Jets for Atlas

Davison E. Soper University of Oregon

Argonne National Laboratory, November 2010

Topics

- Programs for jet cross sections.
- Do they give the same cross sections?
- Observable specification in NLO programs.
- The binning problem.
- Theory errors.
- Cross sections to measure.

Programs for jet calculations

- Leading order, with full final state:
*Pythia
*Herwig
*Sherpa
- NLO, but with partonic final state:

> * Jet (usually "EKS" ; Ellis, Kunszt, Soper)
> * JETRAD (Giele, Glover, Kosower)
> *NLOjet++ (Nagy)

The NLO jet programs

- Jetrad (Giele, Glover, Kosower): widely used; cannot set scales to jet P_{T}.
- Jet (Ellis, Kunszt, Soper): perhaps the fastest, but there are some subtleties to make it faster.
- NLOjet++ (Nagy): the newest, and the only one that can do three-jet observables.

```
http://vircol.fnal.gov/MCdownload/jetrad.html
http://physics.uoregon.edu/~soper/EKSjets/jet.html
http://nagyz.web.cern.ch/nagyz/Site/NLOjet++/html
```


Comparison of nlojet++ \& "jet" programs

- Do these give the same results?
- Let's see with the one jet inclusive cross section for the Tevatron. (Done with Z. Nagy.)
- Use cone algorithm with $\mathrm{R}=0.7, \mathrm{R}_{\text {sep }}=\mathrm{I} .3 \mathrm{R}$, rapidity range 0.1 to 0.7 , renormalization and factorization scale $=\mathrm{I} / 2 * \mathrm{P}_{\mathrm{T}}$.

"jet" result

PJ	Smeared XSECT	Integration error	Unsmearing Correction	Corrected XSECT	Unsmeared Fit XSECT
300.00	$0.1618 \mathrm{E}-03$	$0.31 \mathrm{E}-06$	$0.26 \mathrm{E}-06$	$0.1620 \mathrm{E}-03$	$0.1615 \mathrm{E}-03$
320.00	$0.8679 \mathrm{E}-04$	$0.17 \mathrm{E}-06$	$0.10 \mathrm{E}-06$	$0.8689 \mathrm{E}-04$	$0.8714 \mathrm{E}-04$
340.00	$0.4682 \mathrm{E}-04$	$0.10 \mathrm{E}-06$	$0.34 \mathrm{E}-07$	$0.4685 \mathrm{E}-04$	$0.4706 \mathrm{E}-04$
360.00	$0.2536 \mathrm{E}-04$	$0.48 \mathrm{E}-07$	$0.75 \mathrm{E}-08$	$0.2537 \mathrm{E}-04$	$0.2541 \mathrm{E}-04$
380.00	$0.1371 \mathrm{E}-04$	$0.27 \mathrm{E}-07$	$-0.15 \mathrm{E}-08$	$0.1371 \mathrm{E}-04$	$0.1370 \mathrm{E}-04$
400.00	$0.7387 \mathrm{E}-05$	$0.15 \mathrm{E}-07$	$-0.38 \mathrm{E}-08$	$0.7384 \mathrm{E}-05$	$0.7359 \mathrm{E}-05$
420.00	$0.3949 \mathrm{E}-05$	$0.80 \mathrm{E}-08$	$-0.35 \mathrm{E}-08$	$0.3945 \mathrm{E}-05$	$0.3933 \mathrm{E}-05$
440.00	$0.2093 \mathrm{E}-05$	$0.43 \mathrm{E}-08$	$-0.27 \mathrm{E}-08$	$0.2090 \mathrm{E}-05$	$0.2086 \mathrm{E}-05$
460.00	$0.1098 \mathrm{E}-05$	$0.24 \mathrm{E}-08$	$-0.18 \mathrm{E}-08$	$0.1096 \mathrm{E}-05$	$0.1096 \mathrm{E}-05$
480.00	$0.5679 \mathrm{E}-06$	$0.16 \mathrm{E}-08$	$-0.11 \mathrm{E}-08$	$0.5668 \mathrm{E}-06$	$0.5684 \mathrm{E}-06$
500.00	$0.2880 \mathrm{E}-06$	$0.18 \mathrm{E}-08$	$-0.67 \mathrm{E}-09$	$0.2873 \mathrm{E}-06$	$0.2902 \mathrm{E}-06$
520.00	$0.1432 \mathrm{E}-06$	$0.14 \mathrm{E}-08$	$-0.38 \mathrm{E}-09$	$0.1428 \mathrm{E}-06$	$0.1453 \mathrm{E}-06$
540.00	$0.7002 \mathrm{E}-07$	$0.57 \mathrm{E}-09$	$-0.21 \mathrm{E}-09$	$0.6981 \mathrm{E}-07$	$0.7112 \mathrm{E}-07$
560.00	$0.3353 \mathrm{E}-07$	$0.14 \mathrm{E}-09$	$-0.11 \mathrm{E}-09$	$0.3342 \mathrm{E}-07$	$0.3385 \mathrm{E}-07$
580.00	$0.1559 \mathrm{E}-07$	$0.47 \mathrm{E}-10$	$-0.53 \mathrm{E}-10$	$0.1554 \mathrm{E}-07$	$0.1559 \mathrm{E}-07$
600.00	$0.7003 \mathrm{E}-08$	$0.22 \mathrm{E}-10$	$-0.25 \mathrm{E}-10$	$0.6978 \mathrm{E}-08$	$0.6899 \mathrm{E}-08$
				4	

