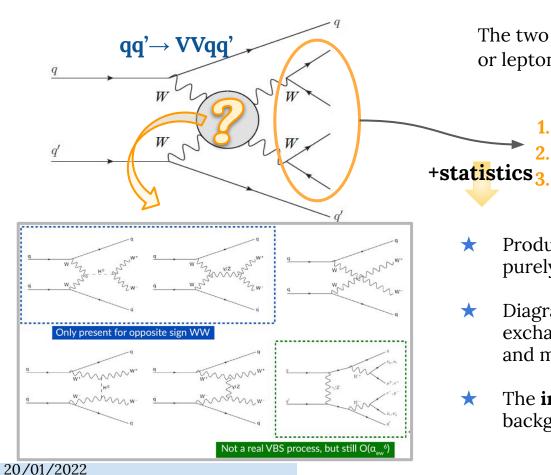


First observation of $VBS \rightarrow W+W-$

Flavia Cetorelli^{*,1}, Mattia Lizzo^{*,2} on behalf of the CMS collaboration

¹ Università & INFN, Milano-Bicocca (IT) ² Università & INFN, Firenze (IT) *Primary authors

Introduction


"First observation of the electroweak production of a leptonically decaying W+W- pair in association with two jets in $\sqrt{s} = 13$ TeV pp collisions". CDS: <u>2791336</u>

Why VBS \rightarrow W+W-?

- \star A **rare** process:
 - **not observed** yet;
 - **first cross section measurement** in this channel.
- ***** Provides complementary information to the **Higgs sector** and probes the **EWSSB** mechanism
- ★ The first VBS observation has been performed in the W[±]W[±] channel which has a good signal-to-background ratio → the W⁺W⁻ channel is as much interesting from a theoretically point of view, but it is more experimentally challenging

Here we present **the first observation** of such mechanism, using the full Run 2 CMS data set that corresponds to an integrated luminosity of **138 fb⁻¹**.

VBS processes @LHC

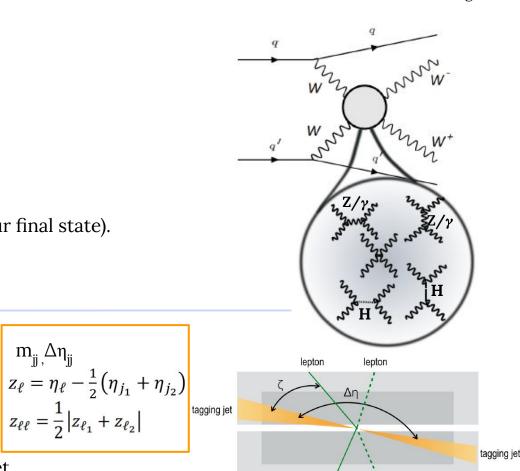
The two massive bosons may decay hadronically or leptonically, leading to **3** possible **final states**:

leptonic VV→ lv lv (this talk)
semileptonic VV → lv q'q"
hadronic VV → qq' q"q"

3

- ★ Production of a pair of W+W- bosons from a purely **electroweak process** @LO $O(\alpha_{EWK}^6 \alpha_S^0)$
- ★ Diagrams where an on-shell Higgs boson is exchanged (VBF) are considered as backgrounds and modeled with dedicated MC samples
- ★ The **interference** with the **QCD-induced WW** background $O(\alpha^4_{EWK} \alpha^2_S)$ is **negligible**

$VBS \rightarrow W^+W^-$


A rare ... :

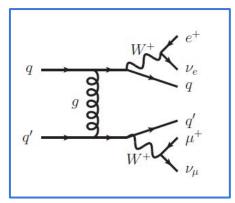
- ~ fb cross section 0
- ... and challenging process:
 - **ttbar + tW** production; 0
 - **DY** events (mostly in same flavour final state). 0

