{R}^{D} \right) + h.c., \\ \Gamma(H \to \gamma \gamma_{D}) &= \frac{m_{H}^{3}}{32 \pi \Lambda_{\gamma \gamma_{D}}^{2}} \\ \Lambda_{\gamma \gamma_{D}} &= \frac{6 \pi v}{R \sqrt{\alpha \alpha_{D}}} \frac{1 - \xi^{2}}{\xi^{2}} \quad => \text{Non-decoupling nature of } H \end{split}$$

$$r_{ij} \equiv \frac{\Gamma^{\rm m}_{ij}}{\Gamma^{\rm SM}_{\gamma\gamma}}$$

Federica Piazza

$$\begin{aligned} \mathrm{BR}_{\gamma\gamma_{D}} &= \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}} \frac{r_{\gamma\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}, \\ \mathrm{BR}_{\gamma_{D}\gamma_{D}} &= \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}} \frac{r_{\gamma_{D}\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}, \\ \mathrm{BR}_{\gamma\gamma} &= \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}} \frac{\left(1 + \chi \sqrt{r_{\gamma\gamma}}\right)^{2}}{1 + r_{\gamma_{D}\gamma_{D}} \mathrm{BR}_{\gamma\gamma}^{\mathrm{SM}}}, \end{aligned}$$

Figure 2: Predictions for BR($H \rightarrow \gamma \gamma_D$) versus α_D for different BR_{inv} and $r_{\gamma\gamma}$, for the minimal model of 1 (colorless) messenger with unit charges e = q = 1, and interference coefficient $\chi = +1$. Continuous (dashed) curves are allowed (excluded) by the BR($H \rightarrow \gamma \gamma$) measurement at 2σ level. Horizontal lines indicate the corresponding ATLAS and CMS upper limits on $BR(H \rightarrow \gamma \gamma_D)$ at 95% CL.

VBF+y+MET

Process	$SR - m_{jj} < 1 \text{ TeV}$ $m_T [GeV]$				$SR - m_{jj} \ge 1 \text{ TeV}$ $m_T [GeV]$					
1100035	0-90	90-130	130-200	200-350	≥ 350	0-90	90-130	130-200	200-350	≥ 350
Strong $Z\gamma$ + jets	29 ± 7	30 ± 7	29 ± 7	22 ± 5	5 ± 1	6 ± 2	6 ± 2	7 ± 2	4 ± 1	2 ± 1
EW $Z\gamma$ + jets	10 ± 2	9 ± 1	14 ± 2	12 ± 2	4 ± 1	23 ± 3	14 ± 2	25 ± 3	20 ± 3	9 ± 2
Strong $W\gamma$ + jets	117 ± 15	22 ± 4	27 ± 5	17 ± 3	3 ± 1	34 ± 5	8 ± 1	5 ± 2	2 ± 1	2 ± 1
EW $W\gamma$ + jets	16 ± 3	4 ± 1	4 ± 1	2.1 ± 0.4	0.5 ± 0.2	31 ± 5	3 ± 1	4 ± 1	3 ± 1	1.5 ± 0.3
$jet \rightarrow \gamma$	10 ± 8	3 ± 2	1 ± 1	1 ± 1	0.1 ± 0.1	3 ± 3	0.5 ± 0.5	0.6 ± 0.5	0.1 ± 0.1	0.1 ± 0.1
$jet \rightarrow e$	_	_	_	_	_	_	_	_	_	-
$e \rightarrow \gamma$	179 ± 15	20 ± 2	5 ± 1	2.8 ± 0.3	0.5 ± 0.1	76 ± 6	6 ± 1	1.4 ± 0.1	0.8 ± 0.1	0.2 ± 0.1
γ + jet	7 ± 7	6 ± 6	2 ± 2	0.2 ± 0.2	0.1 ± 0.1	2 ± 1	1 ± 1	0.4 ± 0.4	0.1 ± 0.1	0.03 ± 0.0
$t\bar{t}\gamma/V\gamma\gamma$	15 ± 2	4 ± 1	2.7 ± 0.3	2.3 ± 0.3	0.1 ± 0.1	9 ± 1	0.8 ± 0.3	0.1 ± 0.1	0.04 ± 0.09	0.03 ± 0.0
Fitted Bkg	363 ± 15	97 ± 8	84 ± 7	59 ± 5	12 ± 2	184 ± 8	40 ± 3	44 ± 3	30 ± 3	14 ± 2
VBF H125 ($\mathcal{B}(H \rightarrow \gamma \gamma_{\rm d}) = 0.02$)	3.6 ± 0.4	8.8 ± 1.1	1.7 ± 0.2	_	_	5.7 ± 0.7	12.2 ± 1.4	2.7 ± 0.3	-	-
ggF H125 ($\mathcal{B}(H \rightarrow \gamma \gamma_{\rm d}) = 0.02$)	1.9 ± 0.6	4.3 ± 1.3	0.8 ± 0.3	_	_	0.7 ± 0.3	1.2 ± 0.4	0.2 ± 0.1	-	_
Data	362	112	75	59	8	188	31	56	35	9
Data/Fit	1.00 ± 0.07	1.15 ± 0.14	0.89 ± 0.13	1.00 ± 0.16	0.65 ± 0.25	1.02 ± 0.09	0.78 ± 0.15	1.27 ± 0.19	1.17 ± 0.23	0.63 ± 0.2

