Herwig++ and Minimum Bias and Underlying Events

Andrzej Siódmok in collaboration with Manuel Bähr, Stefan Gieseke, Christian Röhr, Mike Seymour on behalf of Herwig++ group

> Institut für Theoretische Physik KIT

ANL ASC, US ATLAS Jamboree, 17 November 2010

This talk:

- Introduction Underlying event in Herwig++
- New data! ATLAS @ 900 GeV and @ 7 TeV
- Colour structure
- Outlook

Underlying event in Herwig++

UA5 model (deprecated, only for reference)

▶ Included from Herwig++ 2.0.

[Herwig++, hep-ph/0609306]

- ► Little predictive power.
- Was default in fHerwig. Superseded by JIMMY

[JM Butterworth, JR Forshaw, MH Seymour, ZP C72 637 (1996)]

Underlying event in Herwig++

Semihard UE

- ▶ Default from Herwig++ 2.1.
- Multiple hard interactions, $p_t \ge p_t^{min}$
- Similar to JIMMY
- Good description of harder Run I UE data (Jet20).

[Herwig++, 0711.3137]

[Bähr, Gieseke, Seymour, JHEP 0807:076]

Underlying event in Herwig++

Semihard+Soft UE

▶ Default from Herwig++ 2.3.

- [Herwig++, 0812.0529]
- Extension to soft interactions, $p_t \leq p_t^{min}$ [Bähr, Gieseke, Seymour, JHEP 0807:076]
- Theoretical work with simplest possible extension.

[Bähr, Butterworth, Seymour, JHEP 0901:065]

"Hot Spot" model.

[Bähr, Butterworth, Gieseke, Seymour, 0905.4671]

Starting point: hard inclusive jet cross section.

$$\sigma^{\mathrm{inc}}(s;p_t^{\mathrm{min}}) = \sum_{i,j} \int_{p_t^{\mathrm{min}^2}} dp_t^2 f_{i/h_1}(x_1,\mu^2) \otimes \frac{\mathrm{d}\hat{\sigma}_{i,j}}{\mathrm{d}p_t^2} \otimes f_{j/h_2}(x_2,\mu^2) \,,$$

 $\sigma^{\text{inc}} > \sigma_{\text{tot}}$ eventually (for moderately small p_t^{\min}).

Interpretation: σ^{inc} counts *all* partonic scatters that happen during a single *pp* collision \Rightarrow more than a single interaction.

$$\sigma^{\rm inc} = \bar{n}\sigma_{\rm inel}$$
.

Eikonal model basics

Use eikonal approximation (= independent scatters). Leads to Poisson distribution of number *m* of additional scatters,

$$P_m(\vec{b},s) = rac{ar{n}(ec{b},s)^m}{m!} \mathrm{e}^{-ar{n}(ec{b},s)} \; .$$

Then we get σ_{inel} :

$$\sigma_{\rm inel} = \int {\rm d}^2 ec b \sum_{n=1}^\infty P_m(ec b,s) = \int {\rm d}^2 ec b \left(1 - {
m e}^{-ar n(ec b,s)}
ight) \;.$$

Cf. σ_{inel} from scattering theory in eikonal approx. with scattering amplitude $a(\vec{b},s) = \frac{1}{2i}(e^{-\chi(\vec{b},s)} - 1)$

$$\sigma_{\text{inel}} = \int d^2 \vec{b} \left(1 - e^{-2\chi(\vec{b},s)} \right) \qquad \Rightarrow \quad \chi(\vec{b},s) = \frac{1}{2}\bar{n}(\vec{b},s)$$

 $\chi(\vec{b},s)$ is called *eikonal* function.

Eikonal model basics

From assumptions:

- at fixed impact parameter b, individual scatterings are independent,
- the distribution of partons in hadrons factorizes with respect to the b and x dependence.

we get the average number of partonic collisions at a given b value is

$$\bar{n}(b,s) = A(b)\sigma^{inc}(s; p_t^{min}) = 2\chi(b,s)$$

where A(b) is the partonic overlap function of the colliding hadrons

 \Rightarrow Two main parameters: μ^2 , p_t^{\min} .