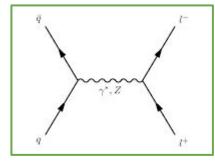
 $m_{jj}\Delta\eta_{jj}$

Typical leptonic signature

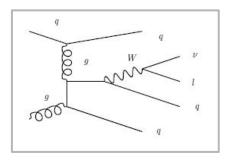
- 2 high energy jet (tag jets) : ×
 - great gap in η and high m_{ii} ; Ο
 - **no QCD** activity between them. 0
- 2 charged leptons and p_{T}^{miss} : \star
 - **central** with respect to the tag jet. Ο

lepton

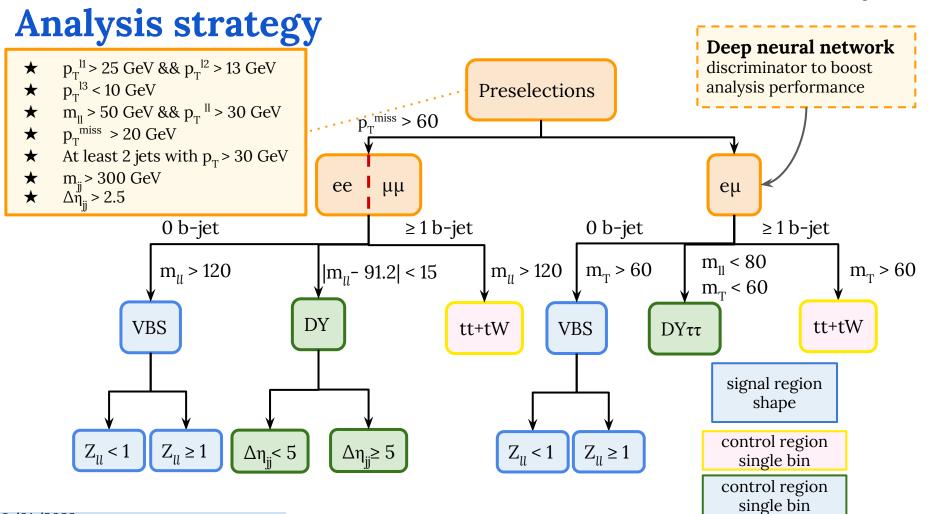

lepton


Main backgrounds

ttbar - tW:


 $\sigma_{tt} \sim 1 \text{ nb}$ Main background of the analysis. **Strategy:** b jets veto QCD WW: Strong interaction between the initial state quarks. Same final state, but different kinematic. Strategy: VBS selections.

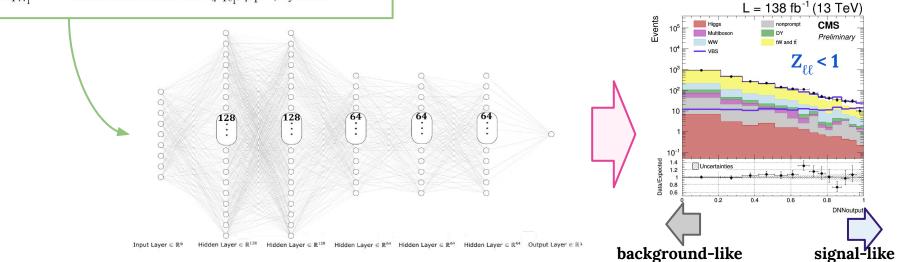
Drell-Yan: Mainly affecting the ee- $\mu\mu$ final state. **Strategy:** selections on the invariant mass and pT of lepton pair, tighter selections on p_{T}^{miss} .



Nonprompt Mainly W+Jet : jet misidentified as lepton **(fake lepton)**

MC samples

Process	MC generator	QCD order + PS [PYTHIA 8]
$VBS \ W^{\scriptscriptstyle +}W^{\scriptscriptstyle -} \to 2\ell 2\nu$	MadGraph5_aMC@NLO v2.6.5 (2016) v2.4.2 (2017/2018)	2 jets @LO
$W^+W^- \rightarrow 2\ell 2\nu \text{ QCD-induced}$	Powheg v2 + MiNLO	inclusive NNLO precision
$W^+W^- \rightarrow 2\ell 2\nu \text{ gg-induced}$	MCFM v7.0	NLO (k-factor)
ttbar + tW $\rightarrow 2\ell 2\nu$	Powheg v2	NNLO (ttbar) / NLO (tW)
$DY \rightarrow \ell\ell$ + jets	MadGraph5_aMC@NLO	NLO FxFx
$DY \rightarrow \tau \tau + jets$	MadGraph5_aMC@NLO	NLO FxFx
Z + 2 jets (EWK)	MadGraph5_aMC@NLO	LO
$H \to W^{\scriptscriptstyle +} W^{\scriptscriptstyle -} \to 2 \ell 2 \nu$	Powheg v2 + JHUGen v7.1.4	NLO
$V\gamma^{*}(V = W,Z)$	MadGraph5_aMC@NLO	LO MLM ($W\gamma^*$) + NLO FxFx ($Z\gamma^*$)
$WZ \rightarrow 3\ell v$	Powheg v2	NLO (m _{el} > 100 MeV)
ZZ, WZ $\rightarrow 2\ell 2q$, VVV (V = W,Z)	MadGraph5_aMC@NLO	NLO

