Search for rare decays of the Standard Model Higgs boson with the ATLAS detector

Aaron White on behalf of the ATLAS collaboration 10 November, 2022 Higgs 2022

Outline

Four investigations of rare processes predicted by the SM These results were covered in Giulio Umoret's talk on Tuesday

These results were covered in Gluno Onloret's Laik on Tuesday

- ► Higgs (or Z) to a quarkonium state $(\mathcal{Q} = J/\psi, \Upsilon)$ and a photon <u>2208.03122</u>
 - ▶ $\mathscr{B}(H \to J/\psi \gamma) \approx 10^{-6}$ ▶ $\mathscr{B}(H \to Y\gamma) \approx 10^{-9}$ ▶ $\mathscr{B}(Z \to \mathscr{Q}\gamma) \approx 10^{-8}$
- ► Higgs to a Z and a photon $\frac{2005.05382}{2005.05382}$ ► $\mathscr{B}(H \rightarrow Z\gamma) = 1.5 \pm 0.1 \times 10^{-3}$
- ► Higgs to two muons 2007.07830
 - $\blacktriangleright \mathscr{B}(H \to \mu \mu) = 2.2 \times 10^{-4}$
- ► Higgs to two leptons and a photon 2103.10322
 - $\blacktriangleright \ \mathcal{B}(H \to \ell \ell \gamma) \approx 10^{-5}$

Most of these analyses are 139fb⁻¹ updates of partial Run-2 results

Search for $H(Z) \rightarrow \mathcal{Q}\gamma$

- Motivation.
 - ▶ Indirect search for $H \rightarrow cc$, which may be sensitive to deviations of the quark Yukawa couplings
 - \triangleright $\Upsilon \gamma$ final state is sensitive to the sign of the Hbb coupling, making it complementary to direct $H \rightarrow bb$ measurements
- ► Target: Higgs decay to a photon and $\mathcal{Q}=J/\psi, \psi(2S), \text{ or } \Upsilon(1S, 2S, 3S)$
- Final state: $\gamma + \mathcal{Q}(\rightarrow \mu\mu)$
- Previous limits on branching ratio:

 - $\mathscr{B}(H \to J/\psi\gamma) < 3.5 \times 10^{-4}$ $\mathscr{B}(H \to \psi(2S)\gamma) < 2.0 \times 10^{-3}$ 1807.00802
 - ▶ Results from CMS: 1810.10056
- Note: this paper also studies the equivalent processes substituting a Z for the Higgs

Challenge

 Difficult to model "inclusive" multi-jet and γ+jet background with simulation due to its complex composition and misidentified objects

Strategy

- Selects photons with p^γ_T > 35 GeV, opposite charge muon pair, (sub)-leading p_T > (3)18 GeV
- The Drell-Yan background is modeled by a fit to simulation
- The "inclusive" background is modeled using toy events drawn from data distributions in a control region

Categorization of events

Common event selection						
$m_{\mu\mu} \in [2.4, 4.3]$ GeV for J/ψ , $\psi(2S)$	$m_{\mu\mu} \in [8.0, 12.0] \text{ GeV}$ for $\Upsilon(15, 25, 35)$					
Inclusive	Barrel (all η_{μ} < 1.05)	Endcap (any η_{μ} > 1.05)				

- Selections on $m_{\mu\mu}$ target J/ψ , $\psi(2S)$, $\Upsilon(1S, 2S, 3S)$
- The categories targeting Υ events are divided by muon η to separate events based on Υ resolution

- Two dimensional fits are performed in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$
- ► One fit is performed for each meson (5) boson (2) combination
 - ▶ For each limit, the other meson/boson signal strengths are treated as nuisance parameters
- These plots show the signal corresponding to $H \rightarrow \mathcal{Q}\gamma$ in green, and $Z \rightarrow \mathcal{Q}\gamma$ in red

► Fit shown is background-only

Aaron White

250

- Two dimensional fits are performed in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$
- One fit is performed for each meson (5) boson (2) combination
 - For each limit, the other meson/boson signal strengths are treated as nuisance parameters
- ► These plots show the signal corresponding to H → 2γ in green, and Z → 2γ in red

 Fit shown is background-only

B and EC Categories ATIAS Data s=13 TeV, 139 fb⁻¹ 122 < m ___ < 128 GeV Background Fit (nS) Background Exclusive Background Dimuon Background $B(H \rightarrow \Upsilon(1S.2S.3S)\gamma) = (2.6.4.4.3.5) \times 10^{-4}$ m.... [GeV B and EC Categories ATLAS √s=13 TeV, 139 fb⁻¹ 9.0 < m_- < 9.8 GeV A Data - Background Fit Exclusive Background T(nS) Background Dimuon Background $B(H \rightarrow \Upsilon(1S,2S,3S)\gamma) = (2.6,4.4,3.5) \times 10^{-10}$ $B(Z \rightarrow T(15.25.35)y) = (1.0.1.2.2.3) \times 10^{4}$ 250 m_{u*u*y} [GeV]