nlojet++ result

Left bin edge

$2.900000 e+02$
$3.100000 e+02$
$3.300000 \mathrm{e}+02$
$3.500000 \mathrm{e}+02$
$3.700000 \mathrm{e}+02$
$3.900000 \mathrm{e}+02$
$4.100000 \mathrm{e}+02$
$4.300000 \mathrm{e}+02$
$4.500000 \mathrm{e}+02$
$4.700000 \mathrm{e}+02$
4.900000 e+02
$5.100000 \mathrm{e}+02$
$5.300000 \mathrm{e}+02$
$5.500000 \mathrm{e}+02$
$5.700000 \mathrm{e}+02$
$5.900000 \mathrm{e}+02$

Bin center

Right bin edge

Average
cross section
Average
cross section in bin

Integration error
1.656614e-04
1.215310e-06
8.844286e-05
7.198966e-07
$4.741659 e-05$
4.776538e-07
2.630811e-05
2.122814e-07
$3.600000 e+02$
3.700
$3.800000 e+02$
$3.900000 e+02$
$4.000000 e+02$
$4.200000 e+02$
4.400000e+02
$4.600000 e+02$
4.700000e+02
$4.800000 e+02$
$5.000000 e+02$
$5.200000 e+02$
$5.400000 e+02$
$5.600000 e+02$
$5.800000 e+02$
$6.000000 e+02$
$1.383090 \mathrm{e}-05 \quad 1.442595 \mathrm{e}-07$
$7.493720 \mathrm{e}-06 \quad 6.156523 \mathrm{e}-08$
$4.033519 \mathrm{e}-06$
3.364019e-08
2.135288e-06
2.300308e-08
1.118295e-06
1.446359e-08
5.881319e-07
8.272902e-09
2.983773e-07
3.333759e-09
1.475190e-07
1.634408e-09
7.149335e-08
1.013526e-09
3.504026e-08
4.864979e-10
1.580191e-08
2.779432e-10
7.232151e-09
1.454653e-10

Use these numbers

The result

Well, they agree, but maybe we should look at the ratio...

The result for the ratio

This looks like a 2% discrepancy.

This looks like a 2% discrepancy, but we should plot also the expected ratio, given that the average over a bin and the value at the bin center are not the same.

The result for the ratio

We have agreement within the 2% statistical error of NLOjet++.

Expected ratio

- There is also agreement between JETRAD and "jet" (at about the 5% level).

Observable specification

- NLO programs may come predefined to calculate, say

$$
\frac{1}{y_{\max }-y_{\min }} \int_{y_{\min }}^{y_{\max }} d y \frac{d \sigma}{d P_{T} d y}
$$

- But they can calculate whatever infrared-safe two-jet observable you want. (Or, for nlojet++, also three-jet observables.)
- In Pythia, you get events.
- Then you specify whether it has jets, what transverse momentum, etc.
- In the NLO programs, the specification is typically in a subroutine within the program.
- You can modify the definitions.

The observable definition in program "jet"

SUBROUTINE

```
> JETDEF(CASE,Y1,P2,Y2,PHI2,P3,Y3,PHI3 OK,PJ,YJ,UNUSED ,SVALUE )
```

```
PHI32 = CONVERT(PHI3 - PHI2)
RLIMITSQ = MIN( RSEP**2, ( (P2+P3)/P2 * R )**2 )
DELTASQ = (Y3-Y2)**2 + PHI32**2
```

C CASE 1: 2 and 3 are the jet
IF (CASE.EQ.1) THEN
IF (DELTASQ.LT.RLIMITSQ) THEN
$\mathrm{PJ}=\mathrm{P} 2+\mathrm{P} 3$
$\mathrm{YJ}=(\mathrm{P} 2 * Y 2+\mathrm{P} 3 * Y 3) / \mathrm{PJ}$
IF (INBOUNDS (PJ,YJ)) THEN
OK = .TRUE.
ENDIF
ENDIF
RETURN

The binning problem

- A NLO program for two jet observables produces
- a main event with three partons and a (possibly big) positive weight
- some counter events with two partons and (possibly big) negative weights

- In terms of jet P_{T}, what you get can look like

- That's OK because if the weights are large then the P_{TS} are almost the same, so the weights cancel when we average over P_{T}.
- But this can happen:

weight	bin I	bin 2

- This can lead to bad fluctuations in the cross section in bins.
- NLOjet++ smears the bin edges a bit.

