Dressed Ion-Pair States of an Ultralong-Range Rydberg Molecule

P. Giannakeas*, ${ }^{*}$, M. T. Eiles ${ }^{1}$, F. Robicheaux ${ }^{2}$, and Jan-Michael Rost ${ }^{1}$
${ }^{1}$ Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden,
${ }^{2}$ Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

System \& Motivation

The main premise of this project is to explore exotic states of Ultralong-range Rydberg Molecules (ULRMs) which share characteristics with Heavy Rydberg States (HRS) [1].

System: Two ${ }^{85} \mathrm{Rb}$ atoms: one in a highly excited Rydberg state and a ground state one located at distance R.

Motivation: The impact of high-angular momentum electron-atom interactions

Ultralong-range Rydberg molecules and Hamiltonian

The Hamiltonian of the electronic degrees-of-freedom reads:

$$
\begin{equation*}
H(r)=-\frac{1}{2} \frac{\partial}{\partial r}-\frac{1}{r}+V_{s h}^{A^{+}-e}(r)+V_{p o l}^{A-e}(|\boldsymbol{r}-\boldsymbol{R}|) \tag{1}
\end{equation*}
$$

\square The polarization potential $V_{\text {pol }}^{A-e}$ between the electron and the ground state atom reads:

$$
\begin{equation*}
V_{\text {pol }}^{A-e}(|\boldsymbol{r}-\boldsymbol{R}|)=2 \pi a_{S}(k) \delta(\boldsymbol{r}-\boldsymbol{R})+6 \pi a_{P}^{3}(k) \overleftarrow{\nabla} \delta(\boldsymbol{r}-\boldsymbol{R}) \vec{\nabla} \tag{2}
\end{equation*}
$$

$\square S$ - and P-wave electron-atom interactions \rightarrow two types of molecular states: the trilobites and butterflies, respectively [2-4].

Dressed ion-pair model

$■$ The ground state atom is dressed by a charge distribution:

$$
\begin{equation*}
\left\langle Q_{L}(R)\right\rangle=-\frac{1}{v^{3} \pi k} \frac{d \delta_{L}(k)}{d k} \tag{3}
\end{equation*}
$$

■ The positively charged core interacts with the dressed anion via Coulomb forces $\rightarrow F_{L}(R)=\left\langle Q_{L}(R)\right\rangle / R^{2}$
\square The molecular potential curves then read: $E_{L}(R)=-\frac{1}{2\left(n-\delta_{L}(k) / \pi\right)^{2}}$

What if the fractional charge \mathbf{Q} is independent of R ?

\square The fractional charge Q is constant if $\delta_{L} \sim k^{2}$

- The phase shifts in Born approximation for $L>1$ read:

$$
\tan \delta_{L>1}^{B}=\pi \bar{a}_{L} k^{2} \text { with } \bar{a}_{L}=\frac{\alpha}{(2 L+1)(2 L-1)(2 \mathrm{~L}+3)}
$$

\square Taylor expanding the high-L potential curves:

$$
\begin{equation*}
E_{L}(R)=\frac{\bar{a}_{L}}{n^{5}}-\frac{2 \bar{a}_{L}}{n^{3} R}-\frac{6 \bar{a}_{L}}{n^{4} R^{2}}- \tag{5}
\end{equation*}
$$

\square The leading term is a Coulomb tail attached to each electronic Rydberg manifold n
■ Vibrational spectrum \rightarrow WKB analysis:

$$
\begin{equation*}
E_{v J}^{n L}=\frac{\bar{a}_{L}}{n^{5}}-\frac{R_{n L}^{\prime}}{\left(v-\eta_{J}\right)^{2}} ; R_{n L}^{\prime}=\frac{2 \mu \bar{a}_{L}}{n^{6}} \tag{6}
\end{equation*}
$$

■ The core and the dressed anion form a vibrational heavy Rydberg series with a small Rydberg constant

A new class of Rydberg molecules

- A new theoretical framework: Generalized Local Frame Transformation (GLFT) theory for Rydberg molecules [5] \square For Rb atoms we include $D-, F-$ and G-wave $e-R b$ phase shifts
■ A family of high-L ULRMs $\rightarrow \Sigma$ molecular symmetry

- Neglecting atomic quantum defects: Comparison of numerical (green dots) calculations, dressed-ion pair predictions (orange lines) and GLFT results (blue dots)

\square Panels (a) and (b) show Σ and Δ molecular symmetry

Trimmed Rydberg series in Dragonfly potential curves

\square The effective nuclear quantum number is \mathscr{V} (blue dots)

$$
\begin{equation*}
\mathscr{V}=\sqrt{R_{n L} /\left(\bar{a}_{L} / n^{5}-\varepsilon_{v J}^{n L}\right)} \tag{7}
\end{equation*}
$$

\square The rescaled difference of successive energy levels $\Delta \varepsilon$ (orange circles)

Panels (a) and (b) show the vibrational spectra for the Δ and Σ dragonfly molecular curves at different electronic n manifolds
\square The straight lines of blue, orange and black-dashed lines denote a Rydberg series in the vibrational spectrum

References

${ }^{1}$ P. Giannakeas, M.T. Eiles, F.Robicheaux, and J.-M. Rost, Phys. Rev. Lett. 125, 123401 (2020). ${ }^{2}$ C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Phys. Rev. Lett. 85, 2458 (2000). ${ }^{3}$ E. L. Hamilton, C. H. Greene, and H. R. Sadeghpour, J. Phys. B 35, L199 (2002).
${ }^{4}$ M. I. Chibisov, A. A. Khuskivadze, and I. I. Fabrikant, J. Phys. B 35, L193 (2002)
${ }^{5}$ P. Giannakeas, M. T. Eiles, F. Robicheaux, and J.-M. Rost, Phys. Rev. A 102, 033315 (2020).

