LATEST CMS RESULTS IN THE $H \rightarrow 22 \rightarrow 41$ CHANNEL

Alessandra Cappati

LLR, Ecole Polytechnique, CNRS/IN2P3

On behalf of CMS Collaboration

EuroTechPostdoc2 Programme

Higgs 2022 11 November 2022

THE $H \rightarrow 22 \rightarrow 4$ CHANNEL

- **Golden channel**: important for the discovery and to study of H properties
 - Clear 4 lepton signature provides large S/B
 - Complete reconstruction of the final state decay products

New!

- But very small Branching fraction (0.012%)
- Results presented in this talk:
 - Eur. Phys. J. C 81 (2021) 488
 - <u>CMS-PAS-HIG-21-009</u>

- Selection:
 - →**4I** (e, µ)
 - \rightarrow **Z** candidate
 - \rightarrow **ZZ** candidate
 - \rightarrow **best ZZ** candidate chosen (if more than 1) with:
 - Kinematic discriminant (MELA pkg)
 - Highest p_T of Z_2 (for differential cross sections)
- Background:
 - ZZ estimated from MC
 - Z+X (reducible) from data
- Additional objects for event categorization
- Matrix element discriminants and multidimensional ML fits to extract results

Eur. Phys. J. C 81 (2021) 488

Eur. Phys. J. C 81 (2021) 488

SIGNAL STRENGTHS

- Defined as ratio of the measured cross section and the SM expectation
- Inclusive: $\mu = 0.94 \pm 0.07(\text{stat})^{+0.07}_{-0.06}(\text{th})^{+0.06}_{-0.05}(\text{exp})$
- Consistent with SM expectations

SIMPLIFIED TEMPLATE CROSS SECTIONS (STXS)

- kinematic regions based on the production modes of the Higgs →Built to maximize sensitivity to isolate BSM effects while reducing theory dependence
- Dedicated categories to measure STXS Stage 1.2 : splitting based on number of jets and kinematic selections (p_T^H)
- Some STXS bins merged to avoid large uncertainties or high correlations (reduces model-independence)

SIMPLIFIED TEMPLATE CROSS SECTIONS (STXS)

Eur. Phys. J. C 81 (2021) 488

- Good sensitivity to ggH process
- Because of low statistics, some bins merged and result to be fit to 0
- Consistent with SM expectations

FIDUCIAL DIFFERENTIAL CROSS SECTIONS

- Fiducial volume defined to match experimental selections →achieve model-independence
- Large number of **new observables** considered
- Differential xsec bin boundaries chosen to:
 - Be aligned for the combination with other channels
 - Have enough data for low expected uncertainties
 - Ensure a good level of S/B
- **Improved** event reconstruction, object calibration, systematics estimate
- Interpretation of p_T^H spectrum (k_{λ}, k_b, k_c)

New results!

 \rightarrow Alessandro's talk

INCLUSIVE FIDUCIAL CROSS SECTION

 $\sigma^{\text{fid}} = 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.15}_{-0.14} \text{ (syst) fb}$ = 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.12}_{-0.12} \text{ (electrons)}^{+0.06}_{-0.05} \text{ (lumi)}^{+0.04}_{-0.04} \text{ (bkg)}^{+0.03}_{-0.02} \text{ (muons) fb}

- Overall precision of 10%
- Good agreement with SM expectations
- 40% decrease of systematic uncertainties w.r.t. previous measurements!
- Systematic component dominated by electron reconstruction efficiency

New strategy investigated: measure the **ZZ** irreducible bkg normalization together with the inclusive fiducial xsec

- Standard approach: ZZ shape and normalization from MC
- Useful to:
 - Reduce uncertainty on ZZ normalization
 - Be sensitive to possible BSM effects in the bkg
- Results consistent with standard approach
- But not yet enough data to profit from this method in differential measurements

 \rightarrow more variables in the paper

PRODUCTION OBSERVABLES

- New bin boundaries choice
- p_T^H spectrum measurement precision improved

dơ_{fid} /dp^H (fb/GeV)

10-

 10^{-2}

 10^{-3}

Ratio to NNLOPS

• **jets** phase space extension (up to $|\eta_j| < 4.7$) thanks to improved CMS jet reconstruction

