Higgs searches at LHCb

Higgs 2022 (Pisa; November 7 - 11, 2022)

Carlos Vázquez Sierra

on behalf of the LHCb collaboration

European Organization for Nuclear Research (CERN)

November 9, 2022

The LHCb detector [IJMP A30 (2015) 1530022]

LHCb is a General Purpose Detector:

- Originally designed for heavy flavour physics \rightarrow forward acceptance, reduced luminosity.
- Capable of competitive high p_T physics (e.g. Z, W): [PLB 776 (2017) 430-439] [JHEP 01 (2022) 036]

LHCb as a Higgs hunter: [IJMP A30 (2015) 1530022]

- VELO: excellent $\sigma(IP) \sim 20 \ \mu m$ and SV reconstruction \rightarrow crucial for jet flavor tagging.
- Tracking: excellent spatial and momentum resolution \rightarrow crucial for $H^0 \rightarrow$ LLP studies.
- Trigger: soft, full software trigger (GPUs) in Run 3 \rightarrow expensive ML algorithms in HLT1.

Outline of this talk

Heavy flavor Higgs decays:

- Jet reconstruction and tagging at LHCb,
- Search for Higgs associated production into bb and cc [2016],
- Inclusive search for $b\bar{b}$ and $c\bar{c}$ resonances [2021],
- Prospects for $H^0 \rightarrow c\bar{c}$ searches.

Exotic Higgs decays:

- LFV decays of a Higgs-like boson [2018],
- Neutralino pair production decaying (semi-)leptonically [2021, 2022],
- Dark pion pair production decaying hadronically [2017],
- Hidden-sector bosons from B-meson decays [2017].

Searches for light Higgses:

- Search for dimuon resonances in the Υ region (Run 1) [2018],
- Searches for low-mass dimuon resonances (Run 2) [2020].

Heavy flavor

Jet reconstruction and identification at LHCb

• Jet reconstruction: [JHEP (2014) 01 033]

- Particle flow algorithm (including neutral recovery) → jet input.
- Anti- k_T algorithm for clustering (R = 0.5) \rightarrow efficiency > 95% for p_T > 20 GeV.
- Jet energy scale calibrated on data (using $Z \rightarrow \mu \mu + jets$),
- Energy resolution from 10 to 15% for a p_T range between 10 and 100 GeV.
- Secondary Vertex (SV) identification and jet tagging: [JINST 10 (2015) P06013]
 - Reconstruct SV from displaced tracks \rightarrow kinematic and quality requirements on both,
 - Train two Boosted Decision Trees (BDTs) for a two-step jet flavour tagging:
 - SV displacement from PV, kinematics, charge and multiplicity;
 - SV corrected mass, defined as $M_{corr}(SV) = \sqrt{M^2 + p^2 \sin^2 \theta} + p \sin \theta$.
 - BDT(bc|udsg) to separate light and heavy flavour jets, BDT(b|c) to separate b-jets from c-jets.
 - Tagging efficiency of b(c)-jets of 65% (25%) with 0.3% contamination from light jets.

Search for W/Z + $H^0 ightarrow b ar{b} / c ar{c}$ [LHCb-CONF-2016-006]

- Search for Higgs associated production using 2012 data (2 fb⁻¹ at 8 TeV).
- Trigger on the high $p_T \mu$, e from W/Z + exploit jet tagging capabilities.
- uGB to distinguish signal from backgrounds (W/Z + di-jet and $t\bar{t}$).
- CLs using $m_{ii} + 2 \times uGB \rightarrow \text{compatible}$ with background (no events) for $b\bar{b}$ ($c\bar{c}$).
- Upper limits on $H^0 \rightarrow b\bar{b}$ (69×SM) and first limits on $H^0 \rightarrow c\bar{c}$ (7900×SM).

 $\mathfrak{s}(pp \rightarrow W/Z + H^0) B (H^0 \rightarrow b \overline{b})]_g$

Inclusive search for $c\bar{c}$ and $b\bar{b}$ resonances [JHEP 02 (2021) 023]

- Use 2016 data (1.6 fb⁻¹ at 13 TeV) to test NLO pQCD predictions, test proton PDFs (access low Bjorken-x values), and search for resonances in m_{ji} (access low masses).
- Measure differential cc̄- and bb̄-dijet x-sections in the forward region and their ratio as a function of m_{ij}, η(j₀), p_T(j₀) and absolute difference in jet rapidities.
- Exploit jet tagging capabilities \rightarrow fit to a linear combination (t_0, t_1) of tag observables.

