Search for rare decays of the Standard Model Higgs boson with the ATLAS detector

Aaron White on behalf of the ATLAS collaboration
10 November, 2022
Higgs 2022
Outline

Four investigations of rare processes predicted by the SM
These results were covered in Giulio Umoret’s talk on Tuesday

► Higgs (or Z) to a quarkonium state ($D = J/\psi, \Upsilon$) and a photon 2208.03122
 ► $\mathcal{B}(H \rightarrow J/\psi \gamma) \approx 10^{-6}$
 ► $\mathcal{B}(H \rightarrow \Upsilon \gamma) \approx 10^{-9}$
 ► $\mathcal{B}(Z \rightarrow D \gamma) \approx 10^{-8}$

► Higgs to a Z and a photon 2005.05382
 ► $\mathcal{B}(H \rightarrow Z \gamma) = 1.5 \pm 0.1 \times 10^{-3}$

► Higgs to two muons 2007.07830
 ► $\mathcal{B}(H \rightarrow \mu\mu) = 2.2 \times 10^{-4}$

► Higgs to two leptons and a photon 2103.10322
 ► $\mathcal{B}(H \rightarrow \ell\ell\gamma) \approx 10^{-5}$

Most of these analyses are 139fb^{-1} updates of partial Run-2 results
Search for $H(Z) \to \gamma \gamma$

- **Motivation:**
 - Indirect search for $H \to cc$, which may be sensitive to deviations of the quark Yukawa couplings
 - $\gamma \gamma$ final state is sensitive to the sign of the Hbb coupling, making it complementary to direct $H \to bb$ measurements

- **Target:** Higgs decay to a photon and $\mathcal{O} = J/\psi, \psi(2S), \text{ or } \Upsilon(1S, 2S, 3S)$

- **Final state:** $\gamma + \mathcal{O}(\to \mu \mu)$

- **Previous limits on branching ratio:**
 - $\mathcal{B}(H \to J/\psi \gamma) < 3.5 \times 10^{-4}$
 - $\mathcal{B}(H \to \psi(2S)\gamma) < 2.0 \times 10^{-3}$ [1807.00802]
 - Results from CMS: [1810.10056]

- **Note:** this paper also studies the equivalent processes substituting a Z for the Higgs
Analysis

Challenge

- Difficult to model “inclusive” multi-jet and γ+jet background with simulation due to its complex composition and misidentified objects

Strategy

- Selects photons with $p_T^\gamma > 35$ GeV, opposite charge muon pair, (sub)-leading $p_T > (3)18$ GeV
- The Drell-Yan background is modeled by a fit to simulation
- The “inclusive” background is modeled using toy events drawn from data distributions in a control region

Categorization of events

<table>
<thead>
<tr>
<th>Common event selection</th>
<th>$m_{\mu\mu} \in [2.4, 4.3]$ GeV for $J/\psi, \psi(2S)$</th>
<th>$m_{\mu\mu} \in [8.0, 12.0]$ GeV for $\Upsilon(1S, 2S, 3S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive</td>
<td>$m_{\mu\mu} \in [2.4, 4.3]$ GeV for $J/\psi, \psi(2S)$</td>
<td>$m_{\mu\mu} \in [8.0, 12.0]$ GeV for $\Upsilon(1S, 2S, 3S)$</td>
</tr>
<tr>
<td>Barrel (all $\eta_{\mu} < 1.05$)</td>
<td>$m_{\mu\mu} \in [2.4, 4.3]$ GeV for $J/\psi, \psi(2S)$</td>
<td>$m_{\mu\mu} \in [8.0, 12.0]$ GeV for $\Upsilon(1S, 2S, 3S)$</td>
</tr>
<tr>
<td>Endcap (any $\eta_{\mu} > 1.05$)</td>
<td>$m_{\mu\mu} \in [2.4, 4.3]$ GeV for $J/\psi, \psi(2S)$</td>
<td>$m_{\mu\mu} \in [8.0, 12.0]$ GeV for $\Upsilon(1S, 2S, 3S)$</td>
</tr>
</tbody>
</table>

- Selections on $m_{\mu\mu}$ target $J/\psi, \psi(2S), \Upsilon(1S, 2S, 3S)$
- The categories targeting Υ events are divided by muon η to separate events based on Υ resolution
Results

