Detray Grid Development and
Application to traccc

Beomki Yeo

||| ¢ iris
a\ts ATLAS ©)'fép
BERKELEYLAB EXPERIMENT R Inttute o Res ,1.'&..'.,'“":."‘;

1

Detray grid

template<typename serializer t,
typename populator t,
axis pO0 t,
axis pl t>

struct grid{

/) It’s where the data is stored

serialized storage data;|—T1 | Type can be vecmem::vector or

populator t populator; vecmem::device_vector
axis p0 t axisO; depending on populator type

axis pl t axisl;

A tool to fill out the data storage

Currently three populator types:
* one object per bin (replace_populator)
* array of objects per bin (complete_populator)
» vector of objects per bin (attach_populator)

Populator w/ VecMem

o User can simply define populator for host or device

// convinient declaration for host attach populator
template <bool kSORT = false, typename value type = dindex>
using host attach populator = attach populator<kSORT, value type>;

// convinient declaration for device attach populator
template <bool kSORT = false, typename value type = dindex>
using device attach populator =
attach populator<kSORT, value type, vecmem::device vector,
vecmem: : Jagged device vector>;

o The side of grid is determined by populator type:

using host gridZ attach = gridZ2<host attach populator<false, test::point3>,
axis::circular<>, axis::regular<>, serializer2>;

using device grid2 attach =
grid2<device attach populator<false, test::point3>, axis::circular<>,
axis::regular<>, serializer2>;

How to use

o Follows the same semantics of EDM container in traccc

Use cases:
1. Transfer data in host grid to the device grid (for geometry/magnetic field)

[host grid J[N arid data J[N devicegrid}

2. Pre-allocate memory space to the grid buffer, and fill out the device grid
in the kernel (for spacepoint binning)

[grid buffer } [>[grid data J [> [device grid J

Application to Spacepoint Binning in traccc

CPU CUDA

[Count the spacepoints per grid bins }

~~

[Populate spacepoints into the grid J

-

[Sort spacepoints in the order of radius (WIP) }

[Sort spacepoints in the order of radius J

-

[Populate spacepoints into the grid J

o Sorting is not included in CUDA version
yet, but the seed matching ratio is
mostly 100% (I don’t know why :p)

Application to Spacepoint Binning in traccc

CPU CUDA

[Count the spacepoints per grid bins }

~~

[Populate spacepoints into the grid J

-

[Sort spacepoints in the order of radius (WIP) }

[Sort spacepoints in the order of radius J

-

[Populate spacepoints into the grid J

o Sorting is not included in CUDA version
yet, but the seed matching ratio is
mostly 100% (I don’t know why :p)

Spacepoint Binning and Speedup

o Couldn’t observe speedup in spacepoint binning

Single event (Very Noisy)

ttbar average pileups

spacepoint_binning (cpu)

spacepoint_binning (cuda)

seed_finding (cpu)

seed_finding (cuda)

40

0.005537

0.007574

0.018077

0.009999

60

0.006977

0.007689

0.049172

0.016878

80

0.009355

0.008099

0.094425

0.016628

100

0.008953

0.007973

0.129714

0.0184

140

0.009116

0.008951

0.190801

0.015656

200

0.008851

0.009488

0.36138

0.019822

300

0.010269

0.010998

1.137746

0.046867

o Most of time seems occupied by the first kernel of counting the spacepoints for
grid where | overused the atomic operation...

Tracking Chain Benchmark

o Speedup of seeding for tt-bar <200> is about 8-9

e Actual speedup is higher than 10 considering the GPU warming-up
* Losing some speedup due to spacepoint binning

Summed over 20 events

average pileups 40
file reading (cpu) 2.83034
hit clusterization (cpu) 1.34521
spacepoint binning + seed finding 0.617339
(cpu)

spacepoint binning + seed finding 0.506827
(cuda)

track parameter estimation (cpu) 0.00201849
track parameter estimation (cuda) 0.010647

o Seeding results comparison

1. Between traccc cpu and cuda: 99.9 - 100 %
2. Between traccc cpu and Acts cpu: 97 — 100%

60
4.11401

1.5955

1.17063

0.578284

0.00387272

0.00999287

80
5.75276

2.16827

2.15283

0.686695

0.00772296

0.0132521

100
7.04383

2.43911

3.17346

0.783757

0.011835

0.0145685

140
9.59317

2.73963

6.00514

0.988713

0.0212835

0.0190889

200
13.4349

3.06652

12.7521

1.47919

0.040082

0.0263786

300
19.8139

3.39017

31.8948

2.65675

0.0729442

0.0417169