Inclusive search for $c\bar{c}$ and $b\bar{b}$ resonances [JHEP 02 (2021) 023]

- Results compatible with SM expectations → first inclusive, direct measurement of differential cc̄-dijet differential x-section at a hadron collider.
- Understand backgrounds for future searches: search for $H^0 \rightarrow c\bar{c}$ and $H^0 \rightarrow b\bar{b}$.

- Scale existing limits to 300 fb⁻¹ and assume detector improvements affecting c-jet tagging (*e.g.* better IP resolution for SV separation): [CERN-LPCC-2018-04]
- No potential ML improvements considered. Best LHC sensitivity on Yukawa coupling for c quark (2-3 × y^c_{SM}).

Exotic Higgs decays

Search for LFV decays of H^0 -like bosons [EPJC (2018) 78 1008]

- Search for a H^0 -like boson (45 to 195 GeV/c²) into $\mu\tau$ in 2012 data (2 fb⁻¹ at 8 TeV).
- High p_T muon + reconstruct leptonic and hadronic final states of the τ lepton.
- Selections optimised depending on the mass range (around m_H , below, and above).
- CLs limits at 95% C.L. with CLs, ranging from 22 pb at 45 GeV to 4 pb at 195 GeV.
- For Higgs, exclusion limit on the Yukawa coupling of $\sqrt{|Y_{\tau\mu}|^2 |Y_{\mu\tau}|^2} < 1.7 \times 10^{-2}$.

Pair produced $ilde{\chi}^0_1 ightarrow \mu q q'$ in Higgs decay [EPJC 82 (2022) 4 373]

- Search for RPV neutralino in 5.4 fb^{-1} of LHCb Run 1 and 2 data.
- Look for a single displaced vertex with several tracks + high p_T muon.
- Results interpreted in $H^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ benchmark model:

- Excluded production cross-section down to O(0.1) pb.
- Exclude ${\cal B}(H^0 o \chi \chi)$ down to 0.1% by the end of Run 3 [LHCb-CONF-2018-006]

Carlos Vázquez Sierra

Pair produced $ilde{\chi}^0_1 ightarrow e^+ \mu^- u$ in Higgs decay [EPJC (2021) 81 261]

- LHCb Run 2 (2016 2018) dataset (5.38 fb⁻¹ at 13 TeV).
- Explore masses between and 7 and 50 GeV and lifetimes between 2 and 50 ps.
- Simultaneous ML fit to mass and LLP flight distance.
- UL at 95% C.L. on σB at 0.1 pb for $\tau < 10$ ps and m > 10 GeV no excess found.

Pair produced dark pions in Higgs decay [EPJC (2017) 77 812]

- Search with full LHCb Run 1 (3 fb^{-1}) dataset published.
- HV π_v decaying to $b\bar{b}$ especially with SM-like $H^0 \rightarrow \pi_v \pi_v$ production.
- Experimental signature is a single displaced vertex with two associated jets.
- Limits at 95% C.L. as a function of π_v lifetime for several π_v masses:

• Plan to analyse final state including kaons and pions (lower π_v masses).

Improved simulation models including dark showers (multiple dark hadrons).

Carlos Vázquez Sierra

Higgs 2022 (Pisa, Italia)

Confining Hidden Valley and dark showers: a proposal

- LHCb Run 1 search for $H^0 o SS$, where $S o bar{b}$ jets [EPJC (2017) 77 812]
- Improve simulation including dark QCD (multiple S) and intermediate resonances.
- Proposed search where $S \rightarrow K^+K^-$ (lower masses): [JHEP (2020) 115]

Figure 3. Range of S lifetime and mass for which a 95% CL exclusion of the branching fraction of the decay $h \rightarrow SS$ is possible at LHCb with an integrated luminosity of 15 fb⁻¹ for different values of this branching fraction. We assume BR($S \rightarrow K^+K^-$) = 100% in these plots. Left plot shows the limits when searching for just one S at the event, while right plot when searching for both of them.