- Two dimensional fits are performed in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$
- One fit is performed for each meson (5) boson (2) combination
 - For each limit, the other meson/boson signal strengths are treated as nuisance parameters
- These plots show the signal corresponding to $H \rightarrow 2\gamma$ in green, and $Z \rightarrow 2\gamma$ in red
 - Fit shown is background-only
Results

- Two dimensional fits are performed in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$
- One fit is performed for each meson (5) boson (2) combination
 - For each limit, the other meson/boson signal strengths are treated as nuisance parameters
- These plots show the signal corresponding to $H \rightarrow 2\gamma$ in green, and $Z \rightarrow 2\gamma$ in red
 - Fit shown is background-only
Results

- Two dimensional fits are performed in $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$
- One fit is performed for each meson (5) boson (2) combination
 - For each limit, the other meson/boson signal strengths are treated as nuisance parameters
- These plots show the signal corresponding to $H \rightarrow 2\gamma$ in green, and $Z \rightarrow 2\gamma$ in red
 - Fit shown is background-only
Results

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>Higgs boson $[10^{-3}]$</th>
<th>$\sigma \times B$</th>
<th>Z boson $[10^{-6}]$</th>
<th>Higgs boson [fb]</th>
<th>Z boson [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ γ</td>
<td>$1.9^{+0.8}_{-0.5}$</td>
<td>2.1</td>
<td>$0.6^{+0.3}_{-0.2}$</td>
<td>1.2</td>
<td>12</td>
</tr>
<tr>
<td>$\psi(2S)$ γ</td>
<td>$8.5^{+3.8}_{-2.4}$</td>
<td>10.9</td>
<td>$2.9^{+3.0}_{-0.8}$</td>
<td>2.3</td>
<td>61</td>
</tr>
<tr>
<td>$\Upsilon(1S)$ γ</td>
<td>$2.8^{+1.3}_{-0.8}$</td>
<td>2.6</td>
<td>$1.5^{+0.6}_{-0.4}$</td>
<td>1.0</td>
<td>14</td>
</tr>
<tr>
<td>$\Upsilon(2S)$ γ</td>
<td>$3.5^{+1.6}_{-1.0}$</td>
<td>4.4</td>
<td>$2.0^{+0.8}_{-0.6}$</td>
<td>1.2</td>
<td>24</td>
</tr>
<tr>
<td>$\Upsilon(3S)$ γ</td>
<td>$3.1^{+1.4}_{-0.9}$</td>
<td>3.5</td>
<td>$1.9^{+0.8}_{-0.5}$</td>
<td>2.3</td>
<td>19</td>
</tr>
</tbody>
</table>

- The result is statistically limited
- The observations are compatible with the expected background
- Limits are set, in particular:
 - $\mathcal{B}(H \rightarrow J/\psi \gamma) < 2.1 \times 10^{-4}$
 - This is interpreted as a limit on the ratio of coupling modifiers ($\kappa^2 = \sigma / \sigma_{SM}$)
 - $\frac{\kappa_c}{\kappa_{\gamma}} \in (-136, 178)$, an indirect constraint on the Higgs coupling to charm quarks
 - For comparison, $\kappa_c < 8.5(12.4)$ from the direct search

- Overview of the limits set in this paper
- Note: ϕ and ρ results are from 1712.02758

ATLAS = 13 TeV

95% CL upper limit on Branching Fraction

$\sqrt{s}=13$ TeV

95% CL upper limits

- Branching fraction σ_B
- Decay Higgs boson $\rightarrow Z$ boson $\rightarrow Higgs boson [fb]$ Z boson $[fb]$
The result is statistically limited

The observations are compatible with the expected background

Limits are set, in particular:

\[\mathcal{B}(H \rightarrow J/\psi \gamma) < 2.1 \times 10^{-4} \]

This is interpreted as a limit on the ratio of coupling modifiers \(\kappa^2 = \sigma / \sigma_{SM} \)

\[\frac{\kappa_c}{\kappa_Y} \in (-136, 178), \] an indirect constraint on the Higgs coupling to charm quarks

