
Update on the detray Geometry

ACTS Parallelization Meeting

Joana Niermann
Andreas Salzburger

15.10.2021

CERN and University of Göttingen



detray Geometry

General Considerations

• Geometry without polymorphism

• Flat container structure

• Indexing instead of pointers

Components

• Navigation Volumes with boundaries that keep surfaces

• Surface class, that can either be used as module surface or portal

• Various Mask classes that provide surface boundaries

• Surface Transforms (including their inverse)

• Grid as volume and surface finders

=> Kept in dedicated container structures, linking between objects by direct indexing

Source: https://github.com/acts-project/detray

Overview 1 / 5



Geometry Implementation
Structure

• Detector class as interface (keeps transforms, masks, geometry and grid)
• Geometry provides the indexing data
• Navigator moves through geometry by its links and feeds the data containers to intersection

kernel
• Rudimentary propagator and line-stepper classes steer navigation status and target calls
• csv reader to load different geometries (tml, odd, itk)

Linking

• The geometry class keep
a vector of volumes,
sorted by volume index

• The volumes keeps index
ranges into surface and
portal containers

• The surface class keeps
index into the transform
and mask containers

• The masks keeps links
towards the next volume
and surface finder in case
they belong to a portal

=> Every type needs its own container: Variadic unrolling of mask container
Source: https://github.com/acts-project/detray

Implementation 2 / 5



Recent Development

Modularization

• Detector class as interface between navigator geometry, data and grid

• Abstract container interfaces (transform store, mask store)

• Different geometry implementations possible

• Transparent switch between algebra implementations

Memory pooling

• Transforms and mask are handled in global container structures

• No vectors of vectors left in the geometry

• Container types interchangeable (by templating)

Indexed Geometry

• Standard implementation

• Can distinguish portal and module surface
types (different linking behaviour)

• Portal mask batching

Unified index Geometry (WIP)

• Simplified model with lower number of
containers

• No difference between portal and module
surface type (surface links back to mother
volume)

• No batching whatsoever

Source: https://github.com/acts-project/detray

Recent Development (Geometry) 3 / 5



Validation Effort

Ray scan

• Shoot straight line ray through detector

• Record every crossed portal and volume
index

• Match intersection distance for pairs of
portals

• Form a chain of volumes

⇒ Seems to work with TML

⇒ Some portals don’t match for ODD

Navigation validation (WIP)

• Shoot ray, but this time follow with navigator

• So far: stuck on invalid links in TML

Geometry linking validation (WIP)

• Treat geometry as graph

• Check adjacency list against ray scan

Recent Development (Geometry) 4 / 5



Validation Effort - Outlook

Toy Geometry

• Implement a very simple, small geometry apart from csv reading

• All links are set manually and checked for consistency

• Uses raw volume, surface, transform and mask containers, outside of the ’big classes’

The toy geometry follows the TML pixel detector. It contains:

• A beampipe (r = 27 mm)

• An inner layer (rmin = 27 mm, rmax = 38 mm) with 224 pixel module surfaces

• A gap volume (rmin = 38 mm, rmax = 64 mm)

• An outer layer (rmin = 64 mm, rmax = 80 mm) with 448 pixel module surfaces

• TODO: Add grid

Toy Navigator (WIP)

• To handle this geometry, a navigator is needed

• No distinction between portals and surfaces, just follow volume links

• Less bookkeeping between portal and surface kernel structures

• First candidate to port to device?

Recent Development (Geometry) 5 / 5


	Overview
	Implementation
	Recent Development (Geometry)

