Detray Grid Development and Application to traccc

Beomki Yeo

Detray grid

It's where the data is stored

Type can be vecmem::vector or

vecmem::device_vector

depending on populator type

A tool to fill out the data storage

Currently three populator types:

- one object per bin (replace_populator)
- array of objects per bin (complete_populator)
- vector of objects per bin (attach populator)

Populator w/ VecMem

User can simply define populator for host or device

The side of grid is determined by populator type:

How to use

Follows the same semantics of EDM container in tracco

Use cases:

1. Transfer data in host grid to the device grid (for geometry/magnetic field)

2. Pre-allocate memory space to the grid buffer, and fill out the device grid in the kernel (for spacepoint binning)

Application to Spacepoint Binning in traccc

 Sorting is not included in CUDA version yet, but the seed matching ratio is mostly 100% (I don't know why :p)

Application to Spacepoint Binning in traccc

 Sorting is not included in CUDA version yet, but the seed matching ratio is mostly 100% (I don't know why :p)

Spacepoint Binning and Speedup

Couldn't observe speedup in spacepoint binning

Single event (Very Noisy)							
ttbar average pileups	40	60	80	100	140	200	300
spacepoint_binning (cpu)	0.005537	0.006977	0.009355	0.008953	0.009116	0.008851	0.010269
spacepoint_binning (cuda)	0.007574	0.007689	0.008099	0.007973	0.008951	0.009488	0.010998
seed_finding (cpu)	0.018077	0.049172	0.094425	0.129714	0.190801	0.36138	1.137746
seed_finding (cuda)	0.009999	0.016878	0.016628	0.0184	0.015656	0.019822	0.046867

 Most of time seems occupied by the first kernel of counting the spacepoints for grid where I overused the atomic operation...

Tracking Chain Benchmark

- Speedup of seeding for tt-bar <200> is about 8-9
 - Actual speedup is higher than 10 considering the GPU warming-up
 - Losing some speedup due to spacepoint binning

Summed over 20 events							
average pileups	40	60	80	100	140	200	300
file reading (cpu)	2.83034	4.11401	5.75276	7.04383	9.59317	13.4349	19.8139
hit clusterization (cpu)	1.34521	1.5955	2.16827	2.43911	2.73963	3.06652	3.39017
spacepoint binning + seed finding (cpu)	0.617339	1.17063	2.15283	3.17346	6.00514	12.7521	31.8948
spacepoint binning + seed finding (cuda)	0.506827	0.578284	0.686695	0.783757	0.988713	1.47919	2.65675
track parameter estimation (cpu)	0.00201849	0.00387272	0.00772296	0.011835	0.0212835	0.040082	0.0729442
track parameter estimation (cuda)	0.010647	0.00999287	0.0132521	0.0145685	0.0190889	0.0263786	0.0417169

Seeding results comparison

1. Between traccc cpu and cuda: 99.9 – 100 %

2. Between traccc cpu and Acts cpu: 97 – 100%