Hidden-sector bosons in $B \to K^{(*)}\chi(\mu^+\mu^-)$

- ${
 m B}^0 o {\cal K}^{*0} \chi$ [PRL 115 (2015) 161802] / ${
 m B}^+ o {\cal K}^+ \chi$ [PRD 95 (2017) 071101 (R)]
- Search for hidden-sector bosons $\chi \to \mu^+ \mu^-$ in $b \to s$ penguin decays:
 - Axial-vector portal (χ as axion) [LNP 741 (2008) 3]
 - Scalar (Higgs) portal (χ as inflaton) [JHEP 05 (2010) 10]

Hidden-sector bosons in $B \to K^{(*)}\chi(\mu^+\mu^-)$

- Full LHCb Run I dataset (3 fb⁻¹) used for both searches.
- Allow for prompt and detached di-muon candidates.
- BR normalised to $\mathcal{B}(B^+ \to K^+ J/\psi)$ (~ 10⁻⁴) or $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$ (~ 10⁻⁷).
- Constraints on $\tau(\chi)$ between 0.1 and 1000 ps (left), [PRD 95 (2017) 071101 (R)]
- Constraints on mixing angle θ^2 between the Higgs and χ in the inflaton model (right):

- No evidence for signal observed.
- Large fraction of allowed inflaton parameter space ruled out.

Light Higgses

Search for $\mu\mu$ resonances in the Υ region [JHEP 09 (2018) 147]

- Light spin-0 particles copiously produced in gluon-gluon fusion:
 - Many models: NMSSM, 2HDM+S, etc.
 - Review on LHC searches: [arXiv:1802.02156]
- Search using LHCb Run 1 (3 fb^{-1}) published in JHEP.
- Look for a di-muon resonance from 5.5 to 15 GeV/ c^2 (also between Υ peaks):
 - Mass-interpolated efficiencies in bins of p_T , η (model independent results also given).
 - Production x-section (8 TeV) limits for a scalar (vector) boson on the left (right).
 - First scalar limits between 8.7 and 11.5 GeV/c^2 and competitive with CMS elsewhere.

Preface: dark photons into dimuons [PRL (2020) 124 041801]

Search for dark photons decaying into a pair of muons:

- Kinetic mixing of the dark photon (A') with off-shell photon (γ^*) by a factor ε :
 - **(**) A' inherits the production mode mechanisms from γ^* .
- Separate γ^* signal from background and measure its fraction.
- **Prompt-like** search (up to 70 GeV/ c^2) \rightarrow **displaced** search (214 350 MeV/ c^2):
 - A' is long-lived only if the mixing factor is really small.
- Used 5.5 fb⁻¹ of Run 2 LHCb data (13 TeV).
- Great sensitivity (especially in the prompt region above 10 GeV and below 0.5 GeV).

Search for di-muon low-mass resonances [JHEP 10 (2020) 156]

considered

• 2HDM Higgs $\theta_H \rightarrow$ world-best limits: \rightarrow LHCb R1 [JHEP 09 (2018) 147] \rightarrow CMS R1 [PRL 109 (2012) 121801]

- \rightarrow CMS R2 [PRL 124, 131802 (2020)]
- \rightarrow Belle $Y \rightarrow X\gamma$ [PRD 87 (2013) 031102]

• Other scenarios covered too (*i.e.* HV).

Conclusions

• LHCb proved to be very competitive for high p_T searches:

- Excellent vertexing, tracking and soft trigger.
- Especially competitive for jet tagging separation.
- Rich variety of BSM models and signatures can be approached (see backup).

• Bright prospects for the future:

- Interesting prospects for the $H^0 \rightarrow c\bar{c}$ mode.
- Better vertex resolution and tracking capabilities.
- New techniques under development for ideas on new signatures.
- Extended reach with a new compact detector for LLPs \rightarrow CODEX-b (see backup).

Thanks for your attention!

Questions?

Backup

The LHCb trigger

- L0 trigger removed for Run 3 \rightarrow benefit for low-mass searches (no p_T bottleneck).
- Full event reconstruction from 30 MHz readout, able to select down to $p_T(\mu) \sim 80$ MeV/c.
- GPU-based HLT1 (Allen project) from Run 3 [Comp Soft Big Sci (2020) 4 7]

• Long tracks:

- Tracks with hits in the tracking stations and in the VELO.
- Excellent spatial and momentum resolution \rightarrow 0.4% (0.6%) at 5 (100) GeV.
- Presence of a VELO envelope (RF-foil) at \sim 5 mm from beam:
 - \rightarrow Background dominated by heavy flavour below 5 mm.
 - \rightarrow Background dominated by **material interactions** above 5 mm.
- Having a precise model of material interactions is crucial.
- A detailed VELO material veto map is used [JINST 13 (2018) P06008]