Higgs 2022

- Two dimensional fits are performed in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$
- One fit is performed for each meson (5) boson (2) combination
 - For each limit, the other meson/boson signal strengths are treated as nuisance parameters
- These plots show the signal corresponding to H→ 2γ in green, and Z→ 2γ in red

 Fit shown is background-only

	95% CL _s upper limits							
	Branching fraction				$\sigma \times B$			
Decay	Higgs boson [10 ⁻⁴]		Z boson [10 ⁻⁶]		Higgs boson [fb]	Z boson [fb]		
channel	Expected	Observed	Expected	Observed	Observed	Observed		
$J/\psi \gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71		
$\psi(2S)\gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135		
$\Upsilon(1S)\gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59		
$\Upsilon(2S)\gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71		
$\Upsilon(3S)\gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135		

- ► The result is statistically limited
- The observations are compatible with the expected background
- ► Limits are set, in particular:
 - ► $\mathscr{B}(H \rightarrow J/\psi \gamma) < 2.1 \times 10^{-4}$
- ► This is interpreted as a limit on the ratio of coupling modifiers (κ² = σ/σ_{SM})
 - ▶ $\frac{\kappa_c}{\kappa_\gamma} \in (-136, 178)$, an indirect constraint on the Higgs coupling to charm quarks
 - ▶ For comparison, $\kappa_c < 8.5(12.4)$ from the direct search 2201.11428

- Overview of the limits set in this paper
- Note: φ and ρ results are from <u>1712.02758</u>

	95% CLs upper limits							
	Branching fraction				$\sigma \times B$			
Decay	Higgs boson 10-4		Z boson [1077]		Higgs boson [fb]	Z boson [fb]		
channel	Expected	Observed	Expected	Observed	Observed	Observed		
$J/\psi \gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71		
$\psi(2S)\gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135		
$\Upsilon(1S)\gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59		
$\Upsilon(2S)\gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71		
$\Upsilon(3S)\gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135		

- ► The result is statistically limited
- The observations are compatible with the expected background
- ► Limits are set, in particular:
 - ► $\mathscr{B}(H \rightarrow J/\psi \gamma) < 2.1 \times 10^{-4}$
- ► This is interpreted as a limit on the ratio of coupling modifiers (κ² = σ/σ_{SM})
 - ▶ $\frac{\kappa_c}{\kappa_\gamma} \in (-136, 178)$, an indirect constraint on the Higgs coupling to charm quarks
 - ▶ For comparison, $\kappa_c < 8.5(12.4)$ from the direct search 2201.11428

- Overview of the limits set in this paper
- Note: φ and ρ results are from <u>1712.02758</u>

Search for $H \rightarrow Z\gamma$

- Motivation: The H → Zγ cross section can be modified by new particles coupled to the Higgs, contributing loop corrections
- Target: Higgs decay into Zγ via a loop
- ► Final state: $\gamma + \ell \ell$
- ► Previous limits on cross-section times *B*:
 - ▶ ATLAS: 6.6(5.2) × SM <u>1708.00212</u>
 - ▶ CMS: 7.4(6.0) × SM <u>1806.05996</u>

 Candidate γ + μμ event with two electrons (closely spaced green) identified as a photon conversion, and two muons (red) from a Z candidate

Backgrounds

- Non-resonant production of $Z\gamma$
- ► Z+jets with a jet identified as a photon

Strategy

- ► Select γ and a same-flavor opposite charge lepton pair (p_T > 10 GeV)
- ▶ $m_{\ell \ell} \in [81, 101]$ GeV to select a Z
- ▶ $m_{\ell\ell\gamma} \in [105, 160]$ GeV to select a Higgs

Six categories:

- ► VBF-enriched, based on a BDT cut
- High relative p_T^{γ} , if $p_T^{\gamma}/m_{\ell\ell\gamma} > 0.4$
- ► Four categories: $(ee/\mu\mu) \times (high/low p_{Tt})$
 - ▶ $p_{\mathsf{T}t}$ is the component of $p_{\mathsf{T}}^{Z\gamma} \perp (\vec{p}^Z \vec{p}^\gamma)$
 - Divided by $p_{Tt} = 40 \text{ GeV}$

The VBF BDT distribution separates VBF from both ggF and backgrounds

Aaron White

- Uncertainty is primarily statistical, with a subleading spurious signal uncertainty
- Observed signal strength: $\mu = 2.0 \pm 0.9 (\text{stat})^{+0.4}_{-0.3} (\text{syst})$
- ► Observed (expected) significance: 2.2σ(1.2σ)
- ▶ Limit on $\sigma \times \mathscr{B}$: 3.6(2.6)× SM
- ► 20% of the improvement compared to the previous result is due to changes in the analysis
 - Event categorization
 - ▶ Optimized ℓ/γ identification