For comparison, \(\kappa_c < 8.5(12.4) \) from the direct search 2201.11428

Overview of the limits set in this paper

Note: \(\phi \) and \(\rho \) results are from 1712.02758

Note:

\[\phi \text{ and } \rho \text{ results are from 1712.02758} \]
Search for $H \rightarrow Z\gamma$

- **Motivation:** The $H \rightarrow Z\gamma$ cross section can be modified by new particles coupled to the Higgs, contributing loop corrections
- **Target:** Higgs decay into $Z\gamma$ via a loop
- **Final state:** $\gamma + \ell\ell$
- **Previous limits on cross-section times \mathcal{B}:**
 - ATLAS: $6.6(5.2) \times \text{SM}$ [1708.00212]
 - CMS: $7.4(6.0) \times \text{SM}$ [1806.05996]

- Candidate $\gamma + \mu\mu$ event with **two electrons** (closely spaced green) identified as a photon conversion, and **two muons** (red) from a Z candidate
Analysis

Backgrounds

- Non-resonant production of $Z\gamma$
- $Z+$jets with a jet identified as a photon

Strategy

- Select γ and a same-flavor opposite charge lepton pair ($p_T > 10$ GeV)
- $m_{\ell\ell} \in [81, 101]$ GeV to select a Z
- $m_{\ell\ell\gamma} \in [105, 160]$ GeV to select a Higgs

Six categories:

- VBF-enriched, based on a BDT cut
- High relative p_T^γ, if $p_T^\gamma/m_{\ell\ell\gamma} > 0.4$
- Four categories: $(ee/\mu\mu) \times$ (high/low p_{Tt})
 - p_{Tt} is the component of $p_T^{Z\gamma} \perp (\vec{p}_Z - \vec{p}_\gamma)$
 - Divided by $p_{Tt} = 40$ GeV

The VBF BDT distribution separates VBF from both ggF and backgrounds
Results

- Uncertainty is primarily statistical, with a subleading spurious signal uncertainty
- Observed signal strength: \(\mu = 2.0 \pm 0.9\) (stat) \(\pm 0.4\) (syst)
- Observed (expected) significance: \(2.2\sigma (1.2\sigma)\)
- Limit on \(\sigma \times \mathcal{B}\): \(3.6(2.6) \times\) SM
- 20\% of the improvement compared to the previous result is due to changes in the analysis
 - Event categorization
 - Optimized \(\ell/\gamma\) identification
Search for $H \rightarrow \mu\mu$

- **Motivation**: measure Higgs coupling with second generation fermions
- **Target**: direct decay of $H \rightarrow \mu\mu$

 $H \rightarrow \mu\mu$

- **Final state**: two oppositely charged muons, and additional leptons/jets depending on the production mechanism

- **Previous limits on signal strength**:
 - **ATLAS**: $\mu < 2.8(2.9) \times SM$ [1705.04582]
 - **CMS**: $\mu < 2.9(2.2) \times SM$ [1807.06325]

- **Signal width**: 2.6-3.2 GeV depending on category
- **Note**: the simulated events are used to illustrate signal and background composition, while an analytic background estimate is used for the measurement
Analysis

Challenge
- Large Drell-Yan (DY) background
- Significant diboson and top backgrounds

Strategy
- Target \(ttH \) using b-tagged jets and an additional lepton
- Target \(VH \) using additional leptons to remove DY
- Target VBF production with a 2-jet selection
- 0, 1, 2 jet categories target \(ggF \)
- All categories use xgboost BDTs to enhance sensitivity
- 20 categories in total with different signal, background composition

ATLAS, \(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}, H \rightarrow \mu\mu \)

\[
\begin{array}{c|c|c|c|c}
\hline
\text{Signal composition} & \text{ttH} & \text{VH} & \text{VBF} & \text{ggF} \\
\hline
\text{Bkg. composition} & Z/\gamma^* & \text{Diboson} & \text{Top} \\
\hline
\end{array}
\]
Analysis

Challenge
- Large Drell-Yan (DY) background
- Significant diboson and top backgrounds