Special tricks in "jet"

- "jet" tries to calculate the cross section at a given P_{T}, not the cross section in a bin.
- Just smear with a gaussian:

- Unfortunately, the cross section smeared with a gaussian centered at P_{T} is not the same as the cross section at P_{T}, more so if the cross section is not flat, or at least linear in P_{T}.

- So we smear the cross section divided by a fit function.

$$
\sigma\left(P_{T, 0}\right) \approx F\left(P_{T, 0}\right) \int d P_{T} \frac{\sigma\left(P_{T}\right)}{F\left(P_{T}\right)} \times g\left(P_{T}-P_{T, 0}\right)
$$

- So we smear the cross section divided by a fit function, then estimate the unsmearing correction.

Theory errors

Work with Fred Olness

Motivation

- Perturbative calculations are usually presented with an error estimate.
- For example, Anastasiou, Dissertori, and Stockli, JHEP 0709, or8 (2007):

- Suppose that we have only NLO.

- We hope our NLO error band gives a range where NNLO will fall.
- For cross sections used for parton distributions, we should include the estimated theory error in the fitting procedure.

$$
\begin{aligned}
& \text { Format for theory errors } \\
& \frac{d \sigma}{d P_{T} d y}=\left[\frac{d \sigma}{d P_{T} d y}\right]_{\mathrm{NLO}}\left\{1+\sum_{J} \lambda_{J} f_{J}\left(P_{T}, y\right)\right\}
\end{aligned}
$$

- $f_{J}\left(P_{T}, y\right)$ are functions to be specified.
- λ_{J} are Gaussian random variables with standard deviation 1.
- The size of the functions $f_{J}\left(P_{T}, y\right)$ gives the size of the errors.
- This gives the complete error matrix as for experimental systematic errors.

$$
\frac{d \sigma}{d P_{T} d y}=\left[\frac{d \sigma}{d P_{T} d y}\right]_{\mathrm{NLO}}\left\{1+\sum_{J} \lambda_{J} f_{J}\left(P_{T}, y\right)\right\}
$$

uncorrelated errors

correlated errors

What to include

- Perturbative error estimated from scale dependence.

- Error from power suppressed correction estimated from simple models.

Assembled errors

$$
\begin{aligned}
\frac{d \sigma}{d P_{T} d y} & =\left[\frac{d \sigma}{d P_{T} d y}\right]_{\mathrm{NLO}} \\
f_{1}\left(P_{T}, y\right) & =\frac{4.56 \times 10^{-2}}{\log \left(M(y) / P_{T}\right)} \\
f_{2}\left(P_{T}, y\right) & =\frac{1.24 \times 10^{-2} y^{2}}{\log \left(M(y) / P_{T}\right)} \\
f_{3}\left(P_{T}, y\right) & \left.=5.36 \times 10_{J} f_{J}\left(P_{T}, y\right)\right\} \\
f_{4}\left(P_{T}, y\right) & =0.536 \times 10^{-2} y^{2} \\
f_{5}\left(P_{T}, y\right) & =1.07 \times 10^{-2} \log \left(\frac{15 P_{T}}{M(y)}\right) \\
f_{6}\left(P_{T}, y\right) & =0.214 \times 10^{-2} y^{2} \log \left(\frac{15 P_{T}}{M(y)}\right) \\
f_{7}\left(P_{T}, y\right) & =\frac{7 \mathrm{GeV}}{P_{T}}
\end{aligned}
$$

Theory errors for LHC

What to measure?

- One jet inclusive cross section

$$
\frac{d \sigma}{d P_{T} d y}
$$

- This is simple.
- The rapidity dependence can help sort out between new physics and deficient partons distributions.
- Two jet cross section

$$
\frac{d \sigma}{d M_{J J} d y}
$$

- If there is any kind of a resonance that decays to two jets, this will find it.

30

- Two jet angular distribution

$$
\frac{d \sigma}{d M_{J J} d y d \cos \theta} / \frac{d \sigma}{d M_{J J} d y}
$$

- New physics signals have a different dependence on angle than does QCD.

- Two jet azimuthal angular decorrelation

- This is really a three jet observable.
- Three jet invariant mass distribution

$$
\frac{d \sigma}{d M_{J J J} d y_{J J J}}
$$