CMS Preliminary 138 fb⁻¹ (13 TeV) **CMS** Preliminary 138 fb⁻¹ (13 TeV) 10 ----dơ_{fid} /dp_T (fb/GeV) Data (stat. @ svs. unc.) p-value(POWHEG): 0.30 Data (stat.
 sys. unc.) p-value(POWHEG): 0.85 Systematic uncertainty Systematic uncertainty gg→H (amcatnloFXFX + JHUGen + Pythia) + XH gg→H (amcatnloFXFX + JHUGen + Pythia) + XH gg→H (NNLOPS + JHUGen + Pythia) + XH gg→H (NNLOPS + JHUGen + Pythia) + XH gg→H (POWHEG + JHUGen + Pythia) + XH $gg \rightarrow H$ (POWHEG + JHUGen + Pythia) XH = VBF + VH + ttH (POWHEG + JHUGen + Pythia) gg→H (POWHEG + JHUGen + Pythia) + XH XH = VBF + VH + ttH (POWHEG + JHUGen + Pythia) 10 (LHCHWG YR4, m_=125.38 GeV) (LHCHWG YR4, m_=125.38 GeV) 10^{-2} 10^{-3} Ratio to NNLOPS 1.6 1.4 1.2 0.8 0.6 0.4 0.2 200 50 100 150 o(Miers 0) 30 210 240 60 90 120 150 180 p_T^H (GeV) p_T^{j1} (GeV)

CMS-PAS-HIG-21-009

 \rightarrow more variables in the paper

12

PRODUCTION OBSERVABLES

dơ_{fid} /dm_{jj} (fb/GeV)

- New observables
- Information on di-jet and H+jet system
- First bin contains events for which the observables are not defined

Higgs 2022

CMS-PAS-HIG-21-009

PRODUCTION OBSERVABLES

- Jet transverse momentum
 weighted by a function of jet rapidity
- Useful to test QCD resummation
- 0-jet phase space redefinition

$$\mathcal{T}_{\mathrm{B}}^{\mathrm{max}} = \max_{j} \left(m_{\mathrm{T}}^{j} e^{-|y_{j} - y_{\mathrm{H}}|} \right)$$

A.Cappati

DECAY OBSERVABLES

- 7 parameters fully describing the $H \rightarrow 4I$ decay:
 - Z masses (m_{z1}, m_{z2})
 - Angular variables for fermion kinematics (Φ , $\cos \theta_1$, $\cos \theta_2$)
 - Angular variables connecting production and decay (Φ_1 , cos Θ^*)
- New observables
- Results divided for identical (4e+4µ) and different (2e2µ) flavour final states

 \rightarrow highlight sensitivity of identical flavour final state to interference effects

 \rightarrow more variables in the paper

Higgs 2022

2

Φ(2e2μ)

CMS-PAS-HIG-21-009

- New observables
- ME discriminants sensitive to HVV anomalous couplings
- Results compared to different BSM hypotheses
- Presented separately for identical (4e+4µ) and different (2e2µ) flavour final states

 \rightarrow more variables in the paper

Sensitive to possible CP-violation effects

A.Cappati

DOUBLE DIFFERENTIAL OBSERVABLES

- New observables
- Large set of observables to improve characterization of the decay channel and maximize coverage of different phase space regions
 → more variables in the paper

Higgs 2022

CMS-PAS-HIG-21-009

INTERPRETATION

- NLO EW corrections induce dependence of single-H cross sections on $\lambda_{HHH} \rightarrow$ extract information from p_T^H spectrum
- Large contribution from ttH and VH
- H cross section parametrized as function of $k_{\lambda} = \lambda_{\text{HHH}} / \lambda_{\text{HHH}}^{\text{SM}}$:
 - Cross section and BR fixed to SM values
 - Scaling function $\mu(\lambda)$ in each bin of p_T^H spectrum for all production mechanisms
- Observed (expected) limits at 95% CL:

-5.5 (7.7) < k_λ < 15.1 (17.9)

Competitive with many limits from HH direct searches!