Strategy
- Target ttH using b-tagged jets and an additional lepton
- Target VH using additional leptons to remove DY
- Target VBF production with a 2-jet selection
- 0, 1, 2 jet categories target ggF
- All categories use xgboost BDTs to enhance sensitivity
- 20 categories in total with different signal, background composition
Analysis

Challenge
- Large Drell-Yan (DY) background
- Significant diboson and top backgrounds

Strategy
- Target ttH using b-tagged jets and an additional lepton
- Target VH using additional leptons to remove DY
- Target VBF production with a 2-jet selection
- 0, 1, 2 jet categories target ggF
- All categories use xgboost BDTs to enhance sensitivity
- 20 categories in total with different signal, background composition
Result is limited by statistical uncertainty
- Observed signal strength: \(\mu = 1.2 \pm 0.6 \)
- 95% CL upper limit on signal strength (expected): \(\mu < 2.2(1.1) \times SM \)
- Observed (expected) significance: 2.2\(\sigma\)(1.7\(\sigma\))

Note on category definitions
- ttH additional lepton, at least one b-jet
- WH one additional lepton, no b-jets
- ZH at least two additional leptons, no b-jets
- VBF no additional muons, no b-jets, two jets
- ggH no additional muons, no b-jets, 0, 1, or 2 jets
Search for $H \rightarrow \ell\ell\gamma$ with a low $\ell\ell$ mass

- **Motivation:** probe for coupling modifications to the SM
- **Target:** Higgs decays to low-mass ($m_{\ell\ell} < 30$ GeV) dilepton pairs and a photon
- **Final state:** $\gamma + \ell\ell$
 - ee may be merged or unmerged
- **Previous results:** CMS
 $\mu < 4.0(2.2) \times SM$ \[1806.05996\]
- **Event display showing** two muons and a photon
Analysis

Challenges
- Using $\gamma^* \rightarrow ee$ when ee pairs are merged in the calorimeter
- Dominant background: non-resonant $\ell\ell\gamma$

Strategy
- Cuts on $m_{\ell\ell}$ remove $Z, J/\psi, \Upsilon$
 - $m_{\ell\ell} < 30$ GeV, $m_{\mu\mu} \in [2.9,3.3]$ GeV, $m_{ee} \in [2.5,3.5]$ GeV
- A $\Delta R(\gamma, \ell) > 0.4$ separation helps remove FSR
- A multivariate discriminant is trained to select merged-ee pairs
- Three selections ($\mu\mu$, ee, merged-ee) are each divided:
 - VBF defined by kinematics (Jet p_T, $\Delta\eta$ and ΔR)
 - High $p_T > 100$ GeV
 - Low $p_T \leq 100$ GeV

![Graph showing ratio of reconstructed/true energy for merged-ee pairs](image)
Results

- Result is statistically limited
- Observed signal strength: $\mu = 1.5 \pm 0.5 (\text{stat})^{+0.2}_{-0.1} (\text{syst})$
- Evidence of $H \rightarrow \ell \ell \gamma$ with observed (expected) significance: $3.2\sigma (2.2\sigma)$
- The $H \rightarrow \ell \ell \gamma$ crosssection times branching ratio in this region is:
 - $8.7 \pm 2.7 (\text{stat})^{+0.7}_{-0.6} (\text{syst})$ fb
Summary: Four Results

\(H(Z) \rightarrow \gamma \gamma \) \hspace{1cm} \(H \rightarrow Z \gamma \) \hspace{1cm} \(H \rightarrow \mu \mu \) \hspace{1cm} \(H \rightarrow \gamma \gamma^* (\rightarrow \ell \ell) \)

- Limit on \(\mathcal{B}(H \rightarrow J/\psi \gamma) \) lowered from \(3.5 \times 10^{-4} \) to \(2.1 \times 10^{-4} \)
- Limit on \(\sigma \mathcal{B} \) lowered from \(6.6(5.2) \times \text{SM} \) to \(3.6(2.6) \times \text{SM} \)
- A factor of 2.5 improvement in expected sensitivity
- New measurement from ATLAS

In general

- Each of these studies (except \(H \rightarrow \ell \ell \gamma) \) report a significant improvement over their partial Run-2 predecessor
- Due in large part to the increased luminosity, and also to improvements in the analysis
- Each result is statistically limited, and will benefit from the addition of data from Run-3