Eikonal model basics

Good description of Run I Underlying event data ($\chi^2 = 1.3$).

Only $p_T^{\text{ljet}} > 20 \,\text{GeV}.$

So far only hard MPI. Now extend to soft interactions with

$$\chi_{\rm tot} = \chi_{QCD} + \chi_{\rm soft}.$$

Similar structures of eikonal functions:

$$\chi_{\text{soft}} = \frac{1}{2} A_{\text{soft}}(\vec{b}) \sigma_{\text{soft}}^{\text{inc}}$$

Simplest possible choice: $A_{\text{soft}}(\vec{b};\mu) = A_{\text{hard}}(\vec{b};\mu) = A(\vec{b};\mu)$. Then

$$\chi_{\rm tot} = rac{A(b;\mu)}{2} \left(\sigma_{
m hard}^{
m inc} + \sigma_{
m soft}^{
m inc}
ight) \;.$$

One new parameter $\sigma_{\text{soft}}^{\text{inc}}$.

Taking the Tevatron data together with the wide range of possible values of σ_{tot} considered at LHC, we see that this model is to simple.

Extension: Relax the constraint of identical overlap functions:

$$A_{soft}(b) = A(b, \mu_{soft})$$

Fix the two parameters μ_{soft} and $\sigma_{\mathrm{soft}}^{\mathrm{inc}}$ in

$$\chi_{\text{tot}}(\vec{b},s) = \frac{1}{2} \left(A(\vec{b};\boldsymbol{\mu}) \boldsymbol{\sigma}^{\text{inc}} \text{hard}(s; p_t^{\min}) + A(\vec{b}; \boldsymbol{\mu}_{\text{soft}}) \boldsymbol{\sigma}_{\text{soft}}^{\text{inc}} \right)$$

from two constraints. Require simultaneous description of σ_{tot} and b_{el} (measured/well predicted),

$$\begin{split} \sigma_{\rm tot}(s) &\stackrel{!}{=} 2 \int \mathrm{d}^2 \vec{b} \left(1 - \mathrm{e}^{-\chi_{\rm tot}(\vec{b},s)} \right) \,, \\ b_{\rm el}(s) &\stackrel{!}{=} \int \mathrm{d}^2 \vec{b} \frac{b^2}{\sigma_{\rm tot}} \left(1 - \mathrm{e}^{-\chi_{\rm tot}(\vec{b},s)} \right) \,. \end{split}$$

Sum up:

 \Rightarrow at the end of the day we have two main parameters: μ^2, p_t^{min} .

Look at LHC results (900 GeV)

- ATLAS charged particles in Min Bias.
- Convenient as the analysis was quickly available in RIVET.

- Ups, not so nice... Despite very good agreement with Rick Field's CDF UE analysis.
- Colour structure?

Colour structure

- ► Colour structure of the soft interactions, p_t ≤ p_t^{min} Sensitivity to parameter:
 - colourDisrupt = P(disrupt colour lines) as opposed to hard QCD.
 - colourDisrupt = 1, completely disconnected.

Look at LHC results (900 GeV)

- ATLAS charged particles in Min Bias.
- Convenient as the analysis was quickly available in RIVET.

- Not nice...
- Despite very good agreement with Rick Field's CDF UE analysis.
- Colour structure of soft events.

 $p_{disrupt}$ = probability of disruption (default = 1, completely disconected).