The LHCb reconstruction

• Downstream tracks:

- Reconstruction of particles decaying beyond VELO.
- Tracks with worse vertex and momentum resolution.
- Trigger on downstream tracks \rightarrow better for LLP (≤ 2 m) signatures.
- Optimisation studies on-going [LHCb-PUB-2017-005]

• Upstream tracks:

- Reconstruction of soft charged particles bending out of the acceptance.
- New tracker (UT) high granularity, closer to beam pipe.
- Proposal to add magnet stations (MS) inside the magnet \rightarrow improve low p resolution.

The future of LHCb

Physics case for an LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era [CERN-LHCC-2018-027]

The upgraded LHCb VELO

• Upgrade II VErtex LOcator: [CERN-LHCC-2017-003]

- Probably based on Upgrade la VELO (silicon pixels).
- Access to shorter lifetimes, better PV and IP resolution, and real-time alignment.
- But 10x multiplicity, pile-up and radiation damage w.r.t. Upgrade la(b).
- Possibility of removing RF-foil for Upgrade II:

 \rightarrow better IP resolution + no material interactions.

VELO material map [JINST 13 (2018) P06008]

- Background dominated by material interactions for displaced searches at LHCb.
- Mandatory to keep control of material interactions veto them in an efficient way:

- Background mainly due to γ conversions (left plot).
- A new VELO material map has been developed:
 - Model in great detail both sensors & envelope.
 - Assign a p-value to material interaction hypothesis.
 - Sensitivity improvement by O(10) to O(100).
 - Based on data from beam-gas collisions (plot below).

Dark Photons - combined prospects

• Minimal scenario (LHCb) + Higgs portal (ATLAS/CMS):

Search for dark photons decaying into a pair of muons:

- Kinetic mixing of the dark photon (A') with off-shell photon (γ^*) by a factor ε :
 - **(**) A' inherits the production mode mechanisms from γ^* .
 - 2 $A' \rightarrow \mu^+ \mu^-$ can be normalised to $\gamma^* \rightarrow \mu^+ \mu^-$.
- $\bullet\,$ Separate γ^* signal from background and measure its fraction.
- **Prompt-like** search (up to 70 GeV/ c^2) \rightarrow displaced search (214 350 MeV/ c^2):
 - A' is long-lived only if the mixing factor is really small.
- Used 5.5 fb⁻¹ of Run 2 LHCb data (13 TeV).
- Great sensitivity (especially in the prompt region above 10 GeV and below 0.5 GeV).

Dark Photons [PRL (2020) 124 041801]

Carlos Vázquez Sierra

Higgs 2022 (Pisa, Italia)

b-iet

Prompt + b-jet

+ non-zero width considered

Dark Photons - non-minimal searches [JHEP 10 (2020) 156]

• UL @ 90% C.L. on $\sigma(X \to \mu\mu)$ (top: inclusive, bottom: b-associated):

• Other scenarios covered too (i.e. HV).

Carlos Vázquez Sierra

Dark Photons – the future

- Cover ee in $D^{*0} \rightarrow D^0 A'(ee)$ decays (high statistics, no L0), and with inclusive ee triggers.
- Prospected reach for Run III and beyond: [arXiv:1812.07831]

Dark Photons – Snowmass projections

• Projections from [arXiv:2203.07048]:

FIG. 1: Adapted from Ref. [14]: constraints on visible A' decays from (blue regions) LHCb [2] and (gray regions) all other experiments. The solid blue line is the union of Run 3 projections for LHCb from Refs. [9, 10], updated to include inclusive $A' \rightarrow e^+e^-$ projections enabled by recent advances in the LHCb trigger. The dashed blue line projects further into the future to the end of Run 6.

Simulation:

- Signal (DPP and HIG) using MSSM RPV model LLP as $\tilde{\chi}^1_0$ light neutralino,
- Signal (CC) using LRSM model LLP as a HNL from on-shell W boson decay,
- Several signal samples per model for different LLP mass and lifetimes.
- Background sample simulated for QCD *bb* events.

Selection:

- Require good quality DVs with minimum displacement and kinematic requirements.
- Leptons isolated to suppress QCD background isolation optimised with same-sign data.
- After full selection \rightarrow 60k $b\bar{b}\rightarrow e\mu X$ events (consistent with observed yield).