10

15

-10

-5

20 k

INTERPRETATION

- ggH \mathbf{p}_{τ}^{H} spectrum used to set constraints on \mathbf{k}_{h} , \mathbf{k}_{c} coupling modifiers \rightarrow Quadratic polynomials to parametrize CMS Preliminary simultaneous variations of H couplings in each bin $\mathbf{x}_{\mathbf{b}}$
- Observed (expected) 95% CL limits assuming branching fractions dependent on k_b, k

-1.1 (-1.3) < k_b < 1.1 (1.2) -5.3 (-5.7) < k_c < 5.2 (5.7)

Observed (expected) 95% CL limits if treating $H \rightarrow ZZ$ branching fraction as unconstrained parameters in fit

> -5.6 (-5.5) < k_b < 8.9 (7.4) -20 (-19) < k_c < 23 (20)

CMS-PAS-HIG-21-009

138 fb⁻¹ (13 TeV)

1.5

0.5

-0.5

- $H \rightarrow ZZ \rightarrow 4I$ is a fundamental channel to study the Higgs boson
- Most recent full Run2 results presented, overall good agreement with SM
- Super fresh results from differential fiducial cross section measurements
 - \circ Comprehensive characterization of the H \rightarrow 4l channel
 - Many new observables considered
 - 3 interpretation performed
 - **Improved** event reconstruction, object calibration, systematics estimate
 - \rightarrow Very precise measurements (10% inclusive)!

The precision exploration of the scalar sector has just started!

BACK UP

CMS-PAS-HIG-21-009

A.Cappati

CMS-PAS-HIG-21-009

A.Cappati

DECAY OBSERVABLES

A.Cappati

CMS-PAS-HIG-21-009

Sensitive to possible BSM contribution from heavy H bosons

DOUBLE DIFFERENTIAL OBSERVABLES

 $p_T^{\ H}$, y^H

INTERPRETATION

Credits: Alessandro Tarabini

$$\mu_{i}^{f} = \mu_{i} \times \mu^{f} = \frac{\sigma^{NLO}}{\sigma_{SM}^{NLO}} \frac{BR(H \to ZZ)}{BR^{SM}(H \to ZZ)} = \frac{1 + k_{\lambda}C_{1,i} + \delta Z_{H}}{(1 - (k_{\lambda}^{2} - 1)\delta Z_{H})(1 + C_{1,i} + \delta Z_{H})} \times \left[1 + \frac{(k_{\lambda} - 1)(C_{1}^{\Gamma ZZ} - C_{1}^{\Gamma tot})}{1 + (k_{\lambda} - 1)C_{1}^{\Gamma tot}}\right]$$

 $\delta Z_H = -1.536 \times 10^{-3}$ universal quantity

 $C_1(p_n)$ dependent on H production model and kinematics

 $C_1^{\Gamma_{ZZ}} = 0.0082$ $C_1^{\Gamma_{tot}} = 2.5 \times 10^{-3}$

INTERPRETATION

$$\sigma_{ggH} = \left| \sum_{i} A_{i} k_{i} \right|^{2} = A k_{b}^{2} + B k_{c}^{2} + C k_{t}^{2} + D k_{b} k_{c} + E k_{b} k_{t} + F k_{c} k_{t}$$
set k_t = 7

$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{bmatrix} = \begin{bmatrix} \kappa_{b,1}^{2} & \kappa_{c,1}^{2} & \kappa_{t,1}^{2} & \kappa_{b,1}\kappa_{c,1} & \kappa_{b,1}\kappa_{t,1} & \kappa_{c,1}\kappa_{t,1} \\ \kappa_{b,2}^{2} & \kappa_{c,2}^{2} & \kappa_{t,2}^{2} & \kappa_{b,2}\kappa_{c,2} & \kappa_{b,2}\kappa_{t,2} & \kappa_{c,2}\kappa_{t,2} \\ \kappa_{b,3}^{2} & \kappa_{c,3}^{2} & \kappa_{t,3}^{2} & \kappa_{b,3}\kappa_{c,3} & \kappa_{b,3}\kappa_{t,3} & \kappa_{c,3}\kappa_{t,3} \\ \kappa_{b,4}^{2} & \kappa_{c,4}^{2} & \kappa_{t,4}^{2} & \kappa_{b,4}\kappa_{c,4} & \kappa_{b,4}\kappa_{t,4} & \kappa_{c,4}\kappa_{t,4} \\ \kappa_{b,5}^{2} & \kappa_{c,5}^{2} & \kappa_{t,5}^{2} & \kappa_{b,5}\kappa_{c,5} & \kappa_{b,5}\kappa_{t,5} & \kappa_{c,5}\kappa_{t,5} \\ \kappa_{b,6}^{2} & \kappa_{c,6}^{2} & \kappa_{t,6}^{2} & \kappa_{b,6}\kappa_{c,6} & \kappa_{b,6}\kappa_{t,6} & \kappa_{c,6}\kappa_{t,6} \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \\ E \\ F \end{bmatrix}$$