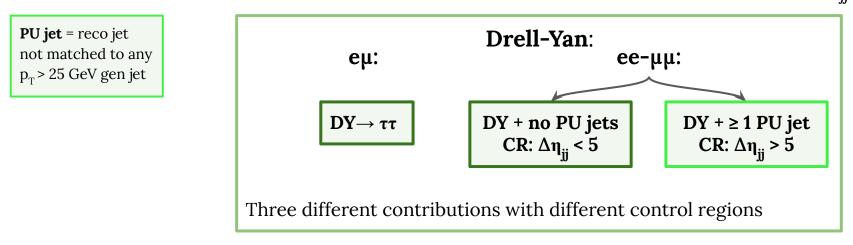

DNN

Variable	Description
m _{ii}	Invariant mass of the two VBS jets pair
$\Delta \tilde{\eta}_{ii}$	Pseudorapidity gap between the two VBS jets
$p_{T_{i_1}}$	$p_{\rm T}$ of the highest- $p_{\rm T}$ jet
$p_{T_{j_2}}$	$p_{\rm T}$ of the second highest $p_{\rm T}$ jet
PTEE	$p_{\rm T}$ of the lepton pair
$\Delta \phi_{\ell\ell}$	Azimuthal angle between the two leptons
Z_{ℓ_1}	Zeppenfeld variable of the highest- <i>p</i> _T lepton
Z_{ℓ_2}	Zeppenfeld variable of the second highest p_{T} lepton
$m_{\mathrm{T}W_1}^2$	Transverse mass of the $(p_{T\ell_1}, p_T^{miss})$ system

Deep neural network to disentangle signal

from **top** and **QCD-WW** background:

- **\star** different flavour final state (**e** μ);
- **2 models** implemented:
 - \circ Z_{ll} < 1 phase space;
 - \circ Z₁₁ \geq 1 phase space.



DY→ℓℓ treatment

20/01/2022

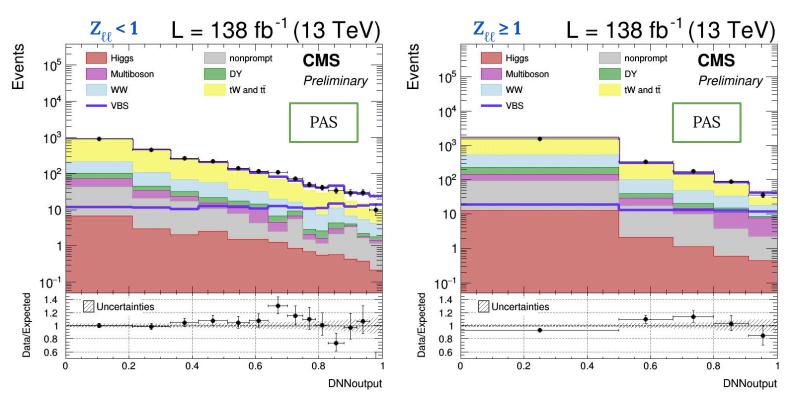
In **DY** CRs **two different contributions** are clearly visible and much sensitive to the $\Delta \eta_{jj}$ distribution itself:

- ***** "hard" DY events (dark green) populate the low $\Delta \eta_{ij}$ region, prefit data/MC discrepancy;
- **★** DY process + **at least 1 PU jet (light green)** peaks around $\Delta \eta_{ii} \sim 5$
 - \Rightarrow Their normalisations are free to float in the fit and mainly driven by **dedicated CRs** ($\Delta \eta_{ij} \ge 5$)