LLPs decaying into $e^+\mu^-\nu$ [EPJC (2021) 81 261]

Corrected mass approach:

- LHCb is a non-hermetic spectrometer \rightarrow we can not do invisibles.
- However, we can compute a proxy to X+invisible invariant mass \rightarrow corrected mass.
- **Required** to have only one **massless** invisible in the final state (ν) .
- Required to know the direction of flight of the parent particle.

- Assume LLP origin vertex approximately be the same as the pp collision.
- Obtain a (pseudo) decay vertex using the di-lepton systems.
- Project the di-lepton system momenta to the LLP direction of flight.

$$m_{\rm corr} = \sqrt{m(e\mu)^2 + p(e\mu)^2 \sin^2 \theta} + p(e\mu) \sin \theta$$

Corrected mass as a good proxy to real mass \rightarrow discriminating variable.

Hidden-sector bosons in $B \to K^{(*)}\chi(\mu^+\mu^-)$

- Full LHCb Run I dataset (3 fb⁻¹) used for both searches.
- Allow for prompt and detached di-muon candidates up to 1000 ps (\sim 30 cm).
- Look for a narrow di-muon peak (mass resolution between 2 and 9 MeV/c²).
- Exclude narrow QCD resonances mass distribution: [PRL 115 (2015) 161802]

MVA selection almost independent of χ mass and decay time (uBoost).

Search for a composite ALP at LHCb

- Axion-like particle in the context of Composite Higgs models: [EPJC (2022) 82 3]
- Low-mass pseudoscalar decaying into pairs of leptons, quarks or photons.
- Reinterpreation of existing $\gamma\gamma$ (QCD axion projections) and $\mu\mu$ (experimental) boundaries.
- Studies for final states consisting of $\tau\tau$ and $c\bar{c}$ into D mesons.

STEALTH white paper

- Major report on STEALTH physics at LHCb published in Reports on Progress in Physics [ROPP (2022) 85 024201] [arXiv:2105.12668]
- More than 20 proposed searches on different models are described:

4.1	Neutral Naturalness	23	4.6	Dark Photons	44
	4.1.1 Z Portal to a Confining Hidden Sector	23		4.6.1 Dark photons in multi-lepton searches	44
	4.1.2 Confining Hidden Valleys and the Twin Higgs model	26		4.6.2 Minimal Dark photons	46
4.2	Composite Higgs	28		4.6.3 Long Lived Dark photons	47
	4.2.1 Novel B-decay signatures of light scalars at high energy facilities .	28	4.7	Light new scalars	50
	4.2.2 ALPs from composite Higgs models	30		4.7.1 Exotic Higgs Decay	50
4.3	Dark Sectors	32		4.7.2 Single (pseudo-)scalar production	51
	4.3.1 Probing dark sectors with long-lived particles	32	4.8	Axion-Like Particles	-54
	4.3.2 LHC probes of co-scattering dark matter			4.8.1 Probing the flavor conserving ALP couplings	55
4.4	Dark Matter and Baryogenesis	36		4.8.2 Probing the flavor violating ALP couplings	55
	4.4.1 Mesogenesis: Baryogenesis and Dark Matter from Mesons	36	4.9	True Muonium	57
	4.4.2 Collider Implications of Baryogenesis and DM from B Mesons	38	4.10) Soft Bombs/SUEPs/Dark Showers	57
4.5	Neutrino Masses		4.11	l Quirks	59
	4.5.1 Heavy neutral leptons from Drell-Yan production				
	4.5.2 Heavy neutral leptons from Meson decays	42			

- B-mesogenesis: baryonic DM from B-hadron decays [EPJC (2021) 81 964]
- Confining HV: dark hadrons decaying into SM light hadrons [JHEP (2020) 115]
- Composite ALP: light pseudoscalar in Composite Higgs models [EPJC (2022) 82 3]

Extended reach for LLPs (CODEX-b + LHCb)

- Compact detector for exotics: [PRD 97 (2018) 015023]
 - Box of tracking layers to search for decays-in-flight of LLPs generated at IP8.
 - Interface with LHCb for identification and partial reconstruction of possible LLP events.
- Prospects for several benchmark models studied:
 - Prospects (various detectors) for $B \to X_s \varphi$ (φ as a light scalar) shown below (original paper).
 - Updated limits including other models in the Snowmass white paper [arXiv:2203.07316]