Extending the hadronization model in Herwig(++):

 QCD parton showers provide *pre-confinement* ⇒ colour-anticolour pairs form highly excited hadronic states, the *clusters*

¹For details look at Christians Röhr's Diploma thesis

Extending the hadronization model in Herwig(++):

 QCD parton showers provide *pre-confinement* ⇒ colour-anticolour pairs form highly excited hadronic states, the *clusters*

¹For details look at Christians Röhr's Diploma thesis

Extending the hadronization model in Herwig(++):

- QCD parton showers provide *pre-confinement* ⇒ colour-anticolour pairs form highly excited hadronic states, the *clusters*
- CR in the cluster hadronization model: allow *reformation* of clusters, *e.g.* (il) + (jk)
- Physical motivation: exchange of soft gluons during non-perturbative hadronization phase

¹For details look at Christians Röhr's Diploma thesis

Extending the hadronization model in Herwig(++):

- QCD parton showers provide *pre-confinement* ⇒ colour-anticolour pairs form highly excited hadronic states, the *clusters*
- ► CR in the cluster hadronization model: allow *reformation* of clusters, *e.g.* (*il*) + (*jk*)
- Physical motivation: exchange of soft gluons during non-perturbative hadronization phase

Implementation¹

Allow CR if the cluster mass decreases,

$$M_{il} + M_{kj} < M_{ij} + M_{kl},$$

where $M_{ab}^2 = (p_a + p_b)^2$ is the (squared) cluster mass

• Accept alternative clustering with probability p_{reco} (model parameter) \Rightarrow this allows to switch on CR smoothly

¹ For details look at Christians Röhr's Diploma thesis

- Hadronization sensitive to CR model.
- Proper study requires re-tune to LEP data.
- Many thanks to the Professor team for help and hints how to use their program! (Especially to Holger Schulz and Eike von Seggern)

Agreement on same level as w/o CR model.

- Hadronization sensitive to CR model.
- Proper study requires reâtune to LEP data.
- Many thanks to the Professor team for help and hints how to use their program! (Especially to Holger Schulz and Eike von Seggern)

Proper comparison: lack of diffraction in Herwig++!

- ► We used a diffractive suppressed sample with cut: N_{ch} ≥ 6
- Attention: The ATLAS graphs for $N_{ch} \ge 6$ are public, but the data points are not. We read the data points from the plots using:
 - EasyNData Peter Uwer [arXiv:0710.2896]
 - DataThief B. Tummers, http://datathief.org/
 - g3data J. Frantz, http://www.frantz.fi/software/g3data.php
 - some other tricks ...
 - question to the collaborations: can we do something about this?

MinBias ATLAS 900 GeV

MinBias ATLAS 900 GeV

MinBias ATLAS 900 GeV

MinBias ATLAS 7000 GeV

MinBias ATLAS 7000 GeV

MinBias ATLAS 7000 GeV

Underlying Event 900 GeV (ATLAS-CONF-2010-029)

Underlying Event 900 GeV (ATLAS-CONF-2010-029)

Underlying Event 7000 GeV (ATLAS-CONF-2010-029)

 N_{ch} /StdDev transverse vs p_t^{lead} /GeV

Preliminary results:

- ► 900 GeV MB/UE $p_t^{min} = 2.6 \text{ GeV}, \quad \mu^2 = 1.1 \text{ GeV}^2, \quad p_{\text{reco}} = 0.48, \quad p_{\text{disrupt}} = 0.43$
- ► 7 TeV MB $p_t^{min} = 5.2 \, GeV$, $\mu^2 = 1.8 \, GeV^2$, $p_{reco} = 0.55$, $p_{disrupt} = 0.68$
- ► 7 TeV UE $p_t^{min} = 3.2 \, GeV$, $\mu^2 = 0.81 \, GeV^2$, $p_{reco} = 0.61$, $p_{disrupt} = 0.34$

- First look at LHC data.
- Need colour reconnection model.
- ► First tunes to 900 GeV and 7000 GeV Min Bias (N_{ch} ≥ 6) give good results.
- Non-diffractive physics under good control

Open question:

- Treatment of remnant pdfs too naive?
- More involved overlap function? With Energy dependent parameters?
- Understanding of colour reconnection?

More to come:

- Model for diffraction.
- Further checks of consistency.
- ▶ In future release Herwig++ 2.5 (out very soon).
- Better look at energy dependence.
- Universal tune of UE parameters?

Stay tuned!