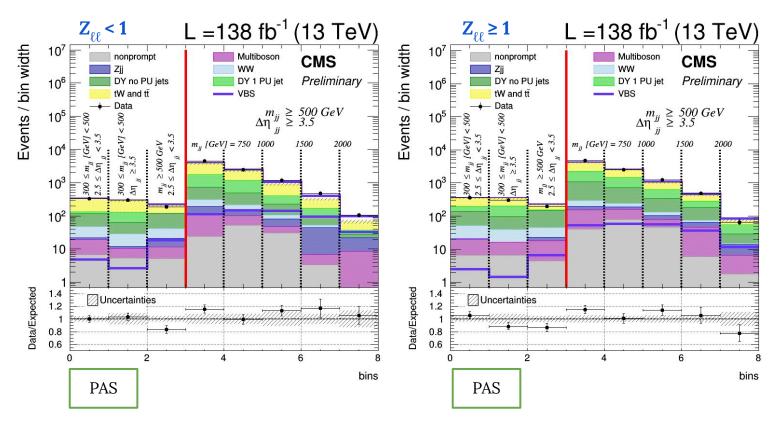
Signal extraction

$$\mathcal{L}(\vec{n}|\mu,\theta) = p(\theta) \cdot \prod_{i=1}^{N} Poisson(n_i|\mu \cdot s_i(\theta) + b_i(\theta))$$

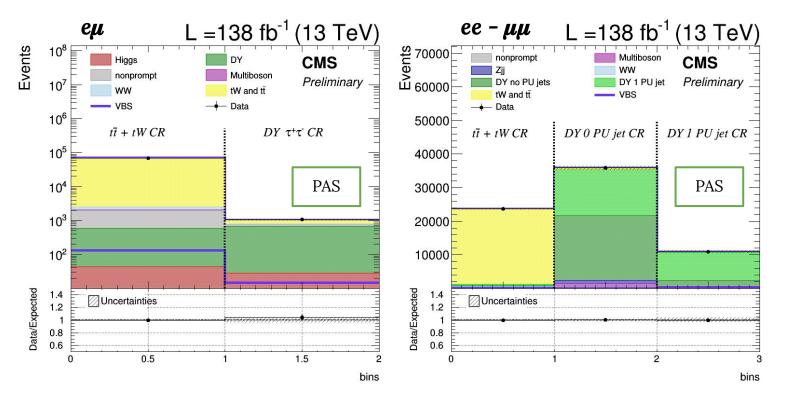
- ★ Combined **binned maximum likelihood fit** of the most discriminating variable distribution (m_{ij} or DNN output) with signal and background templates.
- ★ Performed simultaneously in all **signal region** categories ($Z_{\ell\ell} \ge 1$):
 - **SF:** divided into **four** $\mathbf{m}_{ii} \Delta \eta_{ii}$ bins:


 - $2.5 < \Delta \eta_{ij} < 3.5$ and $m_{ij} > 500 \text{ GeV}$

Number of events


All categories reported in the <u>scheme</u> included **simultaneously** in the **fit**

- $\Delta \eta_{ij} > 3.5 \text{ and } 300 \text{ GeV} < m_{ij} < 500 \text{ GeV}$
- $\Delta \eta_{ij} > 3.5 \text{ and } m_{ij} > 500 \text{ GeV} \rightarrow \textbf{purest region} \rightarrow m_{ij} \textbf{distribution}.$
- **DF: DNN output**.
- **DY** and **top CRs**: **single bin** categories \rightarrow to constrain their **normalizations**


Signal regions eµ

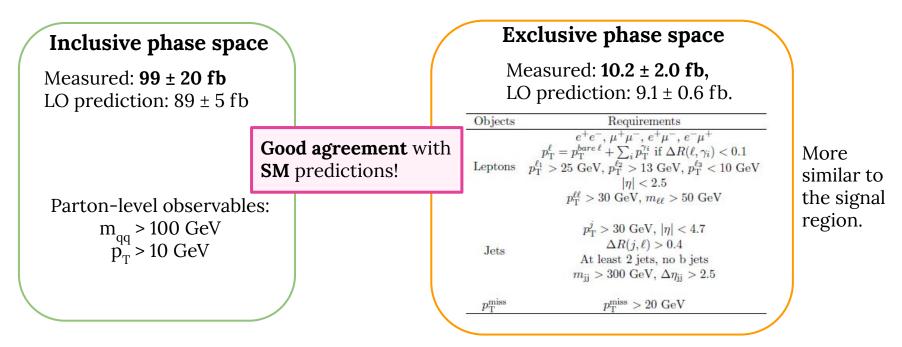
Signal regions ee-µµ

Control regions

Systematic and statistical uncertainties

Systematic uncertainties

- Represented by individual nuisance parameters with log-normal distributions;
- \star could affect the:
 - **normalizations** of signal and backgrounds,
 - **shapes** of the predictions across the distributions of the observables.