Search for $H \rightarrow \mu \mu$

- Motivation: measure Higgs coupling with second generation fermions
- ▶ Target: direct decay of $H \rightarrow \mu \mu$

- Final state: two oppositely charged muons, and additional leptons/jets depending on the production mechanism
- ► Previous limits on signal strength:
 - ATLAS: $\mu < 2.8(2.9) \times SM$ <u>1705.04582</u>
 - ▶ CMS: *µ* < 2.9(2.2) × SM <u>1807.06325</u>

- ► Signal width: 2.6-3.2 GeV depending on category
- Note: the simulated events are used to illustrate signal and background composition, while a analytic background estimate is used for the measurement

Challenge

- ► Large Drell-Yan (DY) background
- ► Significant diboson and top backgrounds

Strategy

- Target *ttH* using b-tagged jets and an additional lepton
- Target VH using additional leptons to remove DY
- ► Target VBF production with a 2-jet selection
- ▶ 0, 1, 2 jet categories target ggF
- All categories use xgboost BDTs to enhance sensitivity
- 20 categories in total with different signal, background composition

Challenge

- ► Large Drell-Yan (DY) background
- ► Significant diboson and top backgrounds

Strategy

- ► Target *ttH* using b-tagged jets and an additional lepton
- Target VH using additional leptons to remove DY
- ► Target VBF production with a 2-jet selection
- ▶ 0, 1, 2 jet categories target ggF
- All categories use xgboost BDTs to enhance sensitivity
- 20 categories in total with different signal, background composition

Challenge

- ► Large Drell-Yan (DY) background
- ► Significant diboson and top backgrounds

Strategy

- Target *ttH* using b-tagged jets and an additional lepton
- Target VH using additional leptons to remove DY
- ► Target VBF production with a 2-jet selection
- ▶ 0, 1, 2 jet categories target ggF
- All categories use xgboost BDTs to enhance sensitivity
- 20 categories in total with different signal, background composition

- Result is limited by statistical uncertainty
- Observed signal strength: $\mu = 1.2 \pm 0.6$
- ▶ 95% CL upper limit on signal strength (expected): $\mu < 2.2(1.1) \times SM$
- Observed (expected) significance: $2.2\sigma(1.7\sigma)$

 ttH
 additional lepton, at least one b-jet

 WH
 one additional lepton, no b-jets

 ZH
 at least two additional leptons, no b-jets

 VBF
 no additional muons, no b-jets, two jets

 ggH
 no additional muons, no b-jets, 0, 1, or 2 jets

Higgs 2022

Search for $H \rightarrow \ell \ell \gamma$ with a low $\ell \ell$ mass

- Motivation: probe for coupling modifications to the SM
- ► Target: Higgs decays to low-mass (m_{ℓℓ} <30 GeV) dilepton pairs and a photon
- ► Final state: $\gamma + \ell \ell$
 - ▶ *ee* may be merged or unmerged
- Event display showing two muons and a photon

Challenges

- ▶ Using $\gamma^* \rightarrow ee$ when ee pairs are merged in the calorimeter
- Dominant background: non-resonant $\ell\ell\gamma$

Strategy

- ▶ Cuts on $m_{\ell \ell}$ remove Z, J/ψ , Y
 - ▶ $m_{\ell \ell} < 30 \text{ GeV}, \ m_{\mu \mu} \notin [2.9, 3.3] \text{ GeV}, \ m_{ee} \notin [2.5, 3.5] \text{ GeV}$
- A $\Delta R(\gamma, \ell) > 0.4$ separation helps remove FSR
- A multivariate discriminant is trained to select merged-ee pairs
- ► Three selections (µµ, ee, merged-ee) are each divided:
 - ▶ VBF defined by kinematics (Jet p_T , $\Delta \eta$ and ΔR)
 - High $p_{Tt} > 100$ GeV
 - ► Low $p_{Tt} \le 100$ GeV

 Ratio of reconstructed/true energy for merged-ee pairs, for various conversion radius hypothesis

- ► Result is statistically limited
- Observed signal strength: $\mu = 1.5 \pm 0.5(\text{stat})^{+0.2}_{-0.1}(\text{syst})$
- Evidence of $H \rightarrow \ell \ell \gamma$ with observed (expected) significance: $3.2\sigma(2.2\sigma)$
- ► The $H \rightarrow \ell \ell \gamma$ crosssection times branching ratio in this region is:
 - ▶ $8.7 \pm 2.7(\text{stat})^{+0.7}_{-0.6}(\text{syst})$ fb

Summary: Four Results

In general

- Each of these studies (except H→ ℓℓγ) report a significant improvement over their partial Run-2 predecessor
- ► Due in large part to the increased luminosity, and also to improvements in the analysis
- ► Each result is statistically limited, and will benefit from the addition of data from Run-3