★ Correlations taken into account.

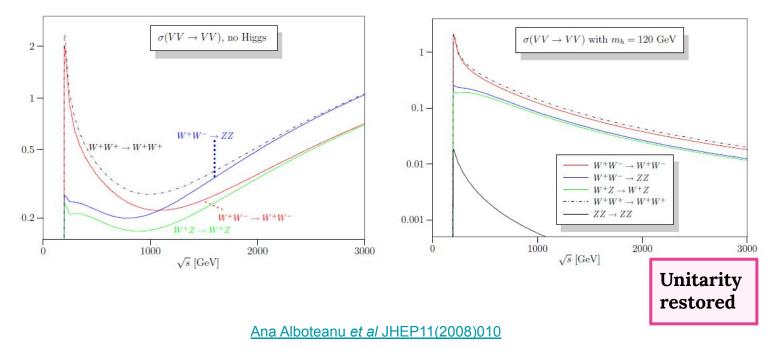
Г		Uncertainty source	Impact
Theoretical	Theoretical	QCD-induced W^+W^- normalisation	5.3%
	uncertainties	$t\bar{t}$ QCD scale	5.1%
	uncertainties	QCD factorisation scale for VBS signal	5.0%
		$t\bar{t}$ normalisation	4.9%
		b tagging	3.5%
		Prefiring corrections	3.3%
Г		DY normalisation	2.9%
	b tagging	Jet energy scale $+$ resolution	2.6%
	uncertainty	p_T^{miss} energy scale	2.4%
	uncertainty	QCD-induced W^+W^- QCD scale	2.1%
		Luminosity	2.1%
		Muon efficiency	2.0%
e		Pileup	1.8%
		Electron efficiency	1.5%
		Underlying event	1.3%
		Parton shower	1.0%
		Other	< 1%
	D		
	Dominated by	Total systematic uncertainty	13.1%
	statistical	Total statistical uncertainty	14.9%
	uncertainty	Total uncertainty	19.8 %

Results

The **observed** (expected) **significance** with respect to the background-only hypothesis is **5.6** σ (5.2 σ)

The cross section measurement of the W⁺W⁻ EW production is performed in two fiducial volumes:

Summary


- ★ We reported the search of the **VBS** production of two **opposite sign W bosons** in the **fully leptonic** channel.
- ★ **Deep neural network** built and trained to cope with the large top background and the irreducible WW QCD production (*e*µ final state):
- **ee-μμ categories also included to reach the 5** σ **observation**, despite the additional contamination from DY events
- \star Results show the first observation of such mechanism:
 - significance: 5.6 σ (5.2 σ expected)
 - exclusive cross section: 10.2 ± 2.0 fb (9.1 ± 0.6 fb expected)
 - inclusive cross section: 99 ± 20 fb (89 ± 5 fb expected)

Analysis is expected to benefit from the larger **RUN III data set** Good agreement with SM predictions!

Unitarity of VBS cross sections

Cross sections (in nb) for the five different scattering processes of longitudinal weak gauge bosons.

Post-fit (pre-fit) yields table

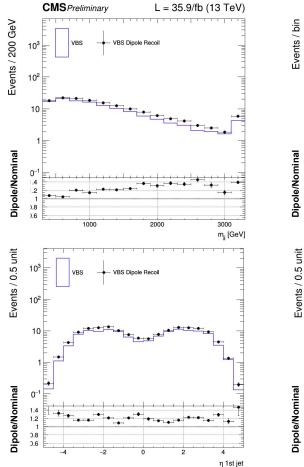
Process	VBS eµ	VBS $ee - \mu\mu$
WWewk	$238.9 \pm 21.9 \ (209.0 \pm 5.4)$	$132.6 \pm 6.9 \ (115.5 \pm 2.2)$
top	$3081.9 \pm 99.7~(2998.0 \pm 189.3)$	$1152.3 \pm 18.3 \ (1073.7 \pm 33.7)$
WW	$736.3 \pm 98.8 \ (1086.8 \pm 89.0)$	$201.1 \pm 22.6 \ (405.6 \pm 22.0)$
DY no PU jets		$594.7 \pm 19.9 \ (417.6 \pm 25.9)$
DY + 1 PU jet	-	$436.1 \pm 43.5 \ (370.4 \pm 120.4)$
$DY \tau \tau$	$171.2 \pm 7.4 \ (195.9 \pm 6.2)$	
Non-prompt leptons	$216.8 \pm 24.6 \ (242.5 \pm 31.7)$	$51.8 \pm 6.1 \ (58.0 \pm 7.8)$
Multiboson	$143.3 \pm 9.8 \ (141.0 \pm 15.9)$	$96.0 \pm 6.0 \ (89.2 \pm 7.8)$
Higgs	$46.6 \pm 1.8 \ (43.2 \pm 2.9)$	
Zjj	$1.3 \pm 0.2 \ (1.3 \pm 0.3)$	$59.1 \pm 4.3 \ (50.4 \pm 6.5)$

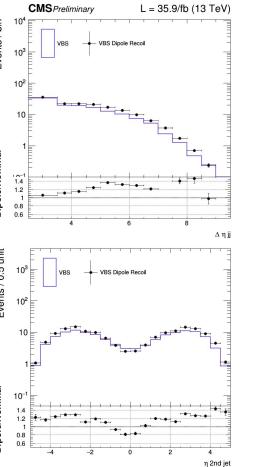
Selections

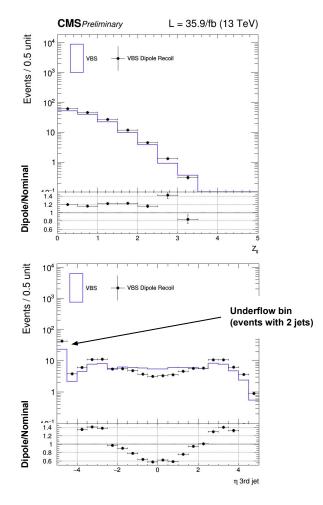
Preselections:

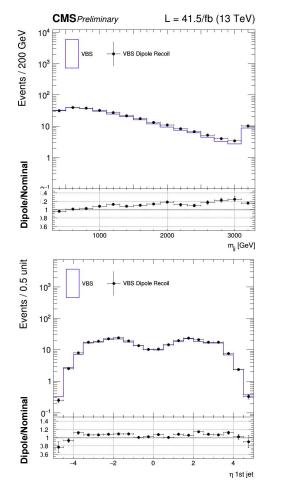
 $\begin{array}{l} p_{T}^{\ \ l1} > 25 \ GeV \ \& \ p_{T}^{\ \ l2} > 13 \ GeV \\ p_{T}^{\ \ l3} < 10 \ GeV \\ m_{ll} > 50 \ GeV \ \& \ p_{T}^{\ \ l1} > 30 \ GeV \\ \ At \ least \ 2 \ jets \ with \ pT > 30 \ GeV \\ m_{jj} > 300 \ GeV \ \& \ \Delta\eta j > 2.5 \end{array}$

Categories selections:

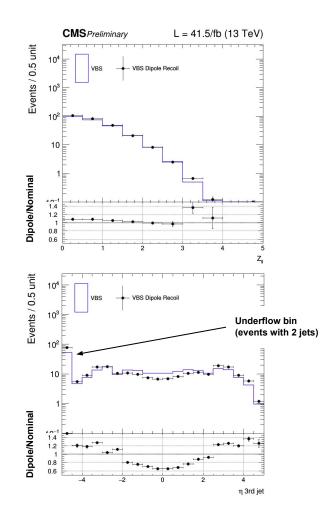

VBS	eμ/μe	$ \begin{array}{c c} Z_{\ell\ell} < 1 & m_{\rm T} > 60 \ {\rm GeV} \\ m_{\ell\ell} > 50 \ {\rm GeV} \\ \hline Z_{\ell\ell} \geq 1 & \\ \end{array} \\ \end{array} $ no bjet with $p_{\rm T} > 20 \ {\rm GeV} \\ \end{array} $	
	ee µµ	$\begin{array}{c c} \hline Z_{\ell\ell} < 1 \\ \hline Z_{\ell\ell} \geq 1 \\ \hline Z_{\ell\ell} < 1 \\ \hline Z_{\ell\ell} \geq 1 \\ \hline \end{array} \begin{array}{c} m_{\ell\ell} > 120 \text{ GeV} \\ p_{\mathrm{T}}^{\mathrm{miss}} > 60 \text{ GeV} \\ \hline p_{\mathrm{T}} > 20 \text{ GeV} \\ \hline \end{array}$	
$t\bar{t}$ and tW	eμ/μe	$m_{\ell\ell} > 50~{\rm GeV}$ no b-jet with $p_{\rm T} > 20~{\rm GeV}$	
	ee µµ	$\begin{array}{l} m_{\ell\ell} > 120~{\rm GeV} \\ p_{\rm T}^{\rm miss} > 60~{\rm GeV} \\ {\rm at~least~one~b-jet~with}~p_{\rm T} > 20~{\rm GeV} \end{array}$	
DY	$e\mu/\mu e$	$m^T < 60 \text{ GeV}$ $50 \text{ GeV} < m_{\ell\ell} < 80 \text{ GeV}$ no b-jet with $p_{\mathrm{T}} > 20 \text{ GeV}$	
	ee	$\begin{array}{ c c c c c }\hline \Delta \eta_{\rm jj} < 5 & m_{\ell\ell} - m_Z < 15 \ {\rm GeV} \\ \hline \Delta \eta_{\rm jj} \geq 5 & p_{\rm T}^{\rm miss} > 60 \ {\rm GeV} \\ \hline \Delta \eta_{\rm ij} < 5 & {\rm no \ b-jet \ with \ } p_{\rm T} > 20 \ {\rm GeV} \\ \end{array}$	
	$\mu\mu$	$\frac{-\eta_{\rm II}}{\Delta \eta_{\rm IJ} \ge 5}$	

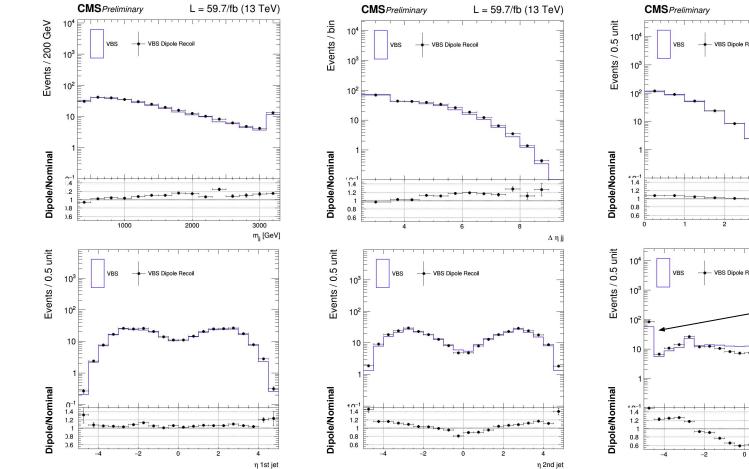

Comparison with standard samples

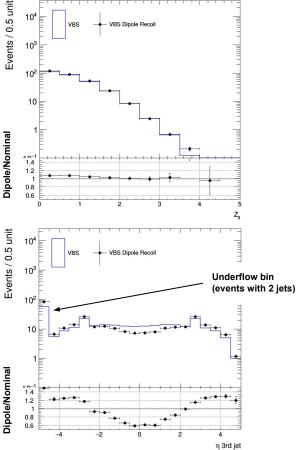

★ We drew a comparison between the "**standard**" and the "**dipole recoil**" signal samples across all data sets @reco-level


★ Inclusive selection:

- \circ m_{el} > 50 GeV
- \circ $p_T^{\text{miss}} > 20 \text{ GeV}$
- \circ $Z_{\ell\ell}$ categories merged
- \circ e μ -ee- $\mu\mu$ categories merged
- ★ 2016 samples are those showing more differences → in order to heal the unphysical bwcutoff = 15000 setting in the standard sample, we used to cut @LHE level on W masses (no similar cut is applied to the dipole recoil sample instead)
- ***** 2017/2018 samples are rather **similar** as far as 2jets-related variables are concerned
- ★ 3jets variables are significantly affected by the dipole recoil setting, but they do not have a large impact on the analysis (see for instance Z_{ℓℓ} distributions)







L = 59.7/fb (13 TeV